Draft Standard T1.2XX-1999 (T1M1.5/99-029r3)

3GPP TSG S5 (Telecom Management) meeting #8

Bonn, Germany, 7-10 December, 1999
Tdoc S5-99297

COMMITTEE T1 – TELECOMMUNICATIONS

Working Group T1M1.5

Boca Raton, FL; November 8-12, 1999
T1M1.5/99-029r4

DRAFT STANDARD

Title:
Working Document for Draft Standard ANSI T1.2xx-1999, Framework for CORBA-Based Telecommunications Management Network Interfaces

Source:
Editor

Contact:
Keith Allen

SBC Technology Resources

(512) 372-5741 (voice)

(512) 372-5791 (fax)

kallen@tri.sbc.com
Distribution:
T1M1.5

Project:
Protocol Standards for Communication between Operating Systems

ABSTRACT

This contribution defines a framework for CORBA-based telecommunications network management interfaces. It covers framework requirements, CORBA Common Object Service usage recommendations, information modeling guidelines, and IDL style conventions. It also defines a set of network management support services with IDL interfaces and an IDL module on which future CORBA-based network management interfaces may be based.

This version of the document has been updated to reflect the decisions made at the September 20-24 T1M1.5 interim meeting in Austin, TX.

NOTICE

This is a draft document and thus, is dynamic in nature. It does not reflect a consensus of Committee T1-Telecommunications and it may be changed or modified. Neither ATIS nor Committee T1 makes any representation or warranty, express or implied, with respect to the sufficiency, accuracy or utility of the information or opinion contained or reflected in the material utilized. ATIS and Committee T1 further expressly advise that any use of or reliance upon the material in question is at your risk and neither ATIS nor Committee T1 shall be liable for any damage or injury, of whatever nature, incurred by any person arising out of any utilization of the material. It is possible that this material will at some future date be included in a copyrighted work by ATIS.

ANSI®
T1.2XX-1999

American National Standard

for Telecommunications

Framework for CORBA-Based

Telecommunications Management Network Interfaces

Secretariat

Alliance for Telecommunications Industry Solutions

Approved December 31, 1999

American National Standards Institute

Abstract

This document defines a framework for CORBA-based telecommunications network management interfaces. It covers framework requirements, CORBA Common Object Service usage recommendations, information modeling guidelines, and IDL style conventions. It also defines a set of network management support services with IDL interfaces and an IDL module on which future CORBA-based network management interfaces may be based.

Table Of Contents
vTable Of Contents

Table Of Figures
ix
Table Of Tables
ix
Foreword
xi
1.
Introduction
1
1.1
Scope and Purpose
1
1.2
Application
2
1.3
Document Roadmap
3
1.4
Updates
3
1.5
Issues
4
2.
Normative References
5
3.
Definitions
6
4.
Framework Goals and Requirements
6
4.1
Goals
6
4.1.1
Application Interoperability
6
4.1.2
Common Usage of CORBA Common Object Services
7
4.1.3
Information Model Transparency
7
4.2
Entities
7
4.2.1
Access Granularity
8
4.3
Principles of Containment and Naming
8
4.3.1
Naming (needs to be aligned with the options for naming: LDAP or option 2 of Weijing’s Name service contribution)
9
4.3.2
Entity Identification
10
4.4
Managed Object Classes
10
4.5
Packages
10
4.6
Attributes
10
4.6.1
GET and SET
10
4.6.2
Generic Attribute Get
11
4.6.3
Set-valued Attributes
11
4.7
Creation and Deletion of Managed Objects
11
4.7.1
Creation
11
4.7.2
Deletion
13
4.8
Inheritance
13
4.9
Scoping and Filtering
13
4.9.1
Scoping
14
4.9.2
Filtering
14
4.10
Notifications
16
5.
Framework Protocol Requirements
16
6.
Framework Common Object Services Recommendations
17
6.1
The Naming Service
17
6.2
Notification Service
21
6.3
Telecom Log Service
25
6.4
Messaging Service
26
6.5
Security Service
28
7.
Framework Support Services
29
7.1
The Multiple-Object Operation Service
29
7.1.1
The MOO Service Interface
29
7.1.2
The Default Filter Language
34
7.1.3
MOO Service Recommendations
38
7.2
Other Support Services
39
8.
The Framework IDL Module
39
8.1
The Top Managed Object
40
8.2
The Managed Object Factory
42
8.3
The Factory Finder Service
43
8.4
The Terminator Service
43
8.5
The Notifications Interface
44
8.6
The Data Type Definitions
45
8.7
Macro Definitions
45
8.8
The Constant Definitions
46
9.
Information Modeling Guidelines
46
9.1
Modules
46
9.2
Interfaces
47
9.3
Attributes
47
9.3.1
Readable Attributes
47
9.3.2
Settable Attributes
47
9.3.3
Set-valued Attributes
48
9.3.4
Exceptions
48
9.4
Actions
48
9.5
Notifications
49
9.6
Conditional Packages
49
9.7
Behavior
50
9.8
Factories
50
9.8.1
Create Operations
51
9.8.2
Delete Rules
51
9.8.3
Factory Finder
52
9.9
Managed Object Class Value Types
52
9.10
Constants
53
9.11
Registration
54
9.12
GDMO Translation
55
9.12.1
Managed Object Classes
55
9.12.2
Packages
55
9.12.3
Attributes
55
9.12.4
Attribute Groups
56
9.12.5
Actions
56
9.12.6
Notifications
57
9.12.7
Behaviors
57
9.12.8
Name Bindings
57
9.12.9
Parameters
58
10.
Style Idioms for CORBA IDL Specifications
59
10.1
Use Consistent Indentation
59
10.2
Use Consistent Case for Identifiers
59
10.3
Follow JIDM Approach for IMPORT
60
10.4
Use JIDM Approach for OPTIONAL and CHOICE
61
10.5
Use a Consistent Type Suffix
61
10.6
Use a Consistent Suffix for Sequence Types.
61
10.7
Use a Consistent Suffix for Set Types.
61
10.8
Use a Consistent Suffix for Optional Types
61
10.9
Arrange Operation Parameters in a Consistent Manner
62
10.10
Assume No Global Identifier Spaces
62
10.11
Module Level Definitions
62
10.12
Limit Number of Parameters
62
10.13
Use of Exceptions and Return Codes
62
10.14
Explicit vs. Implicit Operations
62
10.15
Don’t Overly Constrain Data Types
62
10.16
Don’t Create a Large Number of Exceptions
62
10.17
Performance Considerations in IDL Modeling
62
10.17.1
Native Data Types vs. User Data Types
63
10.17.2
Use of the CORBA ANY data type
63
10.17.3
Operation Invocations
63
10.17.4
Abstraction Level of Object Granularity
63
10.17.5
Number of Objects in Implementations
63
10.17.6
Static vs. Dynamic Invocation
64
10.17.7
Number of Parameters for Each Operation
64
10.17.8
Two-way vs. One-way Operations
64
10.17.9
Support for invocation on multiple objects
64
10.18
Interface Versioning for CORBA/IDL
64
10.18.1
Interface Repository Overview
65
10.18.2
Use of RepositoryID for Interface Versioning
66
10.19
CORBA Interoperability Across Domains
67
10.19.1
Exchanging an IOR Out of Band
67
10.19.2
Naming Service Overview
68
10.19.3
Proposal for IOR Exchange
69
11.
Compliance and Conformance
69
11.1
Standards Document Compliance
69
11.2
System Conformance
70
11.2.1
Conformance Points
70
11.2.2
Basic Conformance Profile
71
Appendix A CORBA IDL Module
73
MODULE ITU_X721
73
IMPORTED TYPES
73
FORWARD DECLARATIONS AND TYPEDEFS
73
ENUMERATED TYPES
74
STRUCTURES AND UNIONS
75
ALARM STRUCTURES
78
EXCEPTIONS
82
MANAGED OBJECT INTERFACE
82
MANAGED OBJECT FACTORY INTERFACE
84
TERMINATOR SERVICE INTERFACE
84
NOTIFICATIONS INTERFACE
85
MACROS
89
Appendix B Network Management Constant Definitions
91
ProbableCauseConst Module
91
SecurityAlarmCauseConst Module
92
Appendix C MOO Service IDL
93
// Data Types and Structures
93
// Exceptions
95
// Interfaces
95
// DeleteResultsIterator Interface
95
// GetResultsIterator Interface
95
// UpdateResultsIterator Interface
95
// BasicMooService Interface
96
// AdvancedMooService Interface
96

Table Of Figures

13Figure 1. Naming Graph of Managed Objects

Figure 2. Architecture of the Notification Service
15
Figure 3. Mapping Notifications to Structured Events
18
Figure 4. Telecom Log Service
19
Figure 5. Asynchronous-aware ORB
21

Table Of Tables

10Table 1. CORBA Service Versions

Foreword

This document was produced by the Management Services Sub-Working Group of T1M1.5, Working Group on OAM&P Architecture, Interface, and Protocols.

The Common Object Resource Broker Architecture (CORBA) is a software architecture defined by the Object Management Group to enable software objects to interact with each other despite their location, type of host computer, or programming language. By the spring of 1999 interest in applying CORBA to Telecommunications Management Network (TMN) interfaces was building and industry groups were beginning to define CORBA-based network management interfaces for specific network technologies such as ATM and SONET/SDH. Many of these groups had previously defined TMN interfaces based on the Common Management Information Protocol (CMIP) by re-using a common framework and generic network information model defined in part by T1 and standardized by the ITU-T. Contributions from multiple sources to T1M1.5 pointed out the benefits to the industry of following a similar approach for CORBA interfaces, with T1, and ultimately the ITU-T, defining a framework and generic network information model that can then be extended by various industry fora for managing specific network technologies. This document defines such a framework. A separate document defines the generic network information model. Both will be submitted to the ITU-T in an attempt to develop international standards for CORBA-based network management interfaces.

Suggestions for the improvement of this standard are welcome. They should be sent to the Alliance for Telecommunications Industry Solutions, 1200 G Street, NW, Suite 500, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on Telecommunications T1. Committee approval of this standard does not necessarily imply that all committee members voted for its approval.

The following members of the T1M1.5 Management Services Sub-Working Group contributed to the effort to produce this document:

Lakshmi Rahman, Chair
Tom Grim
Kevin Richardson

Keith Allen, Editor
Gopal Iyengar
Tom Rutt

Dave Andersen
Chris Kang
Jim Stanco

Albert Bonavolonta
H. Kam Lam
Wendy Teller

Weijing Chen
Dave Matthews
Who am I missing???

Tammy Ferris
Bernie Mayer

Jane Fox
Rick Ordower

AMERICAN NATIONAL STANDARD
ANSI T1.2XX-1999

American National Standard

for Telecommunications

Framework for CORBA-Based

Telecommunications Management Network Interfaces

1. Introduction

The TMN architecture defined in Recommendation M.3010 –1992 has been revised to introduce concepts from distributed processing as well as include the use of multiple management protocols. These changes are reflected in the version to be approved in February 2000. The initial TMN interface specifications for intra- and inter administrations were developed using the Guidelines for the Definition of Managed objects (GDMO) notation from OSI Systems Management with Common Management Information Protocol (CMIP) as the protocol. The inter administration interface (X) included both CMIP and CORBA GIIOP/IIOP as two possible choices at the application layer.

CORBA, a distributed processing technology, is being considered for use in the TMN communication architecture primarily due its acceptance by the Information Technology industry. This acceptance is expected to enhance the availability of CORBA-based interfaces due to better development tools and wide spread expertise in developing CORBA based interfaces. This technology, developed by Object Management Group (OMG), is also being considered for us by multiple industries. Specifications using this technology provide support for standard application programming interfaces (APIs), language bindings to programming languages and facilitate software portability. The interoperability solutions offered by the object request broker combined with Inter ORB protocol addresses interoperability between client and server. While CMIP and information models provide solutions for interoperability between manager and agent systems, CORBA defines inter-object interactions where the objects may be distributed.

1.1 Scope and Purpose

Efforts are in progress in several groups developing network management specifications to use CORBA modeling techniques with IDL as the notation and use of CORBA services. The scope of this standard is to define a framework suitable for use in the specification of interoperable CORBA-based network management interfaces. Standards for CORBA-based network management interfaces to date have mainly focused on TMN “X” interfaces, which are interfaces between administrations (carriers). The demands placed on these interfaces are not typically as great as those used “inside” an administration, “Q” interfaces. The scope of this framework covers all interfaces in TMN where CORBA may be used. It is expected that not all capabilities and models defined here are required in all TMN interfaces. This implies the framework can be used both for interfaces between management systems at all levels of abstractions (inter and intra-administration) as well as between management systems and network elements.

This framework is intended for use by various groups specifying network management interfaces. A number of factors are considered in this framework: the version of CORBA to use, the set of CORBA Common Object Services employed, additional services, and translation methodologies. The purpose of the framework is to define specifications addressing these areas. Use of a common framework has several advantages. Some examples are: facilitating reuse of models that are developed to meet the generic requirements of telecommunications; profiling CORBA services for use by telecommunications industry; reusing the semantics of the existing rich set of models; and harmonizing the modeling approach across groups using a single source similar to Recommendations X.720, 721 and 722 for CMIP. Re-using a common framework and generic information model for a variety of network technologies and network management applications will speed the introduction of new network services while keeping network management system development costs down.

The framework is designed to use existing information models defined for CMIP, in which the telecommunications industry has invested a great deal of time and energy. A prime goal of this framework is to enable the re-use of these information models after translation to CORBA Interface Definition Language (IDL) with little change in semantics. As a result, initial IDL information models are expected to be derived from CMIP models.

In addition to taking advantage of CMIP information models, another purpose of the framework is to take advantage of CORBA. The framework leverages the functions and a set of Common Object Services that are defined in CORBA specifications. Also, the framework tries to re-use CORBA approaches and design patterns wherever they fit.

1.2 Application

When CORBA is introduced in TMN, different scenarios are possible that range from network with gateways performing translations between different network management protocols supported by the managing and managed system to applications where CORBA is natively supported by the communicating systems. The application of this framework is intended for scenarios where both the managed system and the managing system provide CORBA interfaces.

The framework does not address other inter-working scenarios requiring “gateway” systems where protocol and information model conversions are necessary for achieving interoperability. In particular, this framework is not specifically designed to support the construction of gateways between CORBA and CMIP network management applications even though semantics of the existing models are retained in the framework. This implies that a management system might have to support multiple protocols, to inter-work in different environments.

A gateway approach has already developed and standardized by the Joint Inter-Domain Management (JIDM) group. This gateway approach provides a one to one mapping of all constructs and capabilities available with CMIP and GDMO. However, many of the CORBA services and capabilities are not reused by this approach because the problem solved is to facilitate inter-working between systems that have been deployed using CMIP. In contrast, the problem domain for applying this framework is to support standards-based native CORBA network management interfaces. Such an approach takes advantage of the benefits offered by CORBA as a technology used by multiple industries.

Another standard containing an information model based on the ITU-T’s M.3100 Generic Network Information Model accompanies this framework.

1.3 Document Roadmap

This document has the following structure:

Section 1.
Introduction, document roadmap, updates, and list of issues.

Section 2.
References.

Section 3.
Definitions of terms and abbreviations used throughout the rest of the document.

Section 4.
Requirements for the CORBA network management framework. These are the design goals the framework must meet.

Section 5.
CORBA ORB and Service version requirements.

Section 6.
Recommendations on the use of CORBA Common Object Services on network management interfaces.

Section 7.
Support services that are not standard CORBA Common Object Services. IDL interfaces for the support services are defined in Appendices C and D.

Section 8.
A CORBA IDL module defining interfaces to be used and sub-classed in network management interface specifications. This section describes what is in the IDL module. The actual IDL is in Appendices A and B.

Section 9.
Information Modeling Guidelines. This section contains recommendations on both translating CMIP information models to IDL, and on defining IDL information models from scratch.

Section 10.
Style idioms for CORBA IDL network management interface specifications.

Appendix A.
The IDL module for the framework specification.

Appendix B.
Additional IDL defining constants used by the framework.

Appendix C.
Scoping and Filtering Service IDL.

1.4 Updates

This section describes the updates from the previous version of the document.

This is the fourth version of 1999/T1M1.5-029. It has been updated to reflect changes made at the September 20-24 interim meeting in Austin, TX. The following changes have been made:

1. Updated Section 6.1, on the Naming Service. Details on naming the root context were added.

2. Also on the Naming Service, the use of the scoped class name as the “kind” field in name bindings was removed because it was redundant and made names unnecessarily long. The scoped class name is still the “ID” field of the parent context. Also, a requirement describing the need and use for a local administrative procedure for setting the root context name was added to this section.

3. Updated Section 6.2, on the Notification Service. A requirement on adding name bindings for event channels was added, and the option of having event channels for subtrees of objects was described.

4. Section 6.3, on Telecom Logging, was updated to reflect the requirement to add a name binding for logs, just as for event channels.

5. Changed name of Scoping and Filtering service to MOO service.

6. Changed name of Delete service to Terminator.

7. Removed grain-neutral conventions, updated IDL.

8. Removed Conclusion section, added Conformance and Compliance section.

9. Added “Set” and “Seq” (instead of “List”) conventions. Updated IDL.

1.5 Issues

This section documents issues that have arisen during standardization of this document and their resolutions. It will be removed in the final version of the document. The issues that we have resolved have been removed from this version of the document

1. Naming Service usage in support of both coarse-grained and fine-grained interfaces (see Appendix B) requires further study of way to improve Naming Service scalability. Do we allow object reference to be null in MOID for return and in parameters? (Lucent)
Update 6/99: It is not clear from Lucent contribution (171) why the object reference needs to be null to solve the naming service storage. The Naming Service does not access the MOID. It was agreed that the proposal is not a solution (for storage of IORs) because it creates the following problem. If IOR is NULL, then how does the client find the IOR which is required for requests by clients? It was noted that the text in section 4.10 needs clarification and Lucent was requested to provide it. It was also noted that one solution is to support federated naming similar to JIDM approach where naming context is defined in top. This will allow for example to distribute names relative to different contexts in different servers, possibly solving the storage issue. This requires further discussion.

A parenthetical statement was added to the IDL comment on the MOID structure. Also, a sentence on the option of using federated naming servers was added to recommendation NAME-1.

2. Methods are needed to reduce the time required for completing a database synchronization, or more generally, the time required for completing any large transfer of information.

Update 6/99: A section on alarm synchronization has been added to the support services section and corresponding IDL has been added to the appendices. Contributions on other database synchronization needs and solutions are invited. The configuration proposal from Lucent was found to be specific to a class of objects. It was agreed that support of an audit function similar to X.792 is required. This is documented as a new issue below.
3. How to support X.792 configuration and action in CORBA?

4. What X.7xx series of support service need to support in CORBA (ex. simple scanner, alarm synch Q.821)? Will be in the separate section of 29. (Lucent proposal for alarm synch will be included)

5. The Scoping and Filtering Service’s constraint language does not support sets of object references or sets of complex types including UIDs. Does this need to be added? Does a string comparison on objectClass in the filter suffice for limiting the operation to a class of objects or is some other mechanism needed, perhaps one that would accept sub-classes? Contributions extending the Notification Service’s constraint language’s BNF to match the constraint language defined for the Scoping and Filtering Service are invited.

6. No filtering on object references – is this a problem?

7. The framework does not prescribe that attributes with types ending in “SetType” fail in sequence operations and that attributes with types ending in “SeqType” fail in set operations. Since this mismatch would simply result in a silent failure of the filter expression, this seems anomalous.

2. Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

[1] The Object Management Group (OMG), “The Common Object Request Broker: Architecture and Specification”, Revision 2. 3, June 1999.

[2] The Object Management Group (OMG), “CORBA Services: Common Object Services Specification”, Updated version, December 1998.

[3] The Object Management Group (OMG), “Notification Service”, OMG TC Document telecom/98-11-01, November 3, 1998.

[4] The Object Management Group (OMG), “Telecom Log Service”, OMG TC Document telecom/98-12-04, December 16, 1998.

[5] The Object Management Group (OMG), “JIDM Interaction Translation,” Edition 4.31, OMG TC Document telecom/98-10-10, October 1998.

[6] Netscape, Inc., “The SSL Protocol Version 3.0,” http://home.netscape.com/eng/ssl3/ssl-toc.html, March, 1996.

[7] Internet Engineering Task Force (IETF), “The TLS Protocol Version 1.0,” RFC 2246, Version 1.0, January, 1999.

[8] The Institute of Electrical and Electronics Engineers (IEEE), “Information Technology – Portable Operating System Interface (POSIX) Part 2: Shell and Utilities,” IEEE/ANSI Standard 1003.2-1992, 1992.

3. Definitions

This section provides definitions for terms and phrases used throughout the rest of the document.

4. Framework Goals and Requirements

This section addresses the key goals of the CORBA Framework and the requirements that help the Framework support these goals. Section 4.1 introduces the goals of the CORBA framework. Section 4.2 then provides terminology and requirements.

4.1 Goals

This document sets out to define a framework for defining how interfaces between management systems should be modeled. Some key goals of the framework are identified here:

· Application Interoperability

· Common Usage of CORBA Common Object Services

· Information Model Transparency

This section elaborates on these three goals.

4.1.1 Application Interoperability

A key goal of the TMN architecture, and in particular the information architecture, is to promote a standard framework for providing interoperability and information exchange between systems from a diverse set of network management system vendors. Interoperability between systems involves many aspects of development. At its lowest layer, a common communication mechanism must be in place to support a common syntax, the establishment of connectivity as well as allow operation requests/replies to be exchanged between systems. This aspect of interoperability is inherently supported by the CORBA specification.

For TMN, there is the need to provide application interoperability. That is, management systems from diverse vendors will be utilized within a single administration's TMN to support different functions necessary to support management of its networks. To simplify integration of these various vendors' systems, this framework must be in place. In this capacity, the framework must identify common modeling methodologies for defining standard information models.

4.1.2 Common Usage of CORBA Common Object Services

A second aspect of this framework is the definition of common usage and profiling of the distributed processing environment of choice. This aspect of the framework should indicate reasonable expectations network management system vendors may have for one another. Specifically, the framework will address the use of the CORBA ORB and CORBA Common Object Services (COS) that will impact system interoperability (i.e., issues involving the use of CORBA within a single system are outside the scope of this document).

4.1.3 Information Model Transparency

If CORBA is used in places within the TMN architecture where existing information models are well established (e.g. GDMO), then the framework must support the reuse of those models without any major changes.

A single standard way to map these information models to OMG IDL is needed so that the same models are always presented by the application protocol to the application with the same set of services (capabilities).

The focus of the framework must be on the set of services required to allow the existing models to be used as they were originally intended with a reasonable amount of efficiency.

4.2 Entities

An Entity Type describes a type of “thing” in the real world with an independent existence. An Entity Type may be an object with a physical existence – a circuit pack, managed element, or slot – or it may be an object with a conceptual existence – a subnetwork, termination point, or link. Each Entity Type has particular properties, called attributes, that describe it.

An Entity Instance (or Entity) describes a particular instance of an Entity Type (e.g., Circuit Pack #1). Each Entity’s attributes are described by particular values that represent the state of that instance. In addition, each Entity must be uniquely identifiable.

In CORBA, an Entity may have many manifestations. An Entity may be represented by an IDL data structure, a value type, an interface type or a component. This document describes how CORBA is utilized to manage Entities.

4.2.1 Access Granularity

In the context of TMN operations, granularity defines the level of abstraction that is exposed between systems. Access Granularity identifies the level at which Entities may be accessed (i.e., how information is exposed via an interface). For CORBA, each CORBA object is provided a unique address known as an Interoperable Object Reference (IOR). The IOR provides an address to the client system identifying which server system to connect to for communication with the server side CORBA object.

In CORBA, it is possible to define different access abstractions (i.e., access granularity) to the Entities defined for TMN (e.g., ITU-T Rec. M.3100). Three different access abstractions are defined here:

1) Instance Grain: Each Entity has its own IOR. For the creation of new Entities, this implies the instantiation of a new CORBA object.
- 1 IOR / Entity Instance

For example, an Entity Type in the ATM domain is an atmLink. In the Instance Grain approach, a CORBA object is defined that supports the same attributes as the Entity Type which it represents. For each instance of the atmLink, an independent CORBA object is created. Thus each atmLink can be uniquely addressed by its IOR.

2) Application Specific Grain: Instances of a well defined set of Entity Types are accessed via a single IOR (a single interface)
-1 IOR / Family (set of) Entity Types
object state or operations are manipulated through strongly typed interfaces

3) Grain Independent Service (arbitrary/ weakly types): An arbitrary set of Entity Instances of arbitrary Entity Types may be acted on (manipulation of state or invocation of operations) via generic (or weakly typed) interfaces.

One or more of these Access Granularities may be applied to Entities in a single system.

4.3 Principles of Containment and Naming

Containment is a logical representation of how Entities of one type contain Entities of another type. A Containment Tree defines the relationship between the Entity instances. An Entity Instance is contained by one and only one containing Entity Instance. Containing Entity Instances may themselves be contained in another Entity Instance forming a directed graph. The directed graph forms what is called the Naming (or Containment) Tree.

The containment relationship can be used to model real-world hierarchies of parts (e.g., assembly, sub-assemblies and components) or real-world organizational hierarchies (e.g., company name, org. name).

An example of a possible containment tree is shown in Figure 1:

[image: image1.wmf]root

Managed

Element

Trail

Termination

Point

Equipment

Circuit Pack

Containing

Entity

Contained

Entity

Figure 1 Example of Containment
4.3.1 Naming (needs to be aligned with the options for naming: LDAP or option 2 of Weijing’s Name service contribution)
The details of this section will be modified based on the selected option for naming service. Once the option is identified the details are to be moved to the Naming Service section.

One purpose of containment relationships is for naming Entities. Names are designed to be unambiguous in a specified context; for TMN, this context is determined by the containing Entity Instance.

An Entity that is named in the context of another Entity is termed a "Subordinate Entity". The Entity that establishes the naming context (this term is used in general and should not have the direct connotation of a COS Naming Service Naming Context) for other Entities is called the "Superior Entity".

A "Subordinate Entity" is named by the combination of:

· The name of its "Superior Entity".

· Information uniquely identifying this “Subordinate Entity” within the scope of its superior Entity.

The name of an Entity that is unambiguous in a local naming context, may not be so in some larger naming context. However, if the local naming context is unambiguous in the larger context, a local name can be made unambiguous by qualifying it by its naming context; the name of the naming context is used as the qualifier. This arrangement can be visualized as a directed graph with each edge (or arrow) pointing from a named object to a naming context.

The naming context can itself be recursively qualified by another naming context, so the complete naming structure can be visualized as a single-rooted hierarchy. This hierarchy is called the naming tree. Thus "Superior Entities" become the naming contexts and their names become the names of the contexts. An object name need only be unambiguous within the context of its superior Entities; within a wider context its name is always qualified by names of it superior Entities.

4.3.2 Entity Identification

Because a “Superior Entity” may contain multiple “Subordinate Entities” of the same type, each of these contained Entities of the same type must be distinguishable relative to their containing Entity. The relative name of an Entity within its contained Entity is called an Entities Relative Distinguished Name (RDN). For example, using Figure 1, there may be several circuit packs (i.e., equipment) within a managed element. To uniquely identify each equipment holder within the managed element, the equipment holders must be provided an RDN. The RDN should identify the name of the Entity Type (e.g., circuitPack, which is an Entity Type) and a unique value within the scope of the containing Entity.
4.4 Managed Object Classes

This framework specifies that each entity type maps one-to-one with a CORBA operational interface. When an Entity Type is mapped in this manner, the CORBA object representing the Entity Type is called a Managed Object Class. A Managed Object Class must also exhibit the ability to emit notifications (see ITU-T Rec. X.703).

Further detail on Managed Object Classes is defined in Rec. ITU-T X.720.

4.5 Packages

It is necessary to capture the notion of packages in CORBA IDL. Packages may be either Conditional or Mandatory. A managing system must have the capability to determine which packages are supported by a Managed Object Instance. If any operations are performed on a Managed Object, and those operations are contained by a Conditional Package that is not instantiated for that Managed Object, then errors must be triggered.

4.6 Attributes

This framework must support attributes on Managed Object Classes.
4.6.1 GET and SET

The value of an attribute may be observable or modifiable across a standard interface. If observable, the information modeler must define a "get" method for that attribute. If modifiable, the information modeler must define a "set" method for that attribute.

4.6.2 Generic Attribute Get

The CORBA Framework should allow a managing system the ability to read arbitrary groups of attributes from a single managed object with a single operation. This service allows many management tasks to be performed with a single operation. Support of the Generic Attribute Get is required.
4.6.3 Set-valued Attributes

For attributes containing lists of values, a modeler should have to capability to allow managing systems to add or remove individual values to/from lists without resending all the information in the original list.
4.7 Creation and Deletion of Managed Objects

The existence of Managed Objects (MO) is closely related to the containment relationship between the MOs. A MO's existence is tied to the existence of that MO's superior MO Instance. If the specified “Superior MO” does not exist for a “Subordinate MO”, then that “Subordinate MO” can not be created. Similarly, if a MO's “Superior MO” is deleted, then that “Subordinate MO” (and the “Subordinate MO's” subordinates) can no longer exist. Given this, there are creation and deletion semantics that must be enforced by the framework.

The following sections define the high level requirements that must be supported for object creation and deletion. Section 7 describes the generic services used to carry out creation (i.e., the factory) and deletion (i.e., the factory in coordination with the terminator service). Section 9 defines modeling guidelines for how the requirements defined in this section are supported.
4.7.1 Creation

May need to be updated based on email discussions.

When creating a Managed Object, three aspects of the MO’s existence must be identified:

· The MO’s name

· The MO’s attribute values

· The conditional packages of the MO that are to be instantiated with the creation of the new MO

Note that definition of these aspects in the create request may be either explicit or implicit. Options for identifying these aspects of a MO’s existence are defined in the following three sections.

1.1.1.1 Identification of the MO Name

The name of the MO to be created can be determined in one of four ways:

1. The name (LDN) may be completely and explicitly specified by the manager, as a parameter of the create operation.

2. The manager may specify, as a parameter of the create operation, the name of an existing MO which is to be the superior of the new MO and may specify the RDN of the new MO in the create operation’s attribute list. This results in the complete specification of the MO name being supplied by the manager.

3. The manager may specify, as a parameter of the creation operation, the name of an existing MO which is to be the superior of the new MO and may omit specifying the RDN of the new MO. In this case, the RDN of the new MO is assigned by the managed system.

4. Where the manager does not provide any explicit information that may be used for naming, the managed system assigns the name to the new MO and selects the superior managed object instance that the created object is to be contained and thus named by.

If the associated information is not correct or for some other reason the create operation can not be performed then the factory attempting to perform the operation shall indicate an error.

1.1.1.2 Identification of the MO Attributes

When a MO is created, its attributes are assigned values that are valid for the type of attribute. These values are derived from information in the Create operation and the MO class definition in one of two manners from the six listed above:

1. The create request is permitted to specify an explicit value for individual attributes. When the MO is created, explicit values may be assigned to non-writeable attributes if explicitly allowed by the MO class definition.

2. The MO class definition is permitted to specify how default values are assigned to attributes.

If default values are not specified for an attribute, then the managing system must supply a value for that attribute in the create request. If no value is specified for that attribute, then an error should occur.

If explicit values are defined for a particular attribute in the create request, then the MO will take that value for the specified attribute over any potential default values that may be specified for that attribute.

1.1.1.3 Identification of MO Packages for Instantiation

To ensure that underlying resources can be instantiated with required capabilities, the manager must be able to specify the capabilities (i.e., the conditional packages) that the managed object should have instantiated.

A mandatory package is always instantiated. Instantiation of a conditional package will occur if an associated condition is satisfied for the managed object being instantiated. The manager may also request the instantiation of a conditional package as part of the create request, by including it in the packages attribute of the create request. As a third option, the managing system may explicitly identify the value of an attribute that is within a conditional package. In this last case, the conditional package, containing the specified attribute, will be instantiated in whole. In each case, for any attributes within the instantiated conditional packages that do not have defaults associated with them, an explicit definition must be provided by the managing system.

4.7.2 Deletion

For deletion, deletion semantics may support the deletion of all contained entities while in other cases, the delete method immediately fails if there are contained subordinate entities. These semantics must be maintained for each entity type.
4.8 Inheritance

One "Managed Object Class" may be defined as a specialization of another "Managed Object Class" by utilizing inheritance. Specialization of a "Managed Object Class" implies that all methods and attributes defined on the superclass will also be supported by the subclass.

In CORBA IDL, an attribute or operation cannot be inherited from more than one interface. This can arise from both single and multiple inheritance. (Note that, in general, it is not expected that a CORBA information model define a method or attribute in a class, where that same method or attribute may also be defined in the superclass. However, there are cases in the mapping from GDMO to IDL where this may occur. For example, because GDMO attributes specify permitted and required values, a subclass in GDMO may sometimes redefine the same attribute. Care must be taken when mapping to IDL that the same attribute is not defined.)

A subclass in CORBA can not inherit the same attribute or method (with the same signature) from more than one superclass and can not redefine the same attribute or method (with the same signature) defined in one of its superclasses.

This framework places no constraints over CORBA inheritance.

4.9 Scoping and Filtering

The ability to perform complex queries (i.e., GET) and SET methods on a group of Entities (managed by a system distributed from that where the query is made) with a single operation request is a valuable component of TMN. Management systems may have to manage up to 107 instances of managed objects. Due to the size of the management information base, a managing system can not efficiently perform ad-hoc queries on individual instances of Managed Objects (i.e., Entities). Rather, the managing system expects a level of intelligence to be supported by the managed system.

The intelligence in the managed system allows the managing system to select a group of managed entities on which some operation will be performed. Managed Entity selection involves two phases: scoping and filtering. This managed entity selection process is supported by a service called the Scoping and Filtering service. This service allows a managing system to select a scope of objects to act on (scope is defined through containment relationships, see Section 4.3). Once the scope of Entities is determined, the operation (specified by the scope and filtered request) is performed only on those Entities which meet criteria defined by a filter.

Scoping and filtering is only supported for querying and setting of an Entity's attributes. The use of scoping and filtering in this framework supports:

· Scoped and Filtered get: returns the values (for a list of attributes) from each of the Entities that meet the scope and filter criteria.

· Scoped and Filtered update: replaces an attribute value or adds/removes values to/from set-valued attributes, in the group of Entities meeting the scope and filter criteria, to the values specified in the scoped and filtered request. May be used to update one or multiple attributes in a single object or multiple objects.

· Scoped and Filtered deletion: deletes all Entities that meet the scope and filter criteria.

4.9.1 Scoping

Scoping entails the identification of the Entities to which a filter is to be applied. Scoping is applied based on the containment hierarchy as defined in Section 4.3. The scope is applied from some base managed entity down to some depth in the containment tree.

The base Entity for the scope is defined as the root of the containment tree from which the search is to commence. A scoped request must specify the base managed entity of the scope. The depth of the scoping level can then be specified in one of four manners within the scoped request:

1. the base entity.

2. the nth level subordinates of the base entity.

3. the base entity and all of its subordinates down to and including the nth level.

4. the base entity and all of its subordinates (i.e., the whole subtree).
4.9.2 Filtering

Filters allow for the specification of criteria that Entities must meet in order to have a management operation performed. Together with scoping (i.e., specification of a base class), filtering allows a single operation to be performed across multiple managed objects with a single operation request.

A filter parameter is used to determine whether or not an operation should be performed on a managed object. A filter parameter applies a test that is either satisfied or not by a particular managed object. The filter is expressed in terms of assertions about the presence or value of certain attributes of the managed object, and it is satisfied if and only if it evaluates to TRUE.

1.1.1.4 Attribute Matching Rules

The following matching rules are defined that may be used in attribute value assertions (AVA). These rules are:
· Equality: evaluates to TRUE if and only if the value supplied in the AVA is equal to the value of the attribute.

For SET valued attributes, the AVA evaluates to TRUE if and only if the set of members supplied in the AVA is equal to the set of members in the attribute.

· Greater or equal: evaluates to TRUE if and only if the value supplied in the AVA is greater than or equal to the value of the attribute.

For SET valued attributes, the value in the AVA shall contain exactly on member. The AVA evaluates to TRUE if and only if that member is greater than or equal to at least one of the members in the attribute value.

· Less or Equal: evaluates to TRUE if and only if the value supplied in the AVA is less than or equal to the value of the attribute.

For SET valued attributes, the value in the AVA shall contain exactly on member. The AVA evaluates to TRUE if and only if that member is less than or equal to at least one of the members in the attribute value.

· Present: evaluates to TRUE if and only if such an attribute is present in the managed object.

· Substrings: evaluates to TRUE if and only if all of the substrings specified in the AVA appear in the attribute in the given order without overlapping and separated from the ends of the attribute value and from one another by zero or more string elements. In addition, for the AVA to evaluate to TRUE,

· The first element in the initial substring, if present, shall match the first element in the attribute value;

· The any substrings, if present, shall appear in the attribute value in the order that the any substrings appear in the AVA; and

· The last element in the final substring, if present, shall match the last element in the attribute value.

For SET valued attributes, each value in the AVA shall contain exactly on member. The AVA evaluates to TRUE if and only if there is at least one of the members of the attribute value in which all of the substrings supplied in the AVA appear as described above.

(The remaining three matching tests apply to SET valued attributes only)

· subset of: evaluates to TRUE if and only if all asserted members are present in attribute.

· superset of: evaluates to TRUE if and only if all members of attribute are present in attribute value assertion.

· non-null set intersection: evaluates to TRUE if and only if at least one of the asserted members is present in the attribute.

4.10 Notifications

The framework needs to support the ability to:

· Deliver notifications

· Subscribe for notification types

· The ability to forward notifications to multiple destinations

· Filter notifications

· Uniquely identify the resource that emits the notification
5. Framework Protocol Requirements

This section defines the versions of the services that are required to support this framework. CORBA services and protocol specifications are defined by the Object Management Group (OMG). The table below shows which version of the applicable OMG specification must be supported to comply with this framework.

Service
Version

ORB
2.3 [1]

Naming Service
1.0 [2]

Notification Service
1.0 [3]

Telecommunications Logging Service
1.0 [4]

Asynchronous Messaging
(determined by client system)

Security
SSL 3.0[6]
TLS 1.0[7] (when available)

Table 1. CORBA Service Versions

The choice of version 2.3 for the basic ORB capabilities is important. CORBA 2.3 includes support for the Portable Object Adapter (POA) as well as for passing objects by value. POA is important to the framework because it enables implementations based on this framework to scale up to millions of instantiated objects, a magnitude required for network management applications. The framework also makes use of polymorphic value types to retain flexibility but reduce the usage of CORBA “any” types, which can be inefficient and tedious for programmers.

The Naming, Notification, and Logging services are all the initial versions available from the OMG.

Asynchronous Messaging is really only a client-side consideration. An ORB with Asynchronous Messaging capabilities enables a client to use synchronous CORBA interfaces (those that would normally cause the client to block) in an asynchronous fashion. This capability is essential for clients that are single-threaded and cannot afford to block during network management operations. The availability of Asynchronous Mesaging capabilities is important to this framework because it frees if from having to define both synchronous and asynchronous interfaces. Clients need not use an ORB with Asynchronous Messaging if they are multi-threaded and/or can afford to block during CORBA calls.

Because TLS-compliant ORBs are not yet available, this framework condones the use of ORBs that use SSL 3.0 for security until products supporting TLS become available. The choice of which is supported in a product will have to be negotiated between individual suppliers and users. So, for now, the use of either one is compliant with this framework. It is likely, however, that in the future the use of SSL will be deprecated.

6. Framework Common Object Services Recommendations

The CORBA ORB provides basic object-to-object interaction capabilities.[1] Additional capabilities are defined as separate, “Common Object Services.”[2] The CORBA Common Object Services are general purpose, domain-independent services that are fundamental for developing CORBA applications composed of distributed objects. They also provide the basic building blocks for application interoperability. The services are defined with object interfaces and can be combined in many different ways and put to many uses in different applications. In a specific domain, CORBA Common Object Services can be used to construct higher-level facilities and object frameworks that can inter-operate across multiple platform environments.

Many of these CORBA Common Object Services have already been implemented and are available as commercial, off-the-shelf software products. Also, programmers working in many industries will likely have experience with them in the near future. Re-using these Common Object Services instead of defining new ones strictly for the telecommunications industry or re-implementing the functionality in application-specific code will result in a quicker, more cost-efficient adoption of CORBA for network management.

The following sub-sections specify recommendations on the use of CORBA Common Object Services to ensure interoperability between different network management systems.

6.1 The Naming Service

The OMG Naming Service is CORBA’s directory service, or “white pages.”[2] It allows a client to build a name-to-object association called a name binding that other clients can then use to find the object. (CORBA object addresses can be long and difficult for use by humans.) A name binding is always defined relative to a naming context. A naming context is an object that contains a set of name bindings in which each name is unique. A name binding is a data structure containing two strings and an object reference (address). The “ID” string is the identifier for the binding and must be unique within a context. A second string, called “kind,” is also part of the data structure. Different names can be bound to an object in the same or different contexts at the same time. The naming context can also be bound to a name in another naming context. Binding contexts in other contexts creates a naming graph – a directed graph with nodes and labeled edges where nodes are contexts. Given a context in a naming graph, a sequence of name binding structures can reference an object. This sequence of structures, called a compound name, defines a path in the naming graph that may be navigated to resolve the name and find the object.

There is no requirement that CORBA name bindings represent a containment relationship between objects, but the concept of containment is important in network management and needs to be communicated across network management interfaces. The CORBA Naming Service is the best way to accomplish this. The following paragraphs define a series of recommendations on using the CORBA naming service to represent the containment relationships among managed object instances.

(R) NAME-1
Every managed object must have an associated name binding representing its position in the containment relationship graph. These name bindings may be spread over multiple, federated servers but will represent a single naming graph.

(R) NAME-2
Since a simple name binding cannot identify an object and also contained objects, each managed object must actually have a corresponding Naming Context. A specially-named binding in each such context will bind the ID value “Object” with a reference to the actual managed object. (The “kind” field of this binding will be null.) Other naming contexts, representing contained managed objects, may also be bound to names in this context.

(R) NAME-3
The “ID” field of a name binding for a naming context representing a managed object will be application-dependent. The “kind” field should be null. The “ID” field may actually have semantic value beyond uniquely identifying a managed object, for a particular class of objects. For example, an ID value of “7” for an equipment holder object representing a slot in a shelf may indicate that this object represents the 7th slot in the shelf. Special semantic value attached to IDs will be documented for each class of managed objects. Note that the ID field is a string.

 (R) NAME-4
The different classes of objects contained under a superior object should be grouped into their own naming contexts. This will add value by making it easier to find groups of objects of the same kind and by reducing the likelihood of name collisions. The “ID” field of these naming contexts should be the scoped interface class name. (A CORBA scoped interface name is one that includes the name of the module where the interface is defined, along with the names of any modules in which that module is nested. The scope information is necessary in case the same interface name is used in multiple modules.) The “kind” field should be null.

The following figure gives an example of name bindings according to the above recommendations. In the figure, CORBA Naming Contexts are represented as folders. The contents of the folders are name bindings. In this scheme the “kind” field is always null, so each name binding lists just the ID field and a pointer (reference) to the object bound to this name. (Some example name bindings do not have a pointer shown in the diagram to reduce the complexity of the diagram.) The graph represents a Network object, named “CentralNet,” that contains a Managed Element object named “Element9” and a Connection named “R5698.”

[image: image2.wmf]MO

ITU_M3100::Network

CentralNet

NorthernNet

SouthernNet

Object

ITU_M3100::ManagedElement

ITU_M3100::Connection

ITU_M3100::Trail

C1157

A549

R5968

Element1

Element7

Element9

ITU_M3100::Equipment

ITU_M3100::Software

Object

Object

MO

MO

(The root

Naming Context)

(The Network

Name Bindings)

(Naming Context

for the

CentralNet

Managed Object)

(The

CentralNet

Network Managed

Object)

(The Element9 ME

Managed Object)

(The R5698

Connection Managed

Object)

(The Naming Context for Element9)

(The Naming Context for Connection

R5968)

(Name Bindings for

Managed Elements)

(Name Bindings for Connections

contained under

CentralNet)

Figure 3. Naming Graph of Managed Objects
(R) NAME-5
A managed system must provide a local administrative procedure for assigning a CORBA name to its root naming context. All names exchanged across the managed interface will include the root context name unless otherwise noted. This includes operation parameters and notifications.

This feature is to enable an administration to make names globally unique. Since the managed system must ensure that all names are unique relative to the root naming context, by assigning a globally unique name to the root naming context an administration can ensure that all names on a managed system are unique. The mechanism used to choose a globally unique name for the root context is up to the administration. The format of the name will be the same as used by the CORBA Naming Service, CosNaming::Name. Multiple components are allowed, but administrations will likely want to keep root context names short to reduce overhead.

In addition to making names unique, assigning a name to the root naming context will make it easier for a managing system to resolve names. This is because the managing system can bind the root naming contexts for all the systems it manages into its own local naming service. The name it uses for this binding will be the same name assigned to the root naming context on the managed system. See Figure 4 for an example.

[image: image3.wmf]EMS1

EMS2

ITU_M3100::

Network

Network1

NMS

EMS

Root Context=EMS2

Root Context=EMS1

Root

Object

ITU_M3100::

Network

Network1

EMS

Root

Object

Figure 4. Assigning Names to Root Naming Contexts

The figure shows two element management systems on the right, each with a single object of type ITU_M3100::Network named “Network1.” There is also a network management system, and the root contexts of both EMSs have been bound into the naming service on this system. This administration has chosen (rather poorly) to assign the unique name “EMS1” to the root context on the rightmost system, and has bound it in a naming context on the NMS using the same name. “EMS2” was chosen for the other EMS.

To illustrate, say the EMS on the right emits a notification concerning its Network1 object. The full name of that object (contained in the notification) will be “EMS1/ITU_M3100::Network/Network1/Object”. Now let’s say the NMS wants to retrieve more data from the object. In order to do so, it will have to resolve the name into a CORBA object reference. The NMS can accomplish this by simply performing a resolve operation using the full name on the local context where it bound the EMS root contexts. Because the NMS’ naming service is federated with the EMS naming services, the NMS’ naming service can automatically forward the resolve operation to the naming service on the proper EMS, and return the object reference to the NMS application.

It is anticipated that the root naming context name will be assigned during the initialization of a new system. Once in operation, it will be extremely difficult if not impossible to change.

Once assigned a name, the root context’s CORBA “interoperable” object reference (IOR) will have to be bound to a naming context on the managing system, since up to now it has no idea the new system exists. This means the managed system will also have to provide a means for accessing the “stringified” IOR of the root naming context. This value will then be transferred to the managing system by some means other than the management interface (e-mail, ftp, etc.). The managing system will require a way to accept this stringified IOR and bind it to a name on the managing system. As soon as the root context’s IOR is bound to a name on the managing system, the managing system can begin discovering the objects on the new system and begin to manage it.

6.2 Notification Service

The CORBA Notification Service supports the asynchronous exchange of event messages between clients using a subscribe-and-publish paradigm.[3] The Notification Service introduces event channels which broker event messages, notification suppliers which supply event messages, and notification consumers which consume event messages. The CORBA Notification Service preserves all of the semantics specified for the CORBA Event Service, allowing for backward compatibility with Event Service clients. The extended functionality that is important to the network management domain is the structured event, event filtering, and QoS (Quality of Service). The figure below depicts the general architecture of the Notification Service.

[image: image4.wmf]Notification

Service

Event

Channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

QoS

QoS

QoS

QoS

QoS

F

F

QoS

F

F

F

F

= Filter

F

Figure 5. Architecture of the Notification Service

(R) NOTIF-1
The Notification Service should support the push interface model. The managed object interface to the event channel should be a push supplier.

(R) NOTIF-2
The managed system should instantiate the Notification Service event channel object(s) that it will use. A managed system must instantiate at least one channel and may instantiate more than one. (These channels may either be Notification event channels or Telecom Log event channels. See Section 6.3) The framework does not support the creation or deletion of event channels across the management interface. Local administrative procedures may be provided for this purpose. (Event channels do, however, support the creation and deletion of filters across the management interface.)

(R) NOTIF-3
 A name binding for each event channel is to be inserted into the system’s naming graph. If the event channel handles events from all of the objects on the managed system, there will be a naming context bound to the root of the system using the ID field equal to the channel’s scoped class name (“CosNotifyChannelAdmin::EventChannel” or a sub-class) and a null kind field. Within this context will be bindings for each event channel handling events from all objects on the system. The ID field will identify the channel, the kind field will be null.

If a channel handles events from a subset of the objects on the system, its name must be bound under the context for the “highest” object in the naming tree for which the channel handles events. The binding is similar to that above. A context is bound to the object’s context with ID field equal to the channel’s scoped class name and kind set to null. The event channel’s name is then bound in this context with an identifying ID field and a null kind field.

A channel must handle events from all of the objects in the naming subtree rooted at the context where the “CosNotifyChannelAdmin::EventChannel” context is bound. This means that if one event channel is bound in the naming tree at a position lower than another, the lower channel must forward all events it receives to the higher channel, in addition to performing filtering and forwarding for any other consumers. The local administrative procedures for instantiating additional channels (if provided) are expected to establish this federation between channels.

(R) NOTIF-4
The Notification Service should support structured events. Support for typed events is optional.

(R) NOTIF-5
The form of event messages should be structured events. The use of typed events may be an option and is under study.

The message interface between suppliers and consumers should be defined in IDL as if they were using typed events. This is done to enable capturing the notification in IDL (which cannot be done for structured events except with comments) as well as to potentially support typed notifications for applications that wish to use them.

In addition to the normal IDL definition, the specification should include comments identifying whether a parameter is filterable or not. If this is not identified the parameter will be assumed to be filterable.

(R) NOTIF-6
The suppliers and consumers of structured events should follow these rules, based on the Notification Service specification, for constructing and retrieving the structured event (see the figure below which depicts the Notification Structure and how elements from the IDL notification definition are to be mapped into it):

· The domain_type string in the fixed header of the structured event should be set to "Telecommunications".

· The type_name string in the fixed header of the structured event should be set to the scoped name of the operation defining the notification in IDL, for example, "ITU_X721::Notifications::attributeValueChange".

· The event_name string in the fixed header of the structured event should be null.

· Optional header fields may be included to support features like Quality of Service as appropriate.

· Each parameter in the operation should be placed in a name-value pair in the filterable body portion of the structured event (unless the parameter is identified as non-filterable, in which case it goes in the non-filterable part of the event body). The fd_name string of this pair shall be set to the name of the parameter and the type placed in the associated fd_value will be the type specified for the parameter. Using as an example the attributeValueChange notification from the IDL presented later in this document, the first fd_name string would be set to "attributeValueInfo" and the first fd_value would contain an AttributeValueInfo structure.

· The remainder of the body of the structured event (the non-filterable part) should be null unless non-filterable parameters were identified..

· Parameters named “operation” should be avoided in notification operations to potentially support the use of typed notifications. (When using typed notifications, the parameters of an operation are automatically placed into a notification structure by the event channel. Unfortunately, the rules developed for doing this state that the name of the operation used to issue the notification goes not in the header of the event, but in the body of the of the structure as the first name-value pair. The fd_name string is set to “operation” and the fd_value a string containing the name of the operation. While the notification channel should be able to differentiate a “real” parameter named “operation” from the one added based on their positions in the filterable data list, it could have an impact on filtering as the default filtering language does not have a way to differentiate the parameters based on position.)

[image: image5.wmf]domain_type

type_name

event_name

ohf_name

1

ohf_name

2

…

ohf_name

n

fd_name

1

fd_name

2

…

fd_name

n

remainder_of_body

ohf_value

1

ohf_value

2

ohf_value

n

fd_value

1

fd_value

2

fd_value

n

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body

Fields

Remaining Body

“Telecommunications”

<null>

Optional header fields

may be included to

support features like

Quality of Service

void

attributeValueChange (

in

AttributeValueChangeInfo

attributeValueChangeInfo

);

Other parameters

would go in

additional rows

Figure 6. Mapping Notifications to Structured Events

(R) NOTIF-7
The Notification Service specification identifies filter expressions that are used to determine if the event is to be forwarded and also filter expressions that “map” to parameters used to impact the operation of the event channel in others ways, such as the QoS used in delivering the event. The Notification Service should support event filtering with filter objects that support constraints expressed in the default constraint grammar specified by the OMG. The Notification Service should also support mapping filters.

(R) NOTIF-8
The Notification Service reliability QoS should support EventReliability=Persistent & ConnectionReliability=Persistent.

Each event is guaranteed to be delivered to all consumers registered to receive it at the time the event was delivered to the channel, within expiry limits. If the connection between the channel and a consumer is lost for any reason, the channel will persistently store any events destined for that consumer until each event time out due to expiry limits, or the consumer once again becomes available and the channel is subsequently able to deliver the events to all registered consumers. In addition, upon start from a failure the notification channel will automatically re-establish connections to all clients that were connected to it at the time the failure occurred.

(R) NOTIF-9
The Notification Service order policy QoS should allow the events to be delivered in the order of their arrival, i.e. FIFO. The Notification Service may also optionally support a priority-order QoS in which events could be buffered in priority order, such that higher priority events will be delivered before lower priority events.

(R) NOTIF-10
The Notification Service implementation deployed should be compliant to the conformance statements of the OMG Notification Service specification with the exception of the pull interface model.

6.3 Telecom Log Service

The CORBA Telecom Log Service is a CORBA-based log service that fully supports the ITU-T X.735 recommendation.[4] The log is implemented as an Event Service or Notification Service event channel. The Log Service supports the following functionality:

· Writing to the log: Events supplied to the log are persistently stored as log records.

· Forwarding from the log: Events supplied to the log are also forwarded to other logs or to any application that wishes to receive them.

· Log generated events: The log itself will generate events.

Also the Log Service provides functions of log control and management, log record manipulation, log lifecycle management. The following figure gives a graphic representation of the Log Service.

[image: image6.wmf]Notification

Service

Event Channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

QoS

QoS

QoS

QoS

QoS

QoS

Log

Persistent Store

Log Filter

Non-Event

Writer

F

F

F

F

F

F

= Filter

F

Figure 7. Telecom Log Service

By manipulating the Log Filter, a managing system is able to control which events are logged and which aren’t, in exactly the same way it is able to control which events are forwarded and which aren’t. The only exception is the “Non-event Writer,” which is an application that writes data directly to the log.

(R) LOG-1
The Log Service should support all the Notification Service requirements. The names for Log Event Channels should be bound in a context according to the same rules as notification event channels. The ID field for this context should be the scoped class name of the log interface (“DsNotifyLogAdmin::NotifyLog” or a sub-class) and the kind field should be null.

(R) LOG-2
The Log Record supported by the Log Service should be the normal struct LogRecord. The support of struct TypedLogRecord is optional.

(R) LOG-3
The Log Service implementation should be compliant with the conformance statement in the OMG Telecom Log Service specification with the exception of the pull interface model.

6.4 Messaging Service

The CORBA Messaging Service covers three areas: Asynchronous Method Invocation (AMI), Time Independent Invocation (TII), and Messaging Quality of Service (QoS).[2] Of the three areas, the AMI has a significant role in the network management domain because it allows clients to make non-blocking requests on a CORBA object. Note that without this capability CORBA clients must in most cases wait for a response from the server or make the CORBA call in a separate thread that blocks while other thread continue to process.

The AMI is treated as a client side language mapping issue only. In most cases, server side implementations are not required to change. In certain situations, such as with a transactional server, the asynchrony of a client does matter and requires server side changes if it is expected to handle transactional asynchronous requests. Transactional requests, however, will not be addressed in this document. The following figure depicts the basic concept of the OMG AMI model.

[image: image7.wmf]Async-aware ORB

Sync Client

Async Client

Servant

IDL - Stub (sync)

Implied-IDL -

Stub (

async)

IDL - Skeleton (sync)

Figure 8. Asynchronous-aware ORB

The AMI specification provides two models of asynchronous requests: callback and polling. In the callback model, the client passes an object reference for a ReplyHandler object as a parameter when it invokes a two-way asynchronous operation on a server. When the server responds, the client ORB receives the response and dispatches it to the appropriate method on the ReplyHandler servant so the client can handle the reply. In other words, the ORB turns the response into a request on the client’s ReplyHandler. The ReplyHandler is a normal CORBA object that is implemented by the programmer as with any object implementation. In the polling model, the client makes the request passing in all the parameters needed for the invocation, and is returned a Poller object which can be queried to obtain the results of the invocation. This Poller is an instance of a valuetype, which is a new IDL type introduced by the new Objects-by-Value specification. A valuetype has both data members and methods, which when invoked are just local function calls and not distributed CORBA operation invocations.

The value of the Asynchronous Method Invocation capability in network management applications is that it enables managing systems that wish to use asynchronous method calls to inter-operate with managed systems using the same interface definitions as those used by synchronous clients. No changes are required in the interface definition or the implementation of the managed system. The following recommendations are proposed for implementations that that optionally wish to support asynchronous, non-transactional method invocations.

(O) AMI-1
The AMI-aware CORBA implementation should at least support the callback programming model.

(O) AMI-2
For each operation in an IDL interface, the AMI-aware CORBA implementation should generate corresponding asynchronous callback method signatures. These signatures are described in implied-IDL which is used to generate language-specific operation signatures.

(O) AMI-3
The AMI-aware CORBA ORB should pass a type-specific ExceptionHolder value instance that contains the marshaled exceptions as its state to the ReplyHandler when exception replies are returned from the CORBA object. The AMI-aware IDL compiler would generate a type-specific ExceptionHolder for each IDL interface.

(O) AMI-4
The AMI-aware IDL compiler should generate a type-specific reply handler for each IDL interface. The client will implement and register a reply handler with each asynchronous request and receive a callback when the reply is returned for that request. This reply handler is derived from the generic Messaging::ReplyHandler.

6.5 Security Service

The CORBA Security Service comprises the security functionality of authentication of principals (human users and objects), authorization of access to objects by principals, security auditing, communication security, non-repudiation, and administration.[2] All of this may be overkill for many applications. For now, the optional recommendations below require only the communication security and system-level authentication functionality based on Secure Socket Layer (SSL) technology for availability and simplicity reasons.

(O) SEC-1
The CORBA implementation should support SSL version 3.0. The CORBA SECIOP protocol is not required when using SSL since it provides a secure transport layer over TCP/IP. The connection rules of IIOP are applied to SSL.

(O) SEC-2
If manager system to managed system authentication is desired, SSL should support the optional certificate exchanger features.

(O) SEC-3
The IETF has published the next generation of SSL in RFC 2246, the Transport Layer Security (TLS) specification. When the TLS market matures and CORBA products emerge, SSL-based solutions should migrate to TLS.

7. Framework Support Services

This section defines common support services included in the framework that are not standard OMG CORBA Common Object Services. Many network management applications perform functions that are not commonly required by general-purpose business applications, so it is not reasonable to expect the standard CORBA framework to supply all the necessary services for network management. This section defines services that will be broadly used by network management applications but are not as likely to be used by many other types of applications and are therefore unlikely to become CORBA Common Object Services. These services also provide functionality required to enable the re-use of existing information models without significant changes in semantics.

The advantages of placing this functionality in common support services is that it unburdens the managed object implementations from providing these services and allows the services to evolve to provide greater functionality without changing the managed object interfaces or implementations.

7.1 The Multiple-Object Operation Service

With potentially millions of entities to manage, there is a need for the framework to support operations on multiple objects with a single method invocation or perhaps a small number of invocations. The Multiple-Object Operation (MOO) Service provides this capability.

It is expected that each network management platform supporting a CORBA interface also provide at least one instance of the MOO Service. Managers will interact with the service using a limited number of interactions requiring relatively low bandwidth. The service will in turn interact with managed objects using either their published CORBA interfaces or some proprietary means. This high number of interactions is expected to require higher bandwidth, thus the need to co-locate the service with the managed objects.

7.1.1 The MOO Service Interface

The MOO Service’s interface, defined in a separate IDL module in Appendix C, is weakly-typed. It provides a set of generic capabilities that may be invoked on sets of any kinds of managed objects, even objects of different types. The operations supported are:

· Scoped get: Returns the values from each of the objects for a list of attributes.

· Scoped update: Used to replace an attribute value or to add or remove values to/from set-valued attributes. May be used to update one or multiple attributes in a single object or multiple objects.

· Scoped delete: Deletes multiple objects.

The scoped get operation is defined on an interface called “BasicMooService.” The scoped update and delete operations are defined in a second interface, called “AdvancedMooService,” which inherits the scoped get operation from the basic service interface. This was done to allow for some flexibility in the implementation of multiple-object operation services. A basic service need only implement the scoped get operation.

Each of the scoped operations requires five parameters to define the set of objects on which the operation will be performed:

· Base object name: The name of the object at the root of a tree of objects on which the operation will potentially be performed.

· Scope: A value identifying one of a few options for which relationship to follow from the base object and how. The options are:

· Base object only.

· Entire subtree of objects contained below the base object

· Subtree of objects contained below the base object down to a specified depth.

· Only the objects contained below the base object at the specified depth.

Additional options may be defined in the future.

· Depth: The number of relationship hops to follow from the base object. If depth is 0, only the base object is included in the scope. The depth parameter is only used for some values of scope. When it is not needed, it should be set to zero but will be ignored by the service.

Note that because this framework uses additional naming contexts to separate contained name bindings by the class of object, the service has to do a little work to determine the actual depth for containment-based scopes. The goal is to make it as simple as possible for the client. First, the base object name will be the entire compound name including the final component with an ID value of “Object”. The service will have to “back up” to the naming context that contains this binding and start counting from there. Next, due to the additional naming contexts separating bindings by object classes, the service will double the depth value, in essence “hopping over” the additional contexts. Finally, the service will automatically follow the “Object” bindings in the managed object naming contexts within the scope.

· Filter: An expression written in a constraint language that is used to evaluate the attributes of an object. The operation is applied to those objects within the scope for which the filter expression evaluates to “true.”

· Language: a string indicating the language in which the filter expression is written.

The depth parameter is an unsigned short integer. The types of the other parameters are:

typedef COSNaming::Name NameType
// from COS Naming Service

typedef UIDType ScopeType

// from ITU_X721 framework

typedef wstring Istring;
// for filter & lang. parameters

The base object is identified by its CORBA name. The scope is represented by a Unique Identifier (UID), a type that is described in the framework IDL section. (See Section 9.10.) Both the filter and the parameter identifying the language of the filter are strings.

Each of the operations may raise one of these exceptions:

· an InvalidName exception if the base object name is not valid,

· an UnknownScope exception if the service does not recognize the value for the scope,

· an UnknownLanguager exception if the value for the language parameter is not recognized,

· or an InvalidFilter exception if the syntax of the filter is incorrect.

Note that if an expression cannot be evaluated for a particular object because the types of its attributes do not match the expression, the filter is not invalid. That object may simply fail to pass the filter.

The other parameters for the operations as well as the return types are specific to the operation. For example, the scoped get operation takes a list of attribute names and returns a sequence of results, one from each object.

The object’s name is associated with the results from that object. Because each of the operations could potentially return large amounts of data, the iterator design pattern is used for returning the results. Note that the iterators are used to pace the return of information from the operations only, and should not control when the operations are actually invoked on individual objects. The scoped operations should be invoked on the objects and the results queued as soon as possible after the initial scoped request from the client. Delaying the invocation of the operation on the individual managed objects until the results are requested through the iterator may be more efficient, but could lead to incorrect results or race conditions.

The following sub-sections give additional details on each of the scoped operations.

1.1.1.5 Scoped Get

The IDL signature for the scoped get operation on the basic MOO service is:

GetResultsSetType scopedGet (

in NameType baseName,

in ScopeType scope,

in ushort depth,

in Istring filter,

in Istring language,

in IStringSetType attributes,

in ushort howMany,

out GetResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter, UnknownScope,

UnknownLanguage);

As described above, the first five parameters are used to select a set of object on which to perform the get operation. For each of these the service will try to return a value for each of the attributes named in the “attributes” parameter, which is just a list of strings. A submitted null attribute list, however, has the special meaning that all attribute values for the objects that pass the filter should be returned. The types involved in the return value are:

struct AttributeValueType {
// from ITU_X721 framework

Istring
attributeName;

any
value;

// type will depend on the attribute

};

typedef sequence <AttributeValueType> AttributeSetType; // framework

struct GetResultsType {

NameType

name;

AttributeSetType
attributes;

}

typedef sequence <GetResultsType> GetResultsSetType;

The first two types are actually defined in the framework module, not the MOO module. The return type is a sequence of structures, one for each object that passed the filter. In that structure is an object’s name and the list of attribute values from that object. If an attribute value could not be retrieved either because the object did not have a matching attribute or some exception was thrown on access, that attribute should be left out of the list for that object. If it turns out that no attribute values may be returned for the object even though it passed the filter, the object’s name and a null attribute list should be returned for that object. Thus, a scoped get on a single invalid attribute name will return the list of objects in the scope that passed the filter but with no attribute values.

The “howMany” parameter indicates to the service how many objects’ results should be included in the first batch of responses. (Zero is allowed, forcing all results to be returned through the iterator.) The “resultsIterator” output parameter is a reference to an iterator object that may be used to retrieve additional results in batches. If all the results were returned by the scopedGet operation, this reference will be null. The client must destroy this object when it is finished with it, and may do so before all the results are retrieved.

1.1.1.6 Scoped Update

The IDL signature for the scoped update operation on the advanced MOO service is:

UpdateResultsSetType scopedUpdate (

in NameType baseName,

in ScopeType scope,

in ushort depth,

in Istring filter,

in Istring language,

in ModificationSeqType modifications,

in boolean failuresOnly,

in ushort howMany,

out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter, UnknownScope

UnknownLanguage);

Again, the first five parameters are used to select the set of objects on which the set is performed. The modifications list is a list of structures, each with the name of an attribute, a value for that attribute, and an enumerated value indicating if the value should replace the attribute’s current value, be added to the attribute’s current value, or removed from it. The add and remove options are valid only if the attribute’s type is a CORBA sequence and if the interface has add and remove operations for the attribute. The values in the modification list structures are passed across as CORBA “any” types. If the attribute’s type is a CORBA sequence, a sequence of the proper type should be put in the “any” field, even if it contains only a single value. The IDL describing the modification list is:

enum ModificationOpType {set, add, remove};

struct ModificationType {

Istring

attribute;

ModificationOpType
op;

any

value;

};

typedef sequence <ModificationType> ModificationSeqType;

The “failuresOnly” flag is used to indicate if the client wants the service to return results for all objects meeting the scope and filter, or just those objects for which at least one of the modifications could not be performed.

The return value is a list of structures, each containing an object’s name along with a Boolean value indicating if the update operation was successful for that object and a list of any attributes that could not be modified. The service will try to perform all the modifications in the list, in order, continuing to try the rest even if one modification fails. If any operation fails on an attribute, that attribute’s name is added to the list of failures. The new types involved in the return value are:

struct UpdateResultsType {

NameType
name;

boolean

success;

IstringSetType
failures;

};

typedef sequence <UpdateResultsType> UpdateResultsSetType;

The “howMany” parameter indicates to the service how many objects’ results should be included in the first batch of responses. (Zero is allowed, forcing all results to be returned through the iterator.) The “resultsIterator” output parameter is a reference to an iterator object that may be used to retrieve additional results in batches. If all the results were returned by the scopedUpdate operation, this reference will be null. The client must destroy this object when it is finished with it, and may do so before all the results are retrieved.

1.1.1.7 Scoped Delete

The IDL signature for the scoped delete operation on the advanced MOO service is:

DeleteResultsSetType scopedDelete (

in NameType baseName,

in ScopeType scope,

in ushort depth,

in Istring filter,

in Istring language,

in ushort howMany,

out DeleteResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter, UnknownScope);

Rather than accessing attribute values, this operation simply attempts to delete each object in the scope that passes the filter. The return value lists the name of each object that passes the scope and filter, but that the service could not delete.

typedef sequence <NameType> DeleteResultsSetType;

The “howMany” parameter indicates to the service how many objects’ results should be included in the first batch of responses. (Zero is allowed, forcing all results to be returned through the iterator.) The “resultsIterator” output parameter is a reference to an iterator object that may be used to retrieve additional results in batches. If all the results were returned by the scopedDelete operation, this reference will be null. The client must destroy this object when it is finished with it, and may do so before all the results are retrieved.

Because many objects cannot be deleted if they contain other objects, for scopes based on containment relationships the service must begin deleting the “leaf” objects that are within scope and work toward the “root” object. When deleting objects, the MOO service must follow the rules for deleting an object based on the object’s delete policy, as described in Section 8.4. Because the rules are being applied to each of the objects in the scope, starting from the bottom up, however, the effect will be different than simply trying to delete the object at the root of a sub-tree. Also, the MOO service is best-effort. Therefore, it is possible for some of the objects in a scoped sub-tree to be deleted while others aren’t. These are the rules that must be applied to scoped delete operations:

1. No objects may be “orphaned.” That is, an object may not be deleted without deleting all of its contained (child) objects.

2. Performing a scoped delete on an entire sub-tree results in all of the objects in that sub-tree being deleted unless an object has a delete policy of “Not Deletable” or an object is a direct ancestor of an object that is not deletable.

3. Performing a scoped delete on part of a sub-tree requires evaluating each of the objects at the lowest scoped layer using the delete rules in Section 8.4. If a lowest-layer object may be deleted according to these rules, it and any children are deleted. If a lowest-layer object cannot be deleted, it is not deleted nor are any of its direct ancestors. Other objects in the scope may be deleted, however, if the delete rules allow it. The service then moves up to the next layer, and so on.

7.1.2 The Default Filter Language

This section describes the default filtering constraint language that must be supported by all conformant implementations of the MOO Service. Conformant implementations may support other constraint grammars in addition to the grammar described here. The grammar used is to be indicated by a string-valued parameter named “language” on each scoped operation. A value of “MOO 1.0” (one space between “MOO” and “1.0”) shall indicate the grammar described here.

The default grammar supported by each conformant implementation shall be the default constraint grammar defined for version 1.0 of the Notification Service[3] with changes as described in the following sub-sections.

1.1.1.8 Applying the Constraint Language to Object Attributes

The default Notification Service constraint grammar introduced the special token ‘$’ to denote the current event and run-time variables. For multiple-object operations, the ‘$’ token shall denote the “current” object as well as run-time variables. That is, one can think of the MOO Service as selecting a set of objects based on the supplied base name and scope parameter, then applying the filter expression individually to each of the objects in that set. The “current” object is the object against which the expression is being evaluated. The following examples illustrate the use of the ‘$’ token:

$.administrativeState
The administrative state attribute of the current object.

$curtime

A “built-in” variable named “curtime”.

The identifiers that come after the “$.” (dollar-sign period) are names of the attributes of the current object as found in the value object defined to return the attributes of an object. (See Section 8 for more on this.) That is, “$.administrativeState” refers to the member named “administrativeState” in the value object returned by a call to the “getAttributes()” operation on the current object. (It is assumed that many implementations of the MOO Service will use the “getAttributes()” operation to retrieve the attributes from an object before evaluating the filter.)

An operation on an attribute name that is not present in an object always fails. To illustrate, in the expression “(A == 0) || (A != 0)” if there is no attribute named “A” present in the object both comparisons will fail and the expression will actually evaluate to false. The default Notification Service language does support an “exists” operation that can be used to test the existence of an attribute before including it in a comparison. Also, an operation also always fails if the types of the operands do not match. In the example above, if “A” is a string, the expression will be false.

Notice that the default Notification Service constraint grammar defines a set of runtime variables (which may be better thought of as “built-in” or “pre-defined” variables) but does not allow user-defined variables in filter expressions. In fact, there is no assignment operator that would support the use of user-defined variables. There are currently no built-in variables defined for the Scoping and Filtering Service and user-defined variables are not supported.

NOTE: Since the Notification Service evaluates objects based on the names of their attributes, care must be taken when defining attribute names (the names of the members of the attribute value object defined for an interface). An attribute of type “AdministrativeStateType” named “adminState” with a value of “unlocked” will fail a filter of “administrativeState == unlocked” because the name does not match.

1.1.1.9 Support for Regular Expressions

The default Notification Service constraint language defines a substring operator to work like this: “A ~ B” is true if A is a substring of B. The default MOO Service constraint language extends this to allow A to be a regular expression. That is, “A ~ B” evaluates to true if A is a substring of B or if the regular expression defined in A is matched in B. For this framework, regular expressions are “modern” regular expressions as defined in Section 2.8 of POSIX 1003.2[8].

A regular expression is a pattern that describes a set of strings. The inclusion of special characters known as “meta-characters” enables one string to describe a set of strings. The manual page for the “grep” command on most POSIX-compliant systems gives a complete description of regular expressions and their use.

Regular expression matching is added to the constraint language to satisfy the requirement to match sub-strings at the beginning, middle, or end of a string. POSIX regular expressions support this capability by using meta-characters that represent the beginning or end of a string(“^” and “$”). Matching in the middle of a string is done by excluding these characters from the regular expression. Certainly, this requirement could have been met by only adding a couple of meta-characters to the string matching function. It was felt, however, that since regular expression matching is supported as a utility on POSIX-compliant systems, it made sense to go ahead and use this capability, which adds rich pattern matching to the language, rather than to require developers to implement a special capability offering far less functionality.

1.1.1.10 Support for Testing Set-valued and Sequence-Valued Attributes

Network management applications tend to rely heavily on the attributes of the managed objects, and often these attributes are actually sets or sequences of values. (Sets and sequences differ. Sets should not contain duplicates and the order of the elements is unimportant. In sequences, duplicate elements are allowed and order is important.) To support the use of set-valued and sequence-valued attributes in filter expressions, the default Notification Service constraint language needs to be extended. Two groups of extensions are required to support the use of sets and sequences. The first enables sets and sequences of literal values to be included in filter expression. The second defines operators for sets and sequences.

1.1.1.10.1 Sets and Sequences of Literal Values

Sets and sequences of literal values are included in filter expressions by enclosing a comma-separated list of literal values in curly braces. For example:

{1, 16, 21}

A set or sequence of integers

{5.2, 6.8, 7.01}

A set or sequence of floating-point numbers

{‘apple’, ‘orange’}

A set or sequence of strings

{Critical, Major, Minor}

A set or sequence of enumerated values

{}

A null set or sequence.

The literal values must be of the “simple” types defined for the Notifications Service constraint language (Boolean, short, unsigned short, long, unsigned long, float, double, char, Ichar, string, Istring), or enumerated values. All values in a set or sequence must be of the same type.

Obviously, in this constraint language, literal sets and sequences are defined in the same way. Actually, this matches the case with CORBA interface attribute types. Unlike some other interface syntax languages, OMG IDL has only a sequence structure, and no set type. To account for this, different operations for sets and sequences are defined. When a sequence operator is applied to a pair of sequences (either literal or attribute values), the sequences are treated as true sequences. That is, order is taken into account. When two sequences are involved in a set operation, however, the sequences are actually treated as sets. That is, the operator ignores any duplicate values and does not take order into account.

1.1.1.10.2 Set Operators

In order to include set-valued attributes in filter expressions, operators that work on sets are needed. This section extends the Notification Service constraint language by defining how the operators already defined for that service are to be applied to sets. One new operator, using the caret symbol (‘^’), is defined for testing the intersection of two sets.

Note that the default Notification Service constraint language already defines one operator that works on sets, the “in” operator. The expression “A in B” can only be applied if A is a simple type as defined above and B is a sequence of the same simple type. The expression evaluates to true if the value represented by A is equal to a value in B. Also, the default Notification Service constraint language supports the use of the “exist” operation on set-valued parameters. This behavior will also be supported for multiple object operations.

In general, to use any of the set operators in an expression such as “A <operator> B” one or both operands must be a sequence of one of the types listed above in the section on sets of literal values. If one operand is a sequence of type X, the other must either be a sequence of type X or a value of type X. Because one or both of the operands are actually sequences, not sets, the operations must ignore any duplicate values within a sequence and must not depend on any order of the values in a sequence. The operators extended to work on set-valued attributes are defined below:

A == B
True if all the values in each operand are present in the other.

A != B
False if all the values in each operand are present in the other.

A < B
True if all the values in A are in B and B contains at least one other value not in A.

A <= B
True if all the values in A are in B. (If A is a singly-valued attribute this is the same as “A in B”.)

A > B
True if all the values in B are in A and A contains at least one other value not in B.

A >= B
True if all the values in B are in A.

A ^ B
True if any value in A is present in B (the intersection is not null).

1.1.1.10.3 Sequence Operators

To support the inclusion of sequence-valued attributes in filter expressions, operators that work on sequences are needed. This section extends the Notification Service constraint language by defining operators that work on sequences.

Only a pair of operators are defined for sequences, since the only requirement was to do equality matching on sequences. The operators defined to work on sequence-valued operators are:

A % B
True if A and B have the same number of values and all the values in A match those in B, in order.

A !% B
False if A and B have the same number of values and all the values in A match those in B, in order.

7.1.3 MOO Service Recommendations

This section summarizes the Multiple Object Operation Service recommendations.

(R) MOO-1.
A managed system should instantiate the MOO Server object(s) it will support. A name binding for each MOO Server is to be inserted into the system’s naming graph. First, there must be a naming context bound to the root naming context of the system using the ID field equal to the server’s scoped class name (“ITU_X721::MooService::BasicMooService” or a sub-class) and a null kind field. Within this context will be bindings for each MOO Server on the system. The ID field will identify the server; the kind field will be null.

(R) MOO-2.
The interface supported by the MOO Server object(s) will be the “Basic” MOO Service interface described above and defined in the CORBA IDL in Appendix C.

(O) MOO-3.
Optionally, the interface supported by the MOO Server object(s) will be the “Advanced” MOO Service interface described above and defined in the CORBA IDL in Appendix C.

(R) MOO-4.
The MOO Server object(s) will at least support the default constraint language defined above for the specification of filters, and may support other grammars. The default constraint language, identified as “MOO 1.0”, is the default constraint language defined by the CORBA Notification Service but extended as described above to support:

· Filtering on object attribute values rather than notification structure member values.

· Regular expression matching.

· Filtering on attributes containing sets or sequences of values.
7.2 Other Support Services

This framework anticipates the need for other network management support services but recognizes it is impractical to make them all part of one framework document. Exactly where the line gets drawn is a bit arbitrary, though. Because of its focus on TMN and the need to support existing information models, this framework includes services that equate to those provided by the CMIP protocol and the most basic TMN management information capabilities. Just as with CMIP, it is expected that additional support services will be defined, most likely in separate documents.

8. The Framework IDL Module

The previous sections presented a series of recommendations for re-using the CORBA Object Services and defined some new services to create a framework for network management applications. Even with this rich set of services, however, there are still some missing details that need to be addressed. This section presents a network management module designed to fill in these holes and tie together the recommendations presented above. This network management module is a set of object interfaces and supporting data structures described in CORBA’s Interface Definition Language (IDL). This IDL module is intended to play a role in CORBA-based network management similar to that played by the GDMO definitions in ITU-T Recommendation X.721 for CMIP.

The IDL is included in Appendices A and B of this document. Appendix A is a file containing the IDL structures and interfaces. Appendix B is a separate file containing just constant definitions. Both of these are based on the GDMO definitions found in X.721.

X.721 defines the following objects in GDMO:

· 9 types of record objects (Log Record, Event Log Record, Alarm Record, Attribute Value Change Record, Object Creation Record, Object Deletion Record, Relationship Record, Security Alarm Report Record, State Change Record)

· the Discriminator and Event Discriminator objects

· the Log object

· the System object

· the Top object

Each of these has actions attributes, actions, and supporting data types and parameters. In addition, X.721 defines 15 notifications.

Looking at the objects listed above, it is clear that many of these are covered by the CORBA Common Object Services already included in the framework:

· The CORBA Telecom Event Log service defines a structure for holding log records, so the record objects are not needed. (Note that by specifying the use of the CORBA Telecom Event Log Service this framework treats log records as data structures, not objects.)

· The CORBA Notification Service defines a filtering capability, so the discriminator and event discriminator are not needed.

· The CORBA Telecom Event Log Service defines the equivalent of X.721’s Log object.

That leaves just the System and Top objects, along with the notifications. The System object is not really a framework object and belongs instead in a generic information model. The IDL in Appendix A, therefore, defines a “top” managed object, called “Managed Object,” that is intended to be subclassed by all other managed objects; a set of notifications; a generic “factory” object, and a managed object delete service. Each of these is discussed below. There are also sub-sections on other parts of the IDL defined in Appendix A.

8.1 The Top Managed Object

The first interface defined in Appendix A is the “Managed Object” interface, found after all the data type definitions. It is intended to be the “top” managed object class from which all other interfaces inherit. It defines a set of capabilities that all managed object instances must support. These capabilities are:

· A method that returns the name of the object.

· A method that returns the interface (class) name of the object.

· A method that returns the conditional packages supported by the object instance.

· A method that returns the creation source of the object (whether it was created autonomously by the resource, in response to a management operation, or unknown).

· A method that returns the delete policy for the instance. This is an enumerated value and indicates if the object is not deletable, if it is deletable only if it contains no objects, or if all contained objects will be deleted when it is deleted.

· A method that returns a CORBA value type object containing all of the readable attributes for the object.

· A destroy operation.

The IDL describing the ManagedObject interface (without comments) is:

interface ManagedObject {

NameType nameGet();

ObjectClassType objectClassGet();

IStringSetType packagesGet ();

SourceIndicatorType creationSourceGet();

DeletePolicyType deletePolicyGet ();

ManagedObjectValueType attributesGet (

inout IStringSetType attributeNames);

void destroy()

raises(DeleteNotAllowed);

}; // end of ManagedObject interface

The first operation, getName(), returns the CORBA name of the object. NameType is a type definition for the CORBA Naming Service “Name” type. “NameType” is used to conform to the IDL conventions defined later in this document. This method returns the compound name of the object, beginning with the root naming context for the managed system. See the recommendations on the use of the Name Service in Section 6.1 above.

The second operation, getObjectClass(), returns the scoped interface name (class name) of the object. Scoped interface names include the name(s) of the module(s) in which the interface is defined. The return value type, ObjectClassType, is a type definition of wide string, strings of wide (international) characters.

The third operation, getPackages(), returns the list of conditional packages supported by an object instance. The notion of conditional packages, each with a string name, is supported by this framework. See Section 9.6 for details. IstringSet is a type definition for a list of wide strings.

The fourth operation, getCreationSource(), returns a value indicating why the object was created. SourceIndicatorType is an enumerated type with three values: resourceOperation, managementOperation, and unknown. It indicates if the object was created autonomously by the resource, in response to a management operation, or if it is unknown how the object was created.

The fifth operation, getDeletePolicy(), returns the delete policy for this object instance. This is an enumerated value that indicates if the object is not deletable, if it is deletable only if it contains no objects, or if all contained objects will be deleted when it is deleted. (Deleting an object but not its contained objects is not allowed.) This policy is set when the object is created by its factory. Different factories may set this policy differently, even for objects of the same class.

The getAttributes() method is used to return all, or any subset, of an object’s attribute values in one operation. For each managed object interface in an information model, a CORBA valuetype containing data members for each of the attributes readable on that interface will be defined. This method may be used to retrieve this valuetype for any managed object. The value types will be defined following the inheritance hierarchy of the managed object interfaces (except that value types cannot support multiple inheritance), and each will ultimately be derived from the ManagedObjectValueType defined for the ManagedObject interface. The object should return a value type defined for its interface in response to this method. Thus, when a client invokes the getAttributes() operation on any managed object, it will receive back a reference to a ManagedObjectValueType which it may then narrow to the value type defined for the interface on which the operation was invoked.

Complicating this somewhat are the concerns that a client may not want to retrieve all of the attribute values from an instance, and an instance may not support all of the attributes that are in conditional packages. (The valuetypes include attributes in conditional packages.) This is accommodated through the use of the in/out attributeNames parameter. On invocation, the client may submit a list of the names of the attributes in which it is interested, with a null list having the special meaning that all supported attributes should be returned. Any names on the list that are not valid attribute names should be ignored. On response the object will return the actual list of attributes for which values are supplied. Note that this list may not match the submitted list. The object must always return an accurate list, even if the submitted list was null. If all the names on the submitted list are invalid, the object should return a null list and an empty value type.

Because the structure of the value type is pre-defined, the object must fill in some value for the attributes not requested or not supported. Basically, the object may return any values for these attributes, but the values should be as short as possible for efficiency. Thus, null values should be returned for strings, references, and lists of any kind. Any value may be returned for integers and enumerated types. The client must consider any value for an attribute not named in the list returned by the object to be garbage.

The final operation on the object, the destroy() operation, is used to release any resources associated with the managed object and to delete it.

(R) OBJECT-1. The interfaces used to model resources on a managed must inherit (directly or indirectly) from the Managed Object interface described above and defined in the CORBA IDL in Appendix A. The capabilities described above must be supported.

8.2 The Managed Object Factory

Sometimes managed objects are created automatically by the managed system, sometimes they are created as a result of an action on another object (such as a cross-connection object created in response to a connect action on a fabric), and sometimes they are created in response to a message from a manager application. In this last case, on CMIP systems, the create operation is typically handled by the CMIP agent framework. It can’t be handled by the object itself because it hasn’t been created yet. In CORBA implementations there is no agent framework, so something needs to be present on the managed system to enable the managing system to create objects. In CORBA systems this is often handled by “factory” objects. The Managed Object Factory class is intended to be the “top” class object from which other factory classes inherit. It will define capabilities that all managed object factories are expected to support. Currently, no such capabilities have been identified, so the interface is null (inherits from nothing and has no attributes or methods). It is a placeholder in which capabilities may be placed in the future if needed.

CORBA interfaces derived from existing GDMO information models are expected to include a factory per GDMO name binding. The factories will contain operations for creating managed objects. These operations will take a number of parameters, such as the new object’s parent object, the new object’s name, values for each of the writeable or set-by-create attributes, etc. Upon successful creation of the new object, the factory will return a reference to it.

In addition to creating objects, it is expected that factories will also create name bindings for the new objects. Though this functionality could be implemented elsewhere, it is believed that implementing it in the factories will simplify implementations by relieving the managed object implementation from this task, leaving them to focus on representing resources.

(R) FACTORY-1. The factory objects used to create managed objects on a managed system must inherit (either directly or indirectly) from the Managed Object Factory described above and defined in the CORBA IDL in Appendix A.

(R) FACTORY-2. Use the Factory Finder to find factories. [More detail needed here.]

8.3 The Factory Finder Service

8.4 The Terminator Service

The third interface defined in Appendix A is for the Terminator Service. The purpose of this service is to provide a place in the framework to implement functionality that would otherwise have to be implemented in the managed objects. The Terminator Service is used by managing systems to delete managed objects. It does so according to the delete policy of the managed object. If the delete policy of the managed object is “not deletable,” the Terminator Service does not delete the object, and instead throws an exception. If the delete policy is “delete only if no contained objects,” and the object does not contain any objects, then the Terminator Service deletes the object. Otherwise, it throws an exception. Finally, if the delete policy of the object is “delete contained objects,” then the Terminator Service will delete the object as well as all of its contained objects.

There is a destroy operation supported by all managed objects that is intended for use by the Terminator Service for actually deleting the managed object and releasing its resources. In addition to following the delete policies and actually deleting the managed objects, though, the Terminator Service also provides a good place to implement code to maintain the integrity of the naming tree by removing name bindings for managed objects that are being deleted. As with the managed object factories, implementations may choose to implement this function elsewhere, but a goal of the framework is to enable implementations of managed objects that focus on representing network resources. It is believed that a service like this will help to make the implementation of managed objects simpler.

The IDL describing the Terminator Service provides two methods for deleting a managed object. One identifies the managed object by name, the other by reference. This is the IDL that defines the delete service interface:

interface TerminatorService {

void deleteByName (in NameType name)

raises (ObjectFailure, DeleteNotAllowed, ContainedObjects);

void deleteByRef (in ManagedObject mo)

raises (ObjectFailure, DeleteNotAllowed, ContainedObjects);

}; // end of TerminatorService interface

(R) TERM-1. A managed system should instantiate the Terminator Server object(s) it will support. A name binding for each Terminator Server is to be inserted into the system’s naming graph. First, there must be a naming context bound to the root naming context of the system using the ID field equal to the server’s scoped class name (“ITU_X721::TerminatorService” or a sub-class) and a null kind field. Within this context will be bindings for each Terminator Server on the system. The ID field will identify the server, the kind field will be null.

(R) TERM-2. The interface supported by the Terminator Server object(s) will be the Terminator Service interface described above and defined in the CORBA IDL in Appendix A. The functionality described above must be supported.

(R) TERM-3. The Terminator Service deletes objects according to the objects’ delete policy attribute, which is set at creation and cannot be changed. Note that the Terminator Service is not a scoped service. The Terminator Service may actually delete multiple objects in response to a single request, but it’s focus is on the single object requested to be deleted. The Terminator Service must implement the following rules when deleting an object:

1. No object must ever be “orphaned.” That is, no object may be deleted without deleting its children.

2. If the object has a delete policy of “Not Deletable,” the object is not deleted, nor are any of its children if it has any.

3. If the object has a delete policy of “Delete Only If No Contained,” and it does not have any children, the object is deleted. If the object has children, regardless of their delete policies, it is not deleted nor are any of its children.

4. If the object has a delete policy of “Delete Contained,” and it does not have any children, the object is deleted. If the object has children, the Terminator Service must examine the delete policies of all contained objects (the entire subtree).

· If any are “Not Deletable,” no objects are deleted.

· If any are “Delete Only If No Contained,” and they do have children, no objects are deleted.

8.5 The Notifications Interface

The fourth interface defined in Appendix A is the notifications interface. Each of the notifications in X.721 has a corresponding operation on this interface. The notifications are defined as typed method calls as suggested by Recommendation Notif-4 above. Imagine for a moment a network management implementation that did not use the Notification Service to filter and broadcast notifications. In such a scenario the managed system would send notifications to the managing system by invoking the operations defined on this interface. This interface would be supported by the managing system to receive events. In fact, if typed notifications are used with the Notification Service then the operations on this interface would be used directly. When structured notifications are used, the operations on this interface specify the data to be mapped to the notification structure as defined in Recommendation Notif-5 above.

All of the notification operations defined in this interface pass a single parameter, a data structure with many fields. Several of the notifications share the same data structures, but send the notifications for slightly different reasons. The notifications interface IDL looks like this:

interface Notifications {

void attributeValueChange (

in AttributeValueChangeInfoType
attributeValueChangeInfo

);

…

}; // end of Notifications interface

The other fourteen notification operations are very similar to the one above. The names of the 15 notifications defined are:

· Attribute Value Change
· Physical Violation

· Communications Alarm
· Processing Error Alarm

· Environmental Alarm
· Quality of Service Alarm

· Equipment Alarm
· Relationship Change

· Integrity Violation
· Security Service or Mechanism Violation

· Object Creation
· State Change

· Object Deletion
· Time Domain Violation

· Operational Violation

8.6 The Data Type Definitions

Preceding the interface definitions in Appendix A are a number of data structure and type definitions. Most of these are used in the notifications. These were derived from the ASN.1 module in X.721 with minor changes to simplify syntax. Where possible, modern object-oriented concepts such as in/out parameters and exceptions have been employed and are reflected in these types.

8.7 Macro Definitions

Following the interfaces in Appendix A are the definitions of some macros. These macros simply provide shorthand notations for identifying operations that are part of a conditional package, and for specifying which notifications are supported by which objects. Due to the limited capability of CORBA IDL to accept information like this, it was felt these macros would be useful.

The Conditional Package macro expands into the exception “PackageNotPresent.” The presence of this macro in the “raises” clause of an operation means that the operation is part of a conditional package. The package name may be put inside the parentheses of the Conditional Package macro to identify to which package the operation belongs. Note that this package name is simply discarded when the macro is expanded, as CORBA IDL has no place to put the package name. The “PackageNotPresent” exception returns a string to the client, though, and it is up to the managed object programmer to make sure the string name inside the macro statement is returned.

The other two macros are both used to identify notifications that are to be emitted by an object. The Mandatory Notification macro identifies notifications that must be supported by an object, and the Conditional Notification macro identifies macros that must be emitted by a managed object if it supports a particular package. Both macros take arguments identifying the name of an operation (remember, operations are used to convey notifications) and the scoped name of the interface on which the operation is defined. The Conditional Notification macro also accepts a third parameter, the name of the package to which the notification belongs.

The notification macros expand into nothing. Unfortunately, IDL is simply too limited to provide a way to capture this information. Comments could be generated, but they are just immediately discarded by the compiler. Formatted comments, like those used to generate HTML, unfortunately can’t be used because they require some IDL construct with which they are associated. . It was hoped that the upcoming CORBA Components model would provide a solution, but it won’t be in time for this framework. In the future it may be possible to modify the macros to generate IDL consistent with the Component model.

8.8 The Constant Definitions

Interface specifications always contain a number of constants whose values are agreed upon by everyone to mean the same thing. For example, everyone agrees a “1” in a certain field means a loss of signal, a “2” means a loss of frame, etc. X.721 is no exception and defines a number of constants. These are reproduced in IDL form in Appendix B. For details on the mechanism used to convey pre-defined constants, see Section 9.10.

9. Information Modeling Guidelines

This section presents guidelines for developing information models for use with this framework. Guidelines for the translation of existing models specified in GDMO are also described.

9.1 Modules

IDL Modules are used to group together interfaces, type definitions, exceptions, and other IDL constructs. Modules also provide name-space delineation; identifiers within a module must be unique but may be re-used in other modules. In almost all cases, a module should be used to group the constructs used to specify an information model. Modules may be nested within other modules, and modules may span multiple files. The IDL specified for this framework is contained within a single module, named “ITU_X721”. For example:

module ITU_X721 {

…

}; // end of module ITU_X721

This module has sub-modules for constant definitions. The MOO Service interface is also defined in a sub-module.

9.2 Interfaces

Each entity accessible via the CORBA network management interface should have an IDL interface defined for it. Interfaces group together a set of attributes and methods that can be thought of as being provided by a single software object. Interfaces may inherit capabilities from other interfaces and interfaces defined to model an entity must inherit (directly or indirectly) from the interface named “ManagedObject” defined as part of this framework. For example:

interface Equipment : ManagedObject {

…

}; // end of interface Equipment

Such interfaces are referred to as “managed object interfaces.” The objects that support these interfaces are “managed objects.” Because the ManagedObject interface defined in this framework has a set of capabilities that are inherited by all managed object interfaces, each managed object must implement a base set of functions to exist in this framework.

9.3 Attributes

Attributes are modeled within interfaces as operations used to access the attribute’s value. The name of the operation, as well as the input and output types, indicate the name of the attribute as well as the type of operation. (CORBA IDL does support attributes in addition to operations, but at this time only operations are allowed to raise user-defined exceptions. As will be seen, user-defined exceptions are needed on attribute accesses. For this reason, operations are defined to access attributes rather than merely defining attributes. Future versions of CORBA plan to allow user-defined exceptions on attribute access, and these guidelines may change to take advantage of this.)

9.3.1 Readable Attributes

Managed objects should have an operation named “<attribute name>Get” on their interface for each readable attribute. The type returned by this operation reflects the type of the attribute. For example:

AdministrativeStateType administrativeStateGet();

Attributes that are settable but not readable, which is rare, should not have a read operation defined on the interface.

9.3.2 Settable Attributes

Managed object interfaces should have an operation named “<attribute name>Set” for each settable attribute. The operation return type should be void and the input parameter should reflect the type of the attribute. For example:

void administrativeStateSet (in AdministrativeStateType adminState);

Attributes that are not settable should not have such an operation on the interface.

9.3.3 Set-valued Attributes

Many managed object attributes may contain sets of values. In these cases, the operations defined above should still be supported (if the attribute is readable and/or writable). The input or return types for these operations will be CORBA sequences. Also, it may be necessary to support the addition or removal of values to these attributes. These operations should be named “<attribute name>Add” and “<attribute name>Remove”. The return types for these operations should be void and the input parameter to each should be a sequence reflecting the type of the attribute. For example:

void supportedByObjectSetAdd (in ManagedObjectSetType objects);

void supportedByObjectSetRemove (in ManagedObjectSetType objects);

9.3.4 Exceptions

Attribute access operations may also raise exceptions. The following exceptions are defined by the framework to be raised on attribute access operations:

1. Duplicate Item. This exception may be raised on an add operation if one or more values being added is a duplicate.

2. Item Not Found. This exception may be raised on a remove operation if one or more values being removed is not present in the attribute.

3. PackageNotPresent. This exception may be raised on any attribute access operation if the attribute is part of a conditional package. See the section on packages below for more details.

Operations that raise exceptions should not modify the value of the attribute. An example of an attribute access operation that raises an exception is:

void supportedByObjectSetRemove (in ManagedObjectSetType objects)

raises(ItemNotFound);

9.3.5 Standard Attributes

Managed objects model resources, and often there is commonality among managed objects. This is sometimes represented using an inheritance relationship among object, but there may also be commonality between objects when no inheritance relationship exists. A good example of this is similar attributes. Many managed objects have similar attributes. To make the implementation of management interfaces easier, this framework defines some standard data types that should be used for attributes whenever possible. That is, modelers should attempt to use these type definitions instead of defining new types. Also, the attribute name, and the names of the operations to access the operation should be used. In fact, when defining a new model, it is good practice to re-use attribute types and names from existing models whenever possible. The standard attributes defined by this framework are:

Data Type
Attribute Name
Example Access Method

AdministrativeStateType
AdministrativeState
AdministrativeStateGet()

NameType
Name
NameGet()

OperationalStateType
OperationalState
OperationalStateGet()

9.4 Actions

In addition to attributes, many managed objects will have actions – methods for purposes other than accessing an attribute. The parameters and return types for these operations are simply defined to meet the needs of the action. The name of the operation should reflect the purpose of the operation. The following exception has been defined by the framework to be raised on action operations:

1. PackageNotPresent. This exception may be raised on any action operation if the action is part of a conditional package. See the section on packages below for more details.

Other exceptions specific to the action may and should be defined for other error conditions.

9.5 Notifications

Most managed objects are expected to emit notifications under certain conditions. In this framework notifications are conveyed by method invocations from a managed object back to a managing system, with the help of the Notification Service. Thus, the notification operation is actually defined for the managing system’s CORBA interface, not the managed object’s interface. The framework, however, must support documenting which managed objects emit which notifications. Rather than simply noting this through comments in an IDL file, a macro statement is used. Actually, the framework defines two macros, one for use when the notification is mandatory and the other when the notification is part of a conditional package. The macros are intended to be used within a managed object interface and are defined as follows:

MANDATORY_NOTIFICATION(<interface name>,

<notification operation name>);

CONDITIONAL_NOTIFICATION(<interface name>,

<notification operation name>, <package name>);

For example:

interface Equipment : ManagedObject {

…

MANDATORY_NOTIFICATION(ITU_X721::Notifications, objectCreation);

CONDITIONAL_NOTIFICATION(ITU_X721::Notifications,

equipmentAlarm, equipmentAlarmPackage);

…

}; // end of Equipment interface

The package name used in the conditional notification macro is the same as used elsewhere. See the section on packages for details. The macros actually expand into nothing because there really isn’t a good alternative in CORBA IDL. Thus, the macros are for documentation purposes and don’t actually result in code generation.

9.6 Conditional Packages

This framework supports the notion that not all capabilities defined for a class of managed objects need to be supported by all instances. In fact, groups of capabilities can be defined so that either all or none of the capabilities are supported. These groups of capabilities are referred to as packages. The choices for representing packages in IDL are limited. Defining a separate interface for each package would result in too many interfaces, so instead the approach described here is used.

Each operation that is part of a conditional package may raise an exception named “PackageNotPresent”. Operations that are not part of a conditional package do not raise this exception. The exception returns the name of the package. In order to capture the name of the package in interface IDL files, a macro has been defined:

CONDITIONAL_PACKAGE(<package name>)

This macro is intended to be used in the raises clause of an IDL operation. For example:

AdmininstrativeStateType administrativeStateGet()

raises(CONDITIONAL_PACKAGE(AdministrativeStatePackage));

The macro simply expands into the PackageNotPresent exception. Unfortunately, though, IDL does not provide a way of including literal values for exceptions, thus the macro. The argument to the macro (“AdministrativeStatePackage” in the example above) is discarded when the macro is expanded, so it doesn’t matter of the string is quoted or not. It is up to the managed object programmer to make sure the string inside the macro is passed back in the exception.

Notifications that are part of a conditional package are denoted with the CONDITIONAL_NOTIFICATION statement as described above. The <package name> argument to the macro is discarded as with the CONDITIONAL_PACKAGE macro.

Rules concerning when the capabilities included in a package should be supported and when they shouldn’t are placed in comments related to the managed object interface. An operation or notification may only be part of one package.

9.7 Behavior

CORBA IDL lacks a formal means of capturing object behavior. In the future it is possible that information models will be documented with UML and will include use cases and object interaction diagrams. IDL, however, is limited to comments. Therefore, when necessary or helpful, comments must be used to describe object behavior.

The IDL in this framework contains a number of comments. They are formatted to be parsed by compilers used to convert IDL to HTML for easier reading. A formatted comment begins with /** and ends with */ and is associated with the next IDL construct. HTML formatting tags are allowed with these comments, as are certain keywords (preceded by a ‘@’ symbol) that are converted by the IDL-to-HTML compilers into additional formatting. While viewing IDL with an HTML browser is convenient, note that the use of the macros described above is impacted by this. Because macro expansion is performed as a part of the conversion to HTML, the pre-expanded macro information will be lost. Thus, attributes and actions that are part of a conditional package will show the PackageNotPresent macro in their raises clause, but the name of the package will not be present. Also, the macros used to identify the notifications supported by each managed object will be missing.

9.8 Factories

This framework supports the creation of managed objects using the factory design pattern. Factories are objects with interfaces distinct from the objects they are used to create, but usually related. Each class of managed objects will have at least one factory for each type of object by which it may be contained. The name of the factory should be <Subordinate Class Name>_<Superior Class Name>_Factory. If the subordinate class can be created under the superior class with different delete policies, there will have to be multiple factories, one for each delete policy. In this case, the class name of the factory will also include the delete policy. An example below shows this.

The framework defines a base managed object factory from which each factory must inherit. Factories for objects that are subclassed do not inherit from the factories for the superclass. An example of a factory definition is:

interface Equipment_ManagedElement_Factory : ManagedObjectFactory {

…

}; // end of Equipment_ManagedElement_Factory interface

9.8.1 Create Operations

If an object may be created by a managing system, a factory interface will include operations that may be used to create the object. These operations should accept a type-specific parameter identifying the superior object and a string name parameter used to name the new object relative to the superior object. If supported, a comment will indicate that the name parameter may be null, in which case the factory will automatically name the new object. In this case the name will be an in/out parameter so that the assigned name may be returned. The create operations should return a type-specific reference to the new object.

Create operations will accept a parameter for each writable or set-by-create attribute and shall be named “create”. The create operations also have to accept parameters to set the values of any writable or set-by-create attributes of super-classes. Here is an example of a create operation for an equipment holder factory:

EquipmentHolder create(

in Equipment superiorObject,
// Reference to containing object.

in string name,

// In/out, may be null if auto-create.

in IstringSet packages,

// List of packages requested.

…

// Writeable, set-by-create values

// for superclass attributes.

…

// Writeable, set-by-create values

// for EquipmentHolder attributes.

);

The packages attribute is important.

9.8.2 Delete Rules

In addition to object creation, factories also support object deletion. When a managed object is created, its delete policy is set. A managed object’s delete policy is a read-only attribute inherited from the base ManagedObject class. It is set by the factory according to the type of factory and may be either Not Deletable, Delete Only If No Contained Objects, or Delete Contained Objects. The delete policy used by a factory for the objects it creates is noted in a comment preceding the factory’s interface definition and may also be reflected in the interface’s name to make it unique from similar factories with different delete policies. For example:

/** This factory is used to create Equipment objects contained

by Managed Element objects. The objects created by this factory

have a delete policy of NotDeletable. */

interface Equipment_ManagedElement_NotDeletable_Factory

: ManagedObjectFactory {

…

}; // end of Equipment_ManagedElement_NotDeletable_Factory interface

9.8.3 Factory Finder

Due to the number of factories that will likely be supported on a typical managed system, a capability for finding the right factory will be required. For this reason, a factory finder interface is defined in the CORBA IDL in Appendix A, and described in Section 8.3.

9.9 Managed Object Class Value Types

Each managed object in this framework inherits an operation from the top Managed Object class that returns all or some subset of the object’s attributes in a single value type. (CORBA 2.3 introduces the concept of value types, objects that are passed by value instead of by reference.) Not only must the managed object implementation support this feature, the IDL describing the managed object must include a value type with public attributes for each of the attributes supported by the managed object. The framework defines a base ManagedObjectValueType, and the value types defined for managed objects must ultimately derive from this base value type. The value types defined for managed objects should usually follow the inheritance pattern of the managed objects interface, but since CORBA’s value types support only single inheritance, this won’t always be possible. This is not a serious limitation, though. It simply means that the value types defined for interfaces using multiple inheritance will have to singly inherit from one of the superior value types, and the other attributes will have to be added and maintained by hand.

As an example, assume the Equipment managed object interface inherits directly from the top ManagedObject class, and has, among others, an attribute access function called “userLabelGet” that returns a type “UserLabelType.” The IDL describing the value type for the Equipment managed object would look like this:

valuetype EquipmentValueType : ManagedObjectValueType {

public UserLabelType
userLabel;

…

// other attributes

};

The name of the value type is the name of the interface with “ValueType” appended. Notice, too, that the name of the public attribute in the value type is the name of the method on the managed object interface used to access the attribute without the appended “Get.” This convention should be followed for all attributes in value types. The type of the attribute is the same as the type returned by the attribute access function.

Code on the client side wishing to retrieve the attribute values for an equipment object would look something like this:

ManagedObjectValueType
moValue;

EquipmentValueType
eqValue;

Equipment

eq;

eq = …
// code that sets eq to a CORBA proxy representing an

// equipment object.

moValue = eq.getAttributes();

eqValue = (EquipmentValueType) moValue;
// cast return to proper type

System.out.println(“User Label = “ + eqValue.userLabel); // print label

When the IDL is compiled into an object-oriented programming language, both the interfaces (in this case, Equipment) and the value types (ManagedObjectValueType and EquipmentValueType) will be translated into classes. For the interfaces, the classes are actually proxies. When methods are invoked upon them they make use of the ORB to send the request back to the server. The classes translated from value types, however, are not proxies. They are simply local objects.

When the client invokes the call on the equipment proxy to get attributes, the response from the server will be an EquipmentValueType. When the orb receives this, it will create a local instance of an EquipmentValueType object with the attribute values received from the server. Because the return type to the getAttributes() method, defined on the top Managed Object interface, is ManagedObjectValueType, the reference to the EquipmentValueType instance is passed back as a reference of type ManagedObjectValueType. This works because EquipmentValueType is derived from ManagedObjectValueType. In order to access attributes that are specific to EquipmentValueType, though, the client must narrow the reference by casting it to type EquipmentValueType.

While the behind-the-scenes processing being done by the ORB is a bit complicated, the alternative would be to use lists of CORBA “any” types to hold the attribute values. This approach, though, would require even more processing. The “any” types would be much more complicated for the programmer, too. As shown in the example above, using the value types is actually quite simple.

9.10 Constants

Network management systems require the ability to exchange information with previously agreed-upon meanings. For example, a state change notification with a probable cause of “1” might mean it was likely caused by a loss of signal, while a “2” means a loss of frame, etc. It’s simple enough to define an enumeration or set of integer values to be passed across an interface in some field, but it is a little trickier to make this mechanism extensible by multiple groups, likely acting in parallel. The mechanism used within this framework is referred to as the “Universal Identifier (UID).”

A UID is a data structure with two fields. The first is a string meant to contain the scoped name of an IDL module containing the constants defined for some field. The second is a “short” (16 bit) signed integer containing the value. For example, to send a value of “loss of signal” in a probable cause field within this framework, a system would construct a UID structure with a moduleName string equal to “ITU_X721::ProbableCauseConst” and an integer value equal to 29. (Appendix B contains the constants defined for this framework. In it is a module named “ProbableCauseConst” which contains a constant named lossOfSignal with a value of 29.)

These conventions should be followed when defining constants for an information model:

1. Constant values should be defined in separate modules, one for each set of constants defined for a particular field. These sub-modules should be contained within the top-level module that contains the other constructs defined for the information model.

2. The name of the module should be the name of the field appended with “Const”. For example, values for the probableCause field (defined as type UIDType) are contained within a module named “ProbableCauseConst”.

3. The constants defined within the sub-module must be of type const short. For example:

const short lossOfSignal = 29;

4. Constants may be kept in a separate file, to reduce the length and complexity of the main IDL file. Even if the constants are in a separate file, the sub-modules should be within an IDL module statement with the same name as the module in the main file. The main file should have a pre-compiler include statement at the top of the file to include the constants in any compilation run.

5. The sub-module should also contain a string constant named “moduleName” that contains the scoped name for that module. For example:

module ITU_X721 {

…

module ProbableCauseConst {

const string moduleName = “ITU_X721::ProbableCauseConst”;

…

}; // end of module ProbableCauseConst

…

}; // end of module ITU_X721

This is really just a courtesy to allow programmers to refer to the module’s name by a constant rather than hard-coding module string names.

Note that other information models may extend the values for probable cause. There could, for example, be a module “ITU_M3100::ProbableCauseConst” with additional values for the probable cause field. These modules can even re-use the value 29. The UID will still be unique because the module names will differ.

9.11 Registration

CORBA IDL requires that all the identifiers within a module must be unique. This means that as long as a module name is unique, all of its contents will be uniquely named. CORBA IDL also defines an IDL compiler pragma statement that may be used to define a unique prefix to the module identifiers when they are registered in the CORBA interface repository, a central directory of interface information used by CORBA ORBs. IDL files capturing information models should define a unique prefix to ensure the uniqueness of the IDL module names and all their contents. The registration of these prefixes may be required.

This eliminates the need to register each individual construct.

9.12 GDMO Translation

This section provides guidelines for creating IDL information models from existing information models described using GDMO. The sections below describe how each of the GDMO templates is to be translated to CORBA IDL.

9.12.1 Managed Object Classes

Each Managed Object Class in a GDMO specification should be translated into a managed object interface. Translations of Managed Object Classes derived from the GDMO Top class should inherit from this framework’s ManagedObject interface. Translations of classes not derived from Top should inherit from the translation of whatever class they are derived from. All managed object interfaces must inherit directly or indirectly from the ManagedObject interface. Multiple inheritance is allowed subject to the rules of CORBA IDL.

Templates in mandatory and conditional packages are translated into operations on the interface according to the guidelines below. A comment preceding the interface should describe the conditions under which the capabilities of a conditional package are to be supported by an instance, based on the PRESENT IF clause for that package.

Registration of individual interfaces is not required in this framework.

9.12.2 Packages

Unfortunately, IDL does not provide a means of defining packages in one place other than by translating a package into an interface. This, though, would result in a large number of extra interfaces and increase the complexity of the CORBA interface. Instead, the framework includes the concept of conditional support for groups of capabilities.

As described above, whenever a GDMO package is included in a Managed Object Class, the translation of that class to an IDL interface includes a translation of each of the templates in the package.

GDMO attributes that are part of a conditional package should be translated into access operations each with a raises clause that includes the CONDITIONAL_PACKAGE macro and the name of the package. GDMO actions that are part of a conditional package should be translated into an operation that also has a raises clause that includes the CONDITIONAL_PACKAGE macro and the name of the package. GDMO notifications that are part of a conditional package should be translated into a CONDITIONAL_NOTIFICATION macro statement.

Registration of packages is not required in this framework.

9.12.3 Attributes

Attributes in GDMO packages that support GET capabilities should have an <Attribute Name>Get operation defined for them on each interface that includes the package. The return type for the operation should be a translation of the attribute’s ASN.1 syntax.

Attributes in GDMO packages that support REPLACE capabilities should have an <Atttribute Name>Set operation defined for them on each interface that includes the package. The input parameter type for the operation should be a translation of the attribute’s ASN.1 syntax.

Attributes in GDMO packages that support ADD capabilities should have an <Attribute Name>Add operation defined for them on each interface that includes the package. Attributes in GDMO packages that support REMOVE capabilities should have a <Attribute Name>Remove operation defined for them on each interface that includes the package. The input parameter type for these operations will be IDL sequences translated from the attribute’s ASN.1 syntax.

Attributes in GDMO packages that support the set-by-create capability will accept an initial value for the attribute on factory create methods but will not have a Set operation. (The factory create method will also accept values for attributes that are settable, but not attributes that are merely readable.)

A few other attribute-related GDMO capabilities cannot be re-created with IDL. GDMO attributes that are derived from other attributes will have to have the capabilities of the other attribute manually added to the interface. Matching rules are defined by the MOO service constraint language and simply depend on the basic type of the attribute. There are no matching rules per attribute. A set-to-default operation could be defined for an attribute if it is needed. In general, though, default values, initial values, permitted values, and required values must be documented in comments.

The standard attributes defined by this framework should be used whenever possible. See Section 9.3.5.

Registration of attributes is not required in this framework.

9.12.4 Attribute Groups

This framework does not support the concept of attribute groups. GDMO attribute groups have no equivalent translation. The MOO service may be used to access multiple attributes in one operation.

9.12.5 Actions

Actions in GDMO packages should be translated to operations on each interface that includes the package. The input parameters, output parameters, and return type for the operation should be translated from the action’s input and output ASN.1 syntax. That is, the input syntax should be translated to IDL in parameters, while the output syntax is translated to a mix of out parameters and the return value. IDL inout (in/out) parameters should be used where appropriate. Also, exceptions should be defined to return values for error conditions rather than returning special values for the main return value.

GDMO actions with a mode of unconfirmed (those that lack the MODE CONFIRMED clause) may be translated to methods with the IDL keyword oneway preceding the return type. Such operations must have a return type of void and no out or inout parameters, though. IDL operations without this keyword are confirmed.

9.12.6 Notifications

This framework defines the 15 notifications found in X.721, which are the notifications used in most GDMO information models. Typically, notifications in GDMO packages will simply be translated to a notification macro statement on each interface that includes the package. A MANDATORY_NOTIFICATION statement is used if the notification is part of a mandatory package and a CONDITIONAL_NOTIFICATION statement is used if it is part of a conditional package.

The mapping of object attributes to notification fields within a notification statement is not supported. If some special mapping is required it should be documented with a comment. Replies to notifications are not supported in this framework.

If a new notification must be defined it should be defined as an operation on an interface named “Notifications” within the information model’s module. The name of the operation should be the name of the notification. The parameters to the operation should be translated from the notification’s information syntax. The scoped interface name and notification operation may then be used within notification macro statements.

9.12.7 Behaviors

GDMO behavior templates should be translated to formatted IDL comments immediately preceding the IDL construct with which each behavior is associated.

9.12.8 Name Bindings

Each GDMO name binding should be translated into a factory interface. The superior class and subordinate class names should be used in the factory’s name as described above. If the name binding has a “CREATE” clause the translated interface should have a “create” operation as described above. If the “CREATE” clause has a “WITH-REFERENCE-OBJECT” modifier, the factory interface should have a “createWithRef” operation as described above. If the name binding create clause has a “WITH-AUTOMATIC-INSTANCE-NAMING” modifier, the create operation(s) should have a comment indicating the in/out name parameter may be null, and if so the factory shall automatically assign a name to the new object.

Parameters on create clauses shall be translated to exceptions (see parameters, below).

The “AND SUBCLASSES’ modifier on the subordinate object clause cannot be translated to IDL. New factories have to be defined for each new class, as the class may have additional attributes to set and the return type will be specific to the new object.

The “AND SUBCLASSES” modifier on the superior object clause also cannot be translated. Because CORBA subclasses are polymorphic to their super classes, it will take extra effort to prevent a factory from creating an object under a subclass. The default, therefore, will be to allow objects to be created under subclasses. If for some reason it is important in the model that creation under subclasses be prevented, this will have to be documented in a comment preceding the factory definition.

The translated factory interface should have a comment preceding it stating the delete policy of the created objects. Name bindings with no “DELETE” clause shall create objects with a delete policy of NotDeletable. Name Bindings with a “CONTAINED-OBJECTS” modifier on the “DELETE” clause shall be translated to factories that create objects with a DeleteContainedObjects policy. Name Bindings with a “DELETE-ONLY-IF-NO-CONTAINED-OBJECTS” modifier on the “DELETE” clause shall be translated to factories that create objects with a DeleteOnlyIfNoContainedObjects policy. Name Bindings with no modifier on the DELETE clause shall be translated as if they had a “DELETE-ONLY-IF-NO-CONTAINED-OBJECTS” modifier.

9.12.9 Parameters

GDMO parameters define information that may be sent in notifications or sent back to managers in responses to failed requests. This framework supports a similar capability. Each of the notifications defined in this framework has a field for “additional information,” which may be used to convey parameters. Also, the Object Failure exception, which should be included in the “raises” clause of every operation of every managed object and managed object factory, also contains a field for “additional information.”

An exception is defined as a constant. As described above, constants are defined in separate modules, so information models defining parameters should contain a module named “ParameterIDConst.” Each parameter should be given a descriptive name and a unique value within this module. For example, this framework defines a single parameter, found in Appendix B:

module ParameterIDConst {

const string moduleName = “ITU_X731::ParameterIDConst”;

/** When a processing error failure has occurred and the error

condition encountered does not match any of the object's defined

specific error types, this value is used. The data type accompanying

this parameter is null. */

const short miscellaneousError = 1;

};
// end of ParameterIDConst module

To pass a parameter across an interface, a managed system must include one of these pre-defined constant values in a Unique Identifier, possibly along with an associated value, in the “additional information” field of a notification or exception. The additional information fields are actually lists of structures, with each structure containing a Unique Identifier and a CORBA “any” field to hold the value associated with the parameter, if any. Of course, the manager and managed systems must agree on the type to be supplied in this “any” field. Unfortunately, the only way to communicate the type of this associated value in IDL is with a comment. Thus, as with the example above, each parameter ID must be preceded by a comment identifying the data type accompanying the parameter ID. Any other behavior associated with the parameter may also be included in the comment.

Also, the only way to identify which parameters are to be included in a notification or a failed response to an operation is again a comment preceding the notification or operation definition within the managed object interface.

10. Style Idioms for CORBA IDL Specifications

This section defines a set of style idioms for the Interface Definition Language (IDL) of the Common Object Request Broker Architecture (CORBA) to be used in interface specifications. Having a set of style idioms will result in CORBA/IDL specifications with a consistent style. This may require some additional work by editors, but this extra effort is worth the increased readability of the CORBA/IDL specifications. It is important to keep in perspective that style conventions are for the benefit of the reader, not necessarily to the benefit of the author.

10.1 Use Consistent Indentation

This section defines the indentation style used in the Security Service modules. As an example an excerpt from the non-repudiation module is shown below:

enum EvidenceType {

 SecProofofCreation,

 SecProofofReceipt,

 SecProofofApproval,

 SecProofofRetrieval,

 SecProofofOrigin,

 SecProofofDelivery,

 SecNoEvidence // used when request-only token desired

};

interface NRPolicy {

 void get_NR_policy_info (

 out Security::ExtensibleFamily NR_policy_id,

 out unsigned long policy_version,

 out Security::TimeT policy_effective_time,

 out Security::TimeT policy_expiry_time,

 out EvidenceDescriptorListType supported_evidence_types,

 out MechanismDescriptorListType supported_mechanisms

);

};

10.2 Use Consistent Case for Identifiers

Several languages enforce case rules (such as ASN.1) while others have de-facto rules. These rules allow reader to easily distinguish identifiers of different type leading to increased readability. IDL does not enforce case, so the following rules are proposed.

· Operations, parameters, attributes, and members should have every embedded word capitalized except for the first word capitalized.

· Constants should be in upper case.

· All other identifiers should have the first letter of every embedded word capitalized.

module CarModule {

 struct EngineType {

 PistonType piston;

 RodType pistonRod;

 };

 typedef string KeyType;

 enum WontStartReasonType {

 BatteryIsDead,

 NoGas

 };

 exception WontStart {

 WontStartReasonType reasonEngineWontStart;

 };

 interface FordRanger {

 void startEngine(

 in KeyType key

)

 raises (

 WontStart;

);

 attribute EngineType engine;

 };

};

10.3 Follow JIDM Approach for IMPORT

module ImportingModule {

 // Imports

 typedef ExportingModule::SomeType
SomeType;

 typedef ExportingModule::SomeOtherType SomeOtherType;

 typedef ExportingModule::SomethingElse
SomethingElseType;

 ...

};

At the beginning of a module that imports a type from another module, create a local typedef. This explicitly lists the type that the importing module is dependent upon from the exporting module. (Note: the name of the local identifier need not be the same name as the identifier in the exporting module).

10.4 Use JIDM Approach for OPTIONAL and CHOICE

For enumerated and numeric (integer and floating) types, use the ASN OPTIONAL and CHOICE mappings to IDL as prescribed in the Open Group and Open-Network Management Forum Joint Inter-domain Management (JIDM) group’s Inter-Domain Management: Specification Translation. An example is given below:

// Choice

enum CarChoiceType {

 Ford,

 Cheverolet,

 Chrysler

};

union CarType switch (CarChoiceType) {

 case Ford: FordType

fordValue;

 case Cheverolet: ChevroletType
chevroletValue;

 case Chrysler: ChryslertType
chryslerValue;

}

// Optional

union SunRoofTypeOpt switch(boolean) {case TRUE: SunRoofType the_value};

For strings, sequences, and object references, a null value can usually be used to represent optional cases where no value is present. In cases where there is a semantic difference between a null and a not present, the above method may be used.

For structures and unions, the above method may be used or a decision may be made to use null values within the structure to represent optional values that are not present. For example, for a structure composed of two strings, two nulls could represent an optional value that is not present. If a value is optional it should be marked as optional with a comment.

10.5 Use a Consistent Type Suffix

Append the suffix “Type” to all IDL types. This allows type identifiers and members to use the same name without collisions since IDL is case insensitive. In addition, this idiom increases readability by clearly separating type identifiers from other identifiers.

10.6 Use a Consistent Suffix for Sequence Types.

For sequences (ordered, duplicates allowed) use a suffix of “SeqType” to distinguish sequences from singulars.

10.7 Use a Consistent Suffix for Set Types.

For sets (unordered, duplicates disallowed) use a suffix of “SetType” to distinguish sets from singulars.

10.8 Use a Consistent Suffix for Optional Types

For optional types use a suffix of “TypeOpt” to distinguish them from the non-optional type.

10.9 Arrange Operation Parameters in a Consistent Manner

A consistent ordering of parameters increases readability. Arrange parameters to operations by in, out, then inout.

10.10 Assume No Global Identifier Spaces

To reduce name collisions and promote reuse, all identifiers should be scoped to a particular context (e.g., module, and interface).

10.11 Module Level Definitions

All type definitions should be at the module level. Nesting type definitions within a lower context leads to difficulties in reuse and duplication.

10.12 Limit Number of Parameters

Try to limit the number of parameter to an operation. Operations with a large number of parameters can be difficult to understand and lead to interoperability problems. Similar parameters should be aggregated into structures.

10.13 Use of Exceptions and Return Codes

Exceptions should be used for exceptional conditions such as error conditions. Normal returns should be handled though return codes and output parameters.

10.14 Explicit vs. Implicit Operations

An operation should perform an explicit function. Using parameters as a flag to implicitly change the behavior the operation can be confusing. Factor each behavior into a separate explicit operation.

10.15 Don’t Overly Constrain Data Types

Find a balance between constrained and unconstrained data types. Over-constraint leads to an inflexible model while under-constraint reduces interoperability.

10.16 Don’t Create a Large Number of Exceptions

A large number of exceptions increase the difficulty of understanding an interface definition. Group exceptions by category.

10.17 Performance Considerations in IDL Modeling

The following CORBA/IDL performance considerations are provided to those developing interface definitions. The study into these performance considerations did not yield absolute requirements. Rather, if a specific performance consideration is not followed, there is a resulting consequence in terms or performance and scalability. There are tradeoffs where not following a specific performance consideration may be the most efficient way to engineer the CORBA/IDL based application, depending on the application. For example, if a specific suggestion is not followed, and the CORBA/IDL based application supports a TMN function or interaction that is used infrequently, then the overall performance impact could be minor.

10.17.1 Native Data Types vs. User Data Types

When possible, use native type data as a return value or parameters of a method in an object. Experiments have shown that the latency for transferring the native type data is much smaller than that for transferring the richly typed data structures, e.g. sequence, array, and struct data types. This is because the ORB will spend significant amount of time for marshaling and de-marshaling the richly typed data. For the network management applications, it is unavoidable to use data structures, but the rule of thumb is to avoid using complex unnecessary data structures.

10.17.2 Use of the CORBA ANY data type

Be cautious on using CORBA ANY data type. When mapping from GDMO objects to CORBA objects, some user-defined data types in GDMO cannot be mapped to any CORBA built-in data types. One way to solve this problem is to map these data types to CORBA ANY type. The trouble for using CORBA ANY data type is that it could potentially introduce substantial run time overhead (memory, processor cycles and communications).

10.17.3 Operation Invocations

Control the number of operation invocations by accomplishing the same amount of work in possible fewer operation invocations. This avoids the added method invocation overhead for each request the client sends across ORBs. For example, when collecting data from a server (e.g., OS), it is better to collect all the relevant data in one method invocation than to collect the data in several separate method invocations.

10.17.4 Abstraction Level of Object Granularity

In the object-oriented program, the services of a server application are modeled to objects. In other worlds, each object provides some kind service(s). The ways that model services to objects are not unique. Therefore, decisions must be made whether to model a service to an object or as a component of a CORBA object. CORBA object is the only unit for which client can obtain CORBA object reference, CORBA services, interface inheritance. But, being a CORBA object usually incur system resource overhead and slight development complexity. CORBA object granularity is a term used to describe the relative levels at which developer might to choose model some service or application as a CORBA object.

CORBA object granularity must be considered carefully in network management application environments because it directory impacts the number of CORBA objects in the system. Finer-grained approaches mean more CORBA objects, which could mean an increase in system resource requirement due to overhead associated with CORBA objects. Therefore, a model with fewer objects is good for application scalability. But there is also tradeoff because if one tends to model more services into fewer objects, this could lead to complex object implementations.

10.17.5 Number of Objects in Implementations

Control the number of objects in object implementations. This is more or less related to the granularity discussion. Experiments showed that when the number of objects the ORB manages increases, the latencies of operation invocation increase. This is because when the number of objects increases, the time the ORB spends on de-multiplexing between objects increases. The ORB has to search its implementation repository to find the object implementations to deliver the requests.

10.17.6 Static vs. Dynamic Invocation

Use static invocation where possible. For the well-defined services, it’s better use static invocation unless there is no complete knowledge of an object at compiling time. Because in the static implementation all the operations are well defined, the ORB can deliver the request more efficiently. While dynamic invocation is more flexible and general (because it supposed to be able to handle any request), it usually involves more steps to deliver the request. Thus there is a tradeoff between flexibility and performance.

10.17.7 Number of Parameters for Each Operation

Control the number of parameters for each operation in an object. For each parameter appeared in an operation invocation, the ORB has to spend time to do marshaling and de-marshaling. Therefore, minimize the number of parameters when defining each operation for an object. Experiments have shown that parameter-less operations have lower latency and better performance than operations with parameters.

10.17.8 Two-way vs. One-way Operations

If there is no return value required for an operation invocation, use one-way invocation instead of two-way invocation. For static invocation, the two-way operation invocation will block until the operation result returns from the remote object. If one is not expecting any return value, it’s more efficient to use one-way invocation method because the client does not have to wait for the operation returns. Thus it makes more sense to use one-way invocation in this situation.

10.17.9 Support for invocation on multiple objects

There are some situations where one needs to perform the same operation on many objects. This can improve system performance and reduce resource consumption by taking advantage of co-location objects. Therefore, if there is a possibility that an application needs to perform the same operations on many different objects, we can put these objects in the same collection, i.e. in the same server process space. This could reduce network traffic significantly. But in CORBA, for a client to invoke an operation on an object, the client has to have the object reference. One way to solve this problem is in the server, we can define an object as the interface to each of objects in the collection, i.e. define an operation which can access or update each object in the collection. Once the client has the reference of interface object it can invoke the operation on this interface object, which in turn invokes the operation on each object of the collection on the server side.

10.18 Interface Versioning for CORBA/IDL

Currently in T1M1.5, new versions of GDMO interfaces are created through inheritance. For example, ANSI T1.227 specifies a managed object class for telecommunications trouble report called telecommunicationsTroubleReport. An additional attribute is needed, so a new managed object class is derived from the existing telecommunicationsTroubleReport called telecommunicationsTroubleReportR1.

This method of added new versions through inheritance has created maintenance difficulties for some implementations. Many GDMO compilers bind managed object classes to an implementation symbol. This symbol will be embedded throughout implementation code. If a new version is created with a different managed object class name; every place where the class is referenced has to be changed. This forces changes in areas that have nothing to do with the class’s new functionality. In a fashion similar to GDMO, CORBA also binds an interface to an implementation symbol.

If a new version of an interface could be created without changing the name, only the implementation code impacted by the change would have to be modified and tested. That being said, it is still recommended to that a full regression test be performed before installing new releases of software in a production environment.

This document explains an interface version method available with the Common Object Request Broker Architecture (CORBA)/ Interface Definition Language (IDL) which allows an interface to have multiple versions with the same name.

10.18.1 Interface Repository Overview

CORBA supports dynamic typing in the Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI). These mechanisms allow implementers to create clients and servers that do not know the types of the objects they support at compile time. Instead, through a meta-data repository called the Interface Repository (IR), implementations can discover type information at runtime.

To facilitate dynamic typing for the DSI and DII, when an IDL specification is compiled, meta-data information is generated that describes the types in the IDL specification. DII and DSI, retrieve this meta-data through interface to the IR. Included in the meta-data information for each type is an identifier. This identifier is referred to as the RepositoryID.

Section 8.6.1 of the CORBA specifications [1], describes the RepositoryID format for OMG IDL as (the bold and underline text concerning prefix and version were added to highlight these two items):

“The Repository ID consists of three components, separated by colons, (‘:’)

The first component is the format name, ‘IDL.’

The second component is a list of identifiers, separated by ‘/’ characters. These identifiers are arbitrarily long sequences of alphabetic, digit, underscore (‘_’), hyphen (‘-‘), and period (‘.’) characters. Typically, the first identifier is a unique prefix, and the rest are the OMG IDL identifiers that make up the scoped name of the definition.

The third component is made up of major and minor version numbers, in decimal format, separated by a “.”. When two interfaces have Repository IDs differing only in minor version number it can be assumed that the definition with the higher version number is upwardly compatible with (i.e., can be treated as derived from) the one with the lower minor version number.”

Two IDL pragmas are defined which allow the prefix and version of RepositoryIds to be specified in an IDL specification. A prefix pragma specifies the prefix of the RepositoryID for all IDL types. A prefix pragma affects the RepositoryIDs of all types until the end of the specification or the next prefix pragma.

#pragma prefix “t1.256”

interface foo {

void someOperation();

};

This would generate a RepositoryID for foo of “IDL:t1.256/foo:1.0”.

The version pragma allows an IDL specification to specify the major and minor version numbers of the generated RepositoryIDs. The version pragma specifies the type for which the version pragma applies as well as the major and minor version numbers.

interface foo {

void someOperation();

};

#pragma version foo 1.5

This would generate a RepositoryID of “IDL:/foo:1.5. The CORBA specification [1] describes that a change in the minor number of the interface indicates a backward compatible change while a change in the major number does not.

10.18.2 Use of RepositoryID for Interface Versioning

An object request broker (ORB) makes an object implementation available to another ORB domain by publishing an Interoperable Object Reference (IOR). The format of an IOR is defined in the CORBA’s IOP module and is included below:

// An Interoperable Object Reference is a sequence of

// Object-specific protocol profiles, plus a type ID.

//

struct IOR {

string type_id;

sequence <TaggedProfile> profiles;

};
The type_id member of the IOR structure is the RepositoryID of the most-derived interface that the object implementation supports. This allows interface versions to be exchanged between ORB domains at runtime.

It is very common for interfaces defined in one IDL module to use types defined in another module. If the module not including the interface changes in such a manner to affect the interface, the version of the interface will not suffice to ensure version control.

To solve this problem, the version of the modules should be managed in specifications. Although this information is not exchanged through the IOR, T1M1.5 can administratively control the version of an interface relative to the versions the modules that the interface is dependent upon. This could be done through comments in the modules:

module ModuleA {

typedef string Atype;

}

#pragma version ModuleA 1.3

module ModuleB {

typedef string Btype;

}

#pragma version ModuleB 2.6

module ModuleC {

// Module dependencies

// ====================

//

// Module

Version

// ------

// ModuleA

1.3

// ModuleB

2.6

interface interfaceInC {

void doSomething();

};

#pragma version interfaceInC 1.0

};

#pragma version ModuleC 1.0

In the example above, the interfaceInC has a version of 1.0. An implementation of this interface must use the 1.3 version of the ModuleA and the 2.6 version of ModuleB (or version which are backward compatible.

10.19 CORBA Interoperability Across Domains

10.19.1 Exchanging an IOR Out of Band

For a client in one ORB domain to make invocations on objects in another ORB domain, it must have the object’s IOR. One method for exchanging IORs between ORBs is done out of band, (i.e. not over GIOP). CORBA provides standard operations for converting IORs to and from ASCII strings. In the ORB domain that implements the object, the CORBA::object_to_string operation is called to create an ASCII representation of the object’s IOR. The ASCII representation can be given to the other ORB domain through means such as email. A client in the client ORB then uses the CORBA::string_to_object operation to convert the ASCII string back into an IOR. The client can then make invocations on the object.

10.19.2 Naming Service Overview

The CORBA Naming service allows objects to be bound to a name. The Naming Service uses name bindings and naming contexts. A naming context is analogous to a directory in a file system. A naming context can contain name bindings and other naming contexts much like a file system directory can contain files and other directories. By binding naming contexts within other naming contexts, a hierarchical name space can be created.

In the Naming Service IDL specification, the naming context is modeled as an interface (NamingContext) and the name is an IDL type (Name). The Name type is a sequence of NameComponents as shown below:

typedef string Istring;

struct NameComponent {

 Istring id;

 Istring kind;

};

typedef sequence <NameComponent> Name;
The operations of the NamingContext interface that are of primary interest are listed below:

bind
Allows a Name to be bound to an object instance.

unbind
Allows a Name to be unbound from an object instance.

resolve
Allows an object reference bound to a name to be retrieved .

create_new_context
Creates a new NamingContext instance which is not bound to any naming context

bind_context
Allows a Name to be bound to a NamingContext instance. This allows the new NamingContext instance to participate in compound name operations which are described below.

bind_new_context
Combines the create_new_context() and bind_context() operations into a single call.

A compound name is a Name with more than one NameComponent. Compound names allow the user of a NamingContext to bind, unbind, and resolve names that are anywhere within the naming hierarchy of the called NamingContext instance.

To use the CORBA Naming Service, the user must obtain the object reference of the root NamingContext instance. This is performed by calling resolve_initial_reference().

To use the Naming Service in one ORB domain from another ORB domain, an IOR of a NamingContext instance can be exchanged out of band as described in the previous section. The IOR can be either used directly by a client or bound to a NamingContext in the local ORB’s Naming Service.

On the other hand, implementers may wish to define an implementation factory as being responsible for naming the object. This would function as such. The client would always go to the factory to instantiate an object. The factory would, if necessary, name the object through the CORBA Naming Service.

10.19.3 Proposal for IOR Exchange

By using the CORBA Naming Service, only one IOR must be exchanged out of band between two ORB domains wishing to communicate. This will dramatically reduce the administration of X-interface applications convincing most implementers to use the CORBA Naming Service.

CORBA does not define a standard naming hierarchy for the Naming Service. This is an area of CORBA standardization that T1M1.5 could provide. It seems only natural that the naming space hierarchy matches the containment hierarchy that is currently being used in GDMO interfaces.

One difference between what is done in GDMO and CORBA is that the Naming Service only addresses name spaces while GDMO Name Binding represent naming and containment. This should not be a concern since the X-interface applications that have been implemented to date only use the GDMO naming bindings for naming. Where containment is an interface requirement, other mechanisms should be used. This will allow interface not requiring containment to perform naming without additional complexity. This approach would be consistent with other distributed processing environments that have separated naming and containment.

11. Compliance and Conformance

This section defines the criteria that must be met by other standards documents claiming compliance to this framework and the functions that must be implemented by systems claiming conformance to this specification.

11.1 Standards Document Compliance

Any specification claiming compliance with this Framework shall:

1. Adhere to the conventions for defining CORBA TMN managed objects specified in Section 9.

2. Adhere to the IDL conventions specified in Section 10.

3. Specify all CORBA TMN managed object interfaces to inherit from the ITU_X721::ManagedObject interface, either directly or indirectly.

4. Specify all managed object factory interfaces to inherit from the ITU_X721::ManagedObjectFactory interface, either directly or indirectly.

5. Specify notifications as methods on a “Notifications” interface if none of the notifications defined in this Framework are applicable.

6. Use the macro defined in this Framework for identifying the attributes and actions that are parts of a conditional package.

7. Use the macros defined in this Framework for identifying the notifications that are to be supported by a managed object.

8. Use the definitions for generic attribute types found in Section X.X wherever applicable.

9. State in its compliance clause a reference to the module(s) from which other generic attributes are used.

11.2 System Conformance

11.2.1 Conformance Points

This section summarizes the individual functions described earlier in this document. These conformance points are then combined in profiles that must be supported by systems claiming conformance to this specification.

1. An implementation claiming conformance to the Naming Service recommendations must:

· Support the CORBA Naming Service version specified in Section 5.

· Support all of the Naming Service recommendations specified in Section 6.1.

2. An implementation claiming conformance to the Notification Service recommendations must:

· Support the CORBA Notification Service version specified in Section 5.

· Support all of the Notification Service recommendations specified in Section 6.2.

3. An implementation claiming conformance to the Telecom Logging Service recommendations must:

· Support the CORBA Telecom Logging Service version specified in Section 5.

· Support all of the Logging Service recommendations specified in Section 6.3.

4. An implementation claiming conformance to the Initial Security Service recommendations must:

· Support the Secure Sockets Layer (SSL) version specified in Section 5.

· Support the exchange of authentication certificates as an option left up to the administration.

5. An implementation claiming conformance to the Advanced Security Service recommendations must:

· Support the Transport Layer Security (TLS) version specified in Section 5.

· Support the exchange of authentication certificates as an option left up to the administration.

6. An implementation claiming conformance to the Basic MOO Service must:

· Support the “basic” MOO service interface described in Section 7.1 and defined by the CORBA IDL in Appendix C.

· Implement the default MOO Service constraint language described in Section 7.1.

7. An implementation claiming conformance to the Advanced MOO Service must:

· Support the “advanced” MOO service interface described in Section 7.1 and defined by the CORBA IDL in Appendix C.

· Implement the default MOO Service constraint language described in Section 7.1.

8. An implementation claiming conformance to the Terminator Service must:

· Support the Terminator Service interface described in Section 8.4 and defined by the CORBA IDL in Appendix A.

9. An implementation claiming conformance to the Framework’s approach to object modeling must:

· Derive (directly or indirectly) all interfaces that model resources from the “Managed Object” interface described in Section 8.1 and defined in the CORBA IDL in Appendix A.

· Support all of the capabilities of the Managed Object interface.

· Derive (directly or indirectly) all managed object factory interfaces from the “Managed Object Factory” interface described in Section 8.2 and defined in the CORBA IDL in Appendix A.

· Support any capabilities defined for the Managed Object factory interface.

· Use the constants defined in the CORBA IDL in Appendix B whenever appropriate.

· Use the notifications defined in the CORBA IDL in Appendix A whenever appropriate.

11.2.2 Basic Conformance Profile

A system claiming conformance to the ANSI T1.2xx Basic Profile shall support:

1. The version of CORBA specified in Section 5, or any later release that is backwards-compatible with it.

2. The Naming Service recommendations. (See conformance point 1.)

3. The Telecom Logging Service recommendations. (See conformance point 3.)

4. The Initial Security Service recommendations. (See conformance point 4.)

5. The Basic MOO Service. (See conformance point 6.)

6. The Terminator Service. (See conformance point 8.)

7. The Framework’s approach to object modeling. (See conformance point 9.)

Appendix A CORBA IDL Module

/* This IDL code is meant to be stored in a file named “ITU_X721.idl” and

located in the search path used by IDL compilers on your system. */

#ifndef ITU_X721_IDL

#define ITU_X721_IDL

#include <CosNaming.idl>

#include <CosNotifyChannelAdmin.idl>

#include <CORBAComponents.idl>

#include "ITU_X721Const.idl"

/* Most comments in this file are formatted to be parsed by an IDL-to-HTML

converter such as idldoc or orbacus hidl. */

/*

 MODULE ITU_X721

*/

/** This module provides the fundamental capabilities for implementing network

management interfaces and defines the "managed object" interface. The

interfaces below are modeled after the managed object specifications

found in the CMIP specification document X.721. */

module ITU_X721 {

/*

IMPORTED TYPES

*/

// Types imported from CosNaming

typedef CosNaming::Name NameType;

// Exceptions imported from CosNaming (can’t use typedef)

#define InvalidName CosNaming::Invalidname

#define DuplicateName CosNaming::DuplicateName

/*

FORWARD DECLARATIONS AND TYPEDEFS

*/

interface ManagedObject;
// forward declaration

typedef wstring Istring;
// International strings are wstrings

/** Istring Sets are just sets of strings */

typedef sequence <Istring> IstringSetType;

/** MO is shorthand for Managed Object. CORBA uses object references of type

"object" to identify objects. These are used instead of ASN.1 object

instances. For network management interfaces, all objects will inherit from

the "ManagedObject" interface. */

typedef ManagedObject MOType;

/** MO Set is a set of MO references. */

typedef sequence <MO> MOSetType;

/** A set of names is definded as a sequence of names. */

typedef NameSetType sequence <NameType>;

/** ScopedName is just a string. */

typedef Istring ScopedNameType;

/** Scoped Name Sets are simply sets of Scoped Names. */

typedef sequence <ScopedNameType> ScopedNameSetType;

/** In CORBA, strings containing scoped names are used to identify object

classes (actually, "interfaces"). */

typedef ScopedNameType ObjectClassType;

/** Object Class Set is a set of object classes */

typedef sequence <ObjectClassType> ObjectClassSetType;

/** Generalized time is a basic ASN.1 type. It is usually represented as a

string in computing languages but it has certain, parseable formats. The 3

possible forms are:<p>

1.Local time only. "YYYYMMDDHHMMSS.fff", where the optional fff is

accurate to three decimal places. <p>

2.Universal time (UTC time) only. "YYYYMMDDHHMMSS.fffZ". <p>

3.Difference between local and UTC times. "YYYYMMDDHHMMSS.fff+-HHMM". <p>

The options for representing this in IDL seem to be either a string or the UtcT

structure from the CORBA Time Service. Because UtcT does not seem to make it

possible to differentiate a local time (option 1 above) from a universal time

(option 2 above), a string will be used. */

typedef string GeneralizedTimeType;

/** External Time is generalized time. */

typedef GeneralizedTimeType ExternalTimeType;

/*

ENUMERATED TYPES

*/

/* The following state objects are used in many interfaces and parallel the

state objects in CMIP standards. */

/** Administrative State is read/write. A "locked" object is usually one that

may not be changed or one which is not providing service. Setting the

Admininstrative State of an object to "shuttingDown" begins the shutdown

process for that object. */

enum AdministrativeStateType {locked, unlocked, shuttingDown};

/** Operational State is read only. It simply reports the current capability

of the object to provide service. */

enum OperationalStateType {disabled, enabled};

/** Usage state is read only. If "idle," the resource is completely unused.

If "busy," the total capacity of the resource is in use. "Active" is in

between. */

enum UsageStateType {idle, active, busy};

/** Delete Policy indicates if an object can be deleted and if so if any contained objects should automatically be deleted. Since objects must not be

orphaned, if an object has a delete policy of “deleteOnlyIfNoContainedObjects”

the object must not be deleted if it has contained objects. A value of

“deleteContainedObjects” means if the object is deleted its contained

objects should also be deleted. */

enum DeletePolicyType {notDeletable, deleteOnlyIfNoContainedObjects,

deleteContainedObjects};

/** PerceivedSeverity reports the severity of an alarm. "Indeterminate" is

used when it is not possible to assign one of the other values */

enum PerceivedSeverityType {indeterminate, critical, major, minor, warning,

cleared};

/** Source Indicator is used in many notifications. It identifies whether the

notification is a result of a management operation or something that occurred

on the managed system. */

enum SourceIndicatorType {resourceOperation, managementOperation, unknown};

/** Threshold indication describes if the threshold crossed was an upper

threshold or a lower threshold. */

enum ThresholdIndicationType {upper, lower};

/** TrendIndication values indicate if some observed condition is getting

better, worse, or not changing. */

enum TrendIndicationType {lessSevere, noChange, moreSevere};

/*

STRUCTURES AND UNIONS

*/

/** Many times interface specifications need to define standard values to be

passed across the interface. Also, often the scheme used to define these

values needs to be extensible as new interfaces are subclassed, so

enumerations don't work well. CMIP uses OIDs, strings of numbers that are

often appended, in standards. To serve this purpose, the Unique ID is used.

It consists of two parts, a string containing a scoped module name, and an

integer value defined as a constant within that module. These UIDs, and the

ObjectClass type defined above, replace ASN.1 OIDs. It is expected that each

module will contain a constant string named "moduleName" that contains the name

of the module for error-free use by the programmer. A null module name will

indicate a null value for the UID. <p>

Code to interpret a UID might look like the following code snippet:

<code><pre>

UIDType
pc;
// probable cause

...

if (pc.moduleName == ITU_X721::ProbableCauseConst::moduleName) // string compare

switch (pc.value) {

case ITU_X721::ProbableCauseConst::adapterError:

...

case ITU_X721::ProbableCauseConst::applicationSubsystemFailure:

...

case ITU_X721::ProbableCauseConst::bandwidthReduced:

...

}

else if (pc.moduleName == BasicNet::ProbableCauseConst::moduleName)

switch (pc.value) {

...

}

</pre></code>

@member moduleName
The scoped module name where values are defined.

@member value

The value defined as a constant within the module.

*/

struct UIDType {

Istring moduleName;
// The scoped module name defining the value

short value;

// defined as a constant within the module

};

typedef sequence <UIDType> UIDSetType;

/** Management Extension is a structure for flexibly reporting information.

It is typically used in the Additional Information field of notifications.

@see AdditionalInformation

@member id

identifies the type of information

@member significance
not sure what this is for - from X.721

@member any

contains the actual information, type will depend on

the value of the id member.

*/

struct ManagementExtensionType {

UIDType
id;

// identifies the type of info

boolean
significance;
// not sure what this is for

any
info;

// type will depend on id

};

/** Additional Information is a flexible way to report information that does

not fit into the structure of a notification. It contains a sequence of a

structure called "Management Extension". */

typedef sequence <ManagementExtensionType> AdditionalInformationSetType;

/** An Attribute Value structure is used in a notification to report the value

of any attribute. The string used for the attribute’s name is the same as the

name of the data member in the value object defined for the object. In other

words, it is the name of an attribute accessor method minus the “get” or “set”.

@member attributeName
the name of the attribute

@member value

contains the value of the attribute, type will depend

on the attributeName. */

struct AttributeValueType {

Istring
attributeName;

any
value;

// type will depend on the attribute

};

/** Attribute Value Sets are used to set or retrieve attributes generically,

in a batch mode. */

typedef sequence <AttributeValueType> AttributeSetType;

/** An Attribute Value Change structure is used in a notification to report an

attribute that has been changed.

@see AttributeValue

@member attributeName
the name of the attribute

@member oldValue
the old value, type will depend on the attributeName

@member newValue
the new value, type will depend on the attributeName.

*/

struct AttributeValueChangeType {

Istring

attributeName;

any

oldValue;
// type will depend on the attribute

any

newValue;
// type will depend on the attribute

};

/** An Attribute Change Set is used to report the attributes that have been

changed in an attribute value change notification. */

typedef sequence <AttributeValueChangeType> AttributeChangeSetType;

/** A Correlated Notification is identified by the object that emitted the

notification and the notification ID. Both are included in case the

Notification IDs are not unique across objects.

@member source
Reference to object that emitted the correlated notification

@member notifID
ID of the correlated notification. */

struct CorrelatedNotificationType {

NameType
source;

unsigned long
notifID;

/** Correlated Notification sets are sets of Correlated Notification

structures. */

typedef sequence <CorrelatedNotificationType> CorrelatedNotificationSetType;

/** ProbableCause, in CMIP standards, may be either an integer or GDMO OID, a

dot-notation string. The UID type is used instead. */

typedef UIDType ProbableCauseType;

/** Proposed Repair Actions are sets of unique identifiers. */

typedef UIDSetType ProposedRepairActionSetType;

/** Security Alarm Causes are unique identifiers. */

typedef UIDType SecurityAlarmCauseType;

/** Security Alarm Detector can indicate either a mechanism or a specific

object. According to X.721 a choice is made between one or the other, though

it is not clear why. (Actually, X.721 adds a third choice for an AE-title

which has no equivalent here.) Unless otherwise indicated, then, at most one

of the members will be non-null. Two nulls may be sent if the managed system

does not support this property. May want to consider adding Object Class.

@member mechanism
the scheme or function detecting the alarm, may be null

@member object

the object detecting the alarm, may be null */

struct SecurityAlarmDetectorType {

UIDType

mechanism;
// may be null

NameType
object;

// may be null

};

/** Service User

@member id
the id of the service user

@member details
details about the service user, type will depend on id */

struct ServiceUserType {

UIDType
id;

any
details;
// value will depend on id

};

/** Service Providers share the same representation as Service Users. */

typedef ServiceUserType ServiceProviderType;

/** Specific Problems are sets of unique identifiers. */

typedef UIDSetType SpecificProblemSetType;

/** Threshold Information indicates some guage or counter attribute passed a

set threshold. The structure differs from X.721 some to simplify the syntax.

@member attributeID
identifies the attribute that crossed the threshold.

Actually, it is an operation name on an interface minus

the "get" or "set". The interface on which the

operation is defined is included elsewhere in the

notification as ObjectClass. A Null value indicates

the entire structure is null.

@member observedValue
attributes that are of type integer will be converted

to floats

@member indication

@member high

high and low members are for multi-level thresholds.

for single-level thresholds they will be equal

@member armTime

may be null */

struct ThresholdInfoType {

Istring

attributeID;

float

observedValue;

ThresholdIndicationType
indication;

float

high;

float

low;

ExternalTimeType

armTIme;

};

/** TrendIndicationTypeOpt is an optional type. If the discriminator is true

the value is present, otherwise the value is null. */

union TrendIndicationTypeOpt switch (boolean) {

TRUE:
TrendIndicationType
value;

};

/*

ALARM STRUCTURES

*/

/** The Alarm Info structure is used to contain information in Alarm

notifications.

@member eventTime

Managed system's current time.

@member source

Object emitting notification.

@member sourceClass

Class of source object.

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member probableCause

@member specificProblems
Optional. Null if not supported.

@member perceivedSeverity

@member backedUpStatus

"True" if backed up (optional in X.721 but not

here. If object is unsure, value should be

"false".

@member backUpObject

Will be null if backedUpStatus is "false"

@member trendIndication

Optional. See type for details.

@member thresholdInfo

Optional. See type for details.

@member stateChangeDefinition
Optional. Null if not supported.

@member monitoredAttributes
Optional. Null if not supported.

@member proposedRepairActions
Optional. Null if not supported.

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct AlarmInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationSetType
correlatedNotifications;

ProbableCauseType

probableCause;

SpecificProblemSetType

specificProblems;

PerceivedSeverityType

perceivedSeverity;

boolean

backedUpStatus;

NameType

backUpObject;

TrendIndicationTypeOpt

trendIndication;

ThresholdInfoType

thresholdInfo;

AttributeChangeSetType

stateChangeDefinition;

AttributeSetType

monitoredAttributes;

ProposedRepairActionSetType
proposedRepairActions;

Istring

additionalText;

AdditionalInformationSetType
additionalInfo;

};

/** The Attribute Value Change Info structure is used to contain information in

Attribute Value Change notifications. (X.721 includes an attribute identifier

list that does not seem necessary.)

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member attributeChanges
Changed attributes

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct AttributeValueChangeInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationSetType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeChangeSetType

attributeChanges;

Istring

additionalText;

AdditionalInformationSetType
additionalInfo;

};

/** The Object Info structure is used to contain information in Object

Creation and Deletion notifications. In Object Creation notifications the

"source" parameter should be the new object, not the factory.

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member attributeSet

Attribute values. Optional. Null if not

supported

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct ObjectInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationSetType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeSetType

attributeList;

Istring

additionalText;

AdditionalInformationSetType
additionalInfo;

};

/** The Relationship Change Info structure is used to contain information in

Relationship Change notifications. (X.721 includes an attribute

identifier list that does not seem necessary.)

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member relationshipChanges
Changed relationship attributes

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct RelationshipChangeInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationSetType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeChangeSetType

relationshipChanges;

Istring

additionalText;

AdditionalInformationSetType
additionalInfo;

};

/** The Security Alarm Info structure is used to contain information in

Security Alarm notifications.

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member securityAlarmCause

@member securityAlarmSeverity
Clears allowed? X.721 appears to restrict the

"cleared" value on this alarm but clears should

be allowed.

@member securityAlarmDetector

@member serviceUser

@member serviceProvider

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct SecurityAlarmInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationSetType
correlatedNotifications;

SecurityAlarmCauseType

securityAlarmCause;

PerceivedSeverityType

securityAlarmSeverity;

SecurityAlarmDetectorType
securityAlarmDetector;

ServiceUserType

serviceUser;

ServiceProviderType

serviceProvider;

Istring

additionalText;

AdditionalInformationSetType
additionalInfo;

};

/** The State Change Info structure is used to contain information in or from

State Change notifications. (X.721 includes an attribute identifier list that

does not seem necessary.)

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member stateChanges

Changed state attributes

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct StateChangeInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationSetType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeChangeSetType

stateChanges;

Istring

additionalText;

AdditionalInformationSetType
additionalInfo;

};

/*

EXCEPTIONS

*/

/** A ContainedObjects exception means the managed system tried to delete an

object but could not because the object contains other objects and was not

deleted with "deleteContainedObjects" asserted. */

exception ContainedObjects {};

/** A DeleteNotAllowed exception means the managing system tried to delete an

object that it is not allowed to delete. */

exception DeleteNotAllowed {};

/** A DuplicateItem exception means an attempt was made to add a duplicate item

to a set. */

exception DuplicateItem {any item;};

/** An incompatible packages exception means the client requested the inclusion

of packages in a managed object instance that cannot be supported in the

same instance. The names of the incompatible packages are returned. */

exception IncompatiblePackages {IstringSetType packages;};

/** An invalid Name exception means the client included an invalid CORBA name

in an operaton.

@param name
the invalid name */

exception InvalidName {NameType name;);

/** An invalid reference exception means the client included an invalid object

ID in an operation.

@param ref
the invalid reference */

exception InvalidReference {object ref;};

/** An ItemNotFound exception means an attempt was made to access an item that

could not be found in the set.

@param item
the item that could not be found. Type will depend on the type

of the item submitted to the operation. */

exception ItemNotFound {any item;};

/** A PackageNotPresent exception means the operation invoked is part of a package of capabilities that is not present on this instance. The name of the package is returned. */

exception PackageNotPresent {Istring package;};

/*

MANAGED OBJECT INTERFACE

*/

/** This valuetype object contains members for each of the attributes

accessible on this interface. */

valuetype ManagedObjectValueType {

NameType

name;

ObjectClassType

objectClass;

IstringSetType

packages;

SourceIndicatorType
creationSource;

DeletePolicyType
deletePolicy;

};

/** The Managed Object interface is intended to be the "top" interface from

which all other managed object interfaces inherit. It is a central place to

specify basic functions which all managed objects are expected to support. */

interface ManagedObject {

/** This method returns the fully-qualified name for the object (interface).

This method is used rather than having a "getID" method defined for each

interface, as is done in CMIP specifications. This will ensure that objects

have only a single operation to retrieve names when they are sub-classed. <p>

The response is a sequence of name component structures, starting with a "root"

name defined for the domain. (That is, the name of the top-most managed object

on a particular system.) The client may find the ancestors of this object by

removing components from the tail end of this sequence and performing a

resolve operation on the first part of the name. */

NameType nameGet();

/** This method returns the scoped name of the most-specific class of the

interface. */

ObjectClassType objectClassGet();

/** This method returns a list of all the conditional packages supported by

this instance. */

IstringSetType packagesGet ();

/** This method returns an indication of how the object was created. */

SourceIndicatorType creationSourceGet();

/** This method returns a value indicating if the object may be deleted

and if it may, if all contained objects are automatically deleted. */

DeletePolicyType deletePolicyGet ();

/** This method may be used to generically get all of the attributes supported

by an instance. Each interface is expected to sub-class the Managed Object

Value object and add the other attributes supported by that

interface. The managed object must return a value object of that type. The

client must then narrow the reference to access all the attributes. <p>

The client may also submit a list of names indicating the attributes it

wishes to receive. These names must match the member names in the value

object. For members not on the list, and for members that are part of

packages that are not supported, the server may return any value but it

should be as short as possible. The server also returns the list of

attributes, which may be shorter due to exclusion of attributes in

unsupported packages. The client must regard the value of any member

not in the list as garbage. <p>

A null attribute names list indicates that all supported attributes are to

be returned. The server must return the actual list. */

ManagedObjectValueType attributesGet (inout IstringSetType attributeNames);

/** This method destroys the object. It is used to simply release any

resources associated with the managed object. It does not check

for contained objects or remove name bindings from the naming tree. <p>

The intent of this operation is to allow support services to destroy

the managed object. <p>

NOTE: Direct invocation of this operation from a managing system

could corrupt the naming tree and is recommended only under

extraordinary circumstances. Clients wishing to delete an object

should instead use the terminator service. */

void destroy()

raises(DeleteNotAllowed);

}; // end of ManagedObject interface

/*

MANAGED OBJECT FACTORY INTERFACE

*/

/** This interface defines the generic managed object factory interface. All

Managed Object factories should inherit from this interface. <p>

In addition to providing the means for creating objects by management

operation, the factories are assumed to take responsibility for maintaining

the integrity of the naming tree by creating name bindings for the objects they

create. <p>

Currently, this interface is null. It is included, however, as a placeholder

for capabilities that must be supported by all managed object factories.

*/

interface ManagedObjectFactory {

}; // end of ManagedObjectFactory interface

/*

TERMINATOR SERVICE INTERFACE

*/

/**

This interface defines a service that supports the deletion of managed

objects by clients. A goal of the framework is to enable implementations

in which the managed objects do not have to maintain the naming tree

information. The factories are one place to implement the functions

needed to create name bindings, and this service can be used to clean

up the naming tree after object deletion. <p>

Also, this service can implement the rules for deleting objects based on

the delete policy of the managed objects.

*/

interface TerminatorService {

/** This method is used to delete a managed object by specifying its name.

*/

void deleteByName (in NameType name)

raises (DeleteNotAllowed, ContainedObjects);

/** This method is used to delete a managed object by reference.

*/

void deleteByRef (in ManagedObject mo)

raises (DeleteNotAllowed, ContainedObjects);

}; // end of TerminatorService interface

/*

NOTIFICATIONS INTERFACE

*/

/** This interface contains the definitions of notifications emitted by many

managed objects. <p>

The use of "typed" notifications is done here so that the notifications can be

documented in IDL and to support typed notifications for those manager and

managing systems that wish to use them. Note that the OMG's Notification

Service supports both structured and typed notifications. It is not clear if

implementations of the Notification Service will support translation between

them. It is expected that the implementation agreement between the managing and

managed system will specify the use of structured or typed notifications. <p>

Notification users wishing to use typed notifications need only support the

interfaces below. Notification publishers and subscribers wishing to use

structured notifications based on the operations defined below should follow

these rules for constructing and reading the notification structure:

The domain_type string in the fixed header of the structure should be set to

"telecommunications".

The event_type string in the fixed header of the structure should be set to

the scoped name of the operation. For example, for the Attribute Value Change

notification defined below this field would be

"ITU_X721::Notifications::attributeValueChange".

The event_name string in the fixed header of the structure should be null.

Optional header fields may be included to support features like Quality of

Service as appropriate.

Each parameter in the operation should be placed in a name-value pair in the

filterable body portion of the notification. The fd_name string of this pair

shall be set to the name of the parameter and the type placed in the associated

fd_value will be the type specified for the parameter. For example, for the

Attribute Value Change notification defined below a single name-value pair

would be placed in the filterable data portion of the event. The fd_name

string of this pair would be set to "attributeValueInfo" and fd_value would

contain an AttributeValueInfo structure.

The remainder of the body of the notification (the unfilterable part) should

be null.

Unfortunately, typed notifications are mapped to notification structures

differently, so if one system wants to use typed notifications and the other

structured, the structured notification user must be aware of how the CORBA

Notification Service translates typed notifications to structured

notifications. See the specification for details. In short, however, each of

the parameters in the operations below will be converted into a name-value

pair in the filterable data protion of the structured notification. Also, the

event_type field in the fixed header of the structured notification will be

set to the special value "%TYPED" and the domain_type field will be an empty

string. Finally, a name-value pair will be added as the first element in the

filterable data portion of the notification with the name "operation". The

value associated with this name will be a string with the value set to the

scoped name of the operation used to emit the notification

(e.g. ITU_X721::Notifications::attributeValueChange). <p>

Also, structured notification publishers emitting notifications for typed

notifications users must include all of the parameters listed for each

operation in the filterable data portion of the notification. This is because

if the translation to a typed notification is ambiguous, the notification

channel will not be able to deliver it. While the translation of some

excluded parameters (such as excluded strings to null strings) may be

possible, others (such as enumerated types) are not. Thus, all parameters

must be included. <p>

Parameters named "operation" should be avoided in notification operations to

support the use of typed notifications. While the notification channel should

be able to differentiate the real parameter from the one added based on their

positions in the filterable data list, it could have an impact on filtering as

the default filtering language does not have a way to differentiate parameters

based on position. <p>

Because the scoped operation name is placed in either the event_type string

(when structured notifications are used) or a filterable body name-value pair

with the name "operation" (when typed notifications are used), there is no

"event type" parameter explicitly included in any of the notification

operations defined below. */

interface Notifications {

/** An Attribute Value Change notification is used to report changes to the

attributes of an object such as addition or deletion of members to one or more

set-valued attributes and replacement of the value of one or more attributes.

@param attributeValueChangeInfo
structure containing the notification info

*/

void attributeValueChange (

in AttributeValueChangeInfo
attributeValueChangeInfo

);

/** A Communications Alarm notification is used to report when an object

detects a communications error.

@param alarmInfo
structure containing the notification info

*/

void communicationsAlarm (

in AlarmInfo
alarmInfo

);

/** An Environmental Alarm notification is used to report a problem in the

environment.

@param alarmInfo
structure containing the notification info

*/

void environmentalAlarm (

in AlarmInfo
alarmInfo

);

/** An Equipment Alarm notification is used to report a failure in the

equipment.

@param alarmInfo
structure containing the notification info

*/

void equipmentAlarm (

in AlarmInfo
alarmInfo

);

/** An Integrity Violation notification is used to report that a potential

interruption in information flow has occurred such that information may have

been illegally modified, inserted or deleted.

@param securityAlarmInfo
structure containing the notification info

*/

void integrityViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** An Object Creation notification is used to report the creation of a managed

object to another open system.

@param objectInfo
structure containing the notification info

*/

void objectCreation (

in ObjectInfo
objectInfo

);

/** An Object Deletion notification is used to report the deletion of a managed

object.

@param objectInfo
structure containing the notification info

*/

void objectDeletion (

in ObjectInfo
objectInfo

);

/** An Operational Violation notification is used to report that the provision

of the requested service was not possible due to the unavailability,

malfunction or incorrect invocation of the service.

@param securityAlarmInfo
structure containing the notification info

*/

void operationalViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** A Physical Violation notification is used to report that a physical

resource has been violated in a way that indicates a potential security attack.

@param securityAlarmInfo
structure containing the notification info

*/

void physicalViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** A Processing Error Alarm notification is used to report a processing

failure in a managed object.

@param alarmInfo
structure containing the notification info

*/

void processingErrorAlarm (

in AlarmInfo
alarmInfo

);

/** A Quality of Service Alarm notification is used to report a failure in the

quality of service of the managed object.

@param alarmInfo
structure containing the notification info

*/

void qualityOfServiceAlarm (

in AlarmInfo
alarmInfo

);

/** A Relationship Change notification is used to report the change in the

value of one or more relationship attributes of a managed object, that result

through either internal operation of the managed object or via management

operation.

@param relationshipChangeInfo
structure containing the notification info

*/

void relationshipChange (

in RelationshipChangeInfo
relationshipChangeInfo

);

/** A Security Service Or Mechanism Violation notification is used to report

that a security attack has been detected by a security service or mechanism.

@param securityAlarmInfo
structure containing the notification info

*/

void securityServiceOrMechanismViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** A State Change notification is used to report the change in the the value

of one or more state attributes of a managed object, that result through either

internal operation of the managed object or via management operation.

@param stateChangeInfo
structure containing the notification info

*/

void stateChange (

in StateChangeInfo
stateChangeInfo

);

/** A Time Domain Violation notification is used to report that an event has

occurred at an unexpected or prohibited time.

@param securityAlarmInfo
structure containing the notification info

*/

void timeDomainViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

}; // end of Notifications interface

}; // end of ITU_X721 module

/*

MACROS

*/

/* The following macro is provided to identify operations that are part of a

conditional package. This macro is intended to be used in the list of

exceptions defined in the “raises” clause of an operation. For example:

AdministrativeStateType getAdmininstrativeState()

raises(CONDITIONAL_PACKAGE(AdministrativeStatePackage));

Note that the macro simply inserts the PackageNotPresent exception into

the list. While the PackageNotPresent exception returns the string name

of the package, IDL does not allow it to be specified in the raises clause.

Thus, it is up to the managed object programmer to make sure the string in the

macro is returned in the exception if the package is not present.

*/

#undef CONDITIONAL_PACKAGE

#define CONDITIONAL_PACKAGE(PackageName) PackageNotPresent

/* The following macros are provided for quickly and concisely defining

the notifications to be supported by an object, following the CORBA

Component Model conventions. Example usage (within an interface):

MANDATORY_NOTIFICATION(ITU_X721::Notifications, objectCreation);

CONDITIONAL_NOTIFICATION(ITU_X721::Notifications, stateChange, statePackage);

The macros simply expand into nothing, as CORBA IDL doesn’t really have

anything for them to expand into that makes sense. It was hoped the CORBA

Components model would offer a solution, but it will not be available in time.

*/

#undef MANDATORY_NOTIFICATION

#define MANDATORY_NOTIFICATION(InterfaceName, NotificationName)

#undef CONDITIONAL_NOTIFICATION

#define CONDITIONAL_NOTIFICATION(InterfaceName, NotificationName,
\

PackageName)

#endif // end of ifndef ITU_X721_IDL

Appendix B Network Management Constant Definitions

/* This IDL code is intended to be stored in a file named “ITU_X721Const.idl” and located in the same directory as the file containing Appendix A */

#ifndef ITU_X721Const_IDL

#define ITU_X721Const_IDL

module ITU_X721 {

/*

ProbableCauseConst Module

*/

/** This module contains the constant values defined for the

ProbableCause UID. These values were borrowed from X.721. */

module ProbableCauseConst {

const string moduleName = "ITU_X721::ProbableCauseConst";

const short adapterError = 1;

const short applicationSubsystemFailure = 2;

const short bandwidthReduced = 3;

const short callEstablishmentError = 4;

const short communicationsProtocolError = 5;

const short communicationsSubsystemFailure = 6;

const short configurationOrCustomizationError = 7;

const short congestion = 8;

const short corruptData = 9;

const short cpuCyclesLimitExceeded = 10;

const short dataSetOrModemError = 11;

const short degradedSignal = 12;

const short dTE_DCEInterfaceError = 13;

const short enclosureDoorOpen = 14;

const short equipmentMalfunction = 15;

const short excessiveVibration = 16;

const short fileError = 17;

const short fireDetected = 18;

const short floodDetected = 19;

const short framingError = 20;

const short heatingOrVentilationOrCoolingSystemProblem = 21;

const short humidityUnacceptable = 22;

const short inputOutputDeviceError = 23;

const short inputDeviceError = 24;

const short lANError = 25;

const short leakDetected = 26;

const short localNodeTransmissionError = 27;

const short lossOfFrame = 28;

const short lossOfSignal = 29;

const short materialSupplyExhausted = 30;

const short multiplexerProblem = 31;

const short outOfMemory = 32;

const short ouputDeviceError = 33;

const short performanceDegraded = 34;

const short powerProblem = 35;

const short pressureUnacceptable = 36;

const short processorProblem = 37;

const short pumpFailure = 38;

const short queueSizeExceeded = 39;

const short receiveFailure = 40;

const short receiverFailure = 41;

const short remoteNodeTransmissionError = 42;

const short resourceAtOrNearingCapacity = 43;

const short responseTimeExcessive = 44;

const short retransmissionRateExcessive = 45;

const short softwareError = 46;

const short softwareProgramAbnormallyTerminated = 47;

const short softwareProgramError = 48;

const short storageCapacityProblem = 49;

const short temperatureUnacceptable = 50;

const short thresholdCrossed = 51;

const short timingProblem = 52;

const short toxicLeakDetected = 53;

const short transmitFailure = 54;

const short transmitterFailure = 55;

const short underlyingResourceUnavailable = 56;

const short versionMismatch = 57;

}; // end of ProbableCauseConst module

/*

SecurityAlarmCauseConst Module

*/

/** This module contains the constant values defined for the

SecurityAlarmCause UID. These values were borrowed from

X.721. */

module SecurityAlarmCauseConst {

const string moduleName = "ITU_X721::SecurityAlarmCauseConst";

const short authenticationFailure = 1;

const short breachOfConfidentiality = 2;

const short cableTamper = 3;

const short delayedInformation = 4;

const short denialOfService = 5;

const short duplicateInformation = 6;

const short informationMissing = 7;

const short informationModificationDetected = 8;

const short informationOutOfSequence = 9;

const short intrusionDetection = 10;

const short keyExpired = 11;

const short nonRepudiationFailure = 12;

const short outOfHoursActivity = 13;

const short outOfService = 14;

const short proceduralError = 15;

const short unauthorizedAccessAttempt = 16;

const short unexpectedInformation = 17;

const short unspecifiedReason = 18;

}; // end of SecurityAlarmCauseConst module

}; // end of ITU_X721 module

#endif // end of ifndef ITU_X721_IDL

Appendix C MOO Service IDL

/* This IDL code is intended to be stored in a file named “moo.idl”

located in the search path used by IDL compilers on your system. */

#ifndef MOO_IDL

#define MOO_IDL

#include <ITU_X721.idl>

module MooService {

// Types imported from CosNaming (included by ITU_X721.idl)

typedef CosNaming::Name NameType

// Types imported from ITU_X721

typedef ITU_X721:AttributesSetType AttributesSetType

typedef ITU_X721:IstringType IstringType

typedef ITU_X721:IstringSetType IstringSetType

typedef ITU_X721:UIDType UIDType

// Exceptions imported from ITU_X721 (exceptions can’t be typedeffed)

#define InvalidName ITU_X721::InvalidName

// Data Types and Structures

/** The DeleteResultsSetType is simply a Set of names. */

typedef sequence <NameType> DeleteResultsSetType;

/** Get Results structures hold a list of attribute values per object.

@member name

the CORBA name of the object

@mebmer attributes
the list of attributes retrieved from the object. */

struct GetResultsType {

NameType

name;

AttributeSetType
attributes;

};

/** The Get Results Set is a set of results returned by a scoped get

operation. */

typedef sequence <GetResultsType> GetResultsSetType;

/** ModificationOp is used to indicate the type of update to be made to an

attribute. */

enum ModificationOpType {set, add, remove};

/** Modification structures identify an attribute and a modification to

be made to it. Multiple updates may be made to a single attribute by

including multiple structures with the same attribute name in the

modification Set.

@member attribute
The name of the attribute to update.

@member op

The operation to be performed on the attribute.

@member val

The value to be used for the update operation.

It’s type will depend on the attribute.

*/

struct ModificationType {

Istring

attribute;
// the name of the attribute

ModificationOpType
op;
// the operation to be performed

any

value;
// value used to update attribute

};

/** The Modification Sequence contains a sequence of modifications to be made

(in order) to each object in a scoped update operation. */

typedef sequence <ModificationType> ModificationSeqType;

/** Scope is used to convey the type of relationship to be followed in a

scoped operation, and how it is to be followed. It is defined as a UID

to enable new types of scoping to be defined in the future. Basic values

are defined in module ScopeConst, below. */

typedef UIDType ScopeType;

/** This module defines the basic values to be supported for the scope

parameter in scoped and filtered operations. */

module ScopeConst {

const string moduleName = “MooService::ScopeConst”;

/** BaseOnly indicates the operation should be applied to the base

object only. */

const short BaseOnly = 1;

/** ContainedTree means
the base object plus all of the objects

contained by it. */

const short ContainedTree = 2;

/** ContainedToDepth means the base object plus all contained objects

down to a certain depth. (Depth will be indicated by a separate

parameter.) */

const short ContainedToDepth = 3;

/** ContainedAtDepth means all of the objects contained by the base

object that are at the indicated number of hops below it. */

const short ContainedAtDepth = 4;

}; // end of ScopeConst module

/** Update Results structures hold the name of an object, a boolean flag

indicating if all modifications to that object were successful, and a

list of the attributes that could not be updated on that object. The list

will be null if the success flag is true.

@member name
the CORBA name of the object

@member success
true if all modifications were successful for that object.

@member failures the list of attributes that were not correctly updated.

*/

struct UpdateResultsType {

NameType
name;

boolean

success;

IstringSetType
failures;

};

/** An Update Results Set is returned in response to a scoped update

operation (one that sets, adds to, or removes from the value of an

attribute). */

typedef sequence <UpdateResultsType> UpdateResultsSetType;

// Exceptions

/** An invalid filter exception is thrown when a client includes a filter

expression that cannot be parsed. The text surrounding the syntax error

should be returned for trouble-shooting purposes. */

exception InvalidFilter {IStringType badText;};

/** An unknown scope exception is thrown when the service does not

recognize the scope value requested by a client. */

exception UnknownScope {};

/** An unknow language exception is thrown when the service does not

recognize the filter language requested by a client. */

exception UnknownLangauge {};

// Interfaces

// DeleteResultsIterator Interface

/** The Delete Results Iterator interface is used to retrieve the results from

a scoped delete operation using the iterator design pattern. */

interface DeleteResultsIterator {

/** This method is used to retrieve the next “howMany” results in the

result set. */

DeleteResultsSetType getNext(in ushort howMany);

}; // end of Delete Results Iterator interface

// GetResultsIterator Interface

/** The Get Results Iterator interface is used to retrieve the results from

a scoped get operation using the iterator design pattern. */

interface GetResultsIterator {

/** This method is used to retrieve the next “howMany” results in the

result set. */

GetResultsSetType getNext(in ushort howMany);

}; // end of Get Results Iterator interface

// UpdateResultsIterator Interface

/** The Update Results Iterator interface is used to retrieve the results from

a scoped update (set, add, remove) operation using the iterator design pattern.

*/

interface UpdateResultsIterator {

/** This method is used to retrieve the next “howMany” results in the

result set. */

UpdateResultsSetType getNext(in ushort howMany);

}; // end of Update Results Iterator interface

// BasicMooService Interface

/** The basic scoping and filtering interface provides a common service for

performing attribute retrieval operations on multiple objects.

*/

interface BasicMooService {

/** This operation is used to retrieve attributes from multiple objects

using a small number of method invocations. The method returns the

first batch of results, one per object. Each result has the name of

the object and a list of name-value pairs indicating the attributes

that could be retrieved with their values.

@param baseName
The name of the object at the base of the scope tree.

@param scope
The type of scope to use. See scopeType for details.

@param depth
The number of “hops” to follow from the base object

(ignored when scope does not depend on it).

@param filter
A string containing an expression to be evaluated with

attribute values from each object in the scope.

Attribute values are returned only for those objects

for which the expression evaluates to true.

@param language
A string identifying the language in which the filter

expression is written.

@param attributes The names of the attributes for which values should

be returned. If this list is null, all attributes are

to be returned.

@param howMany
The maximum number of objects for which results should

be returned in the first batch.

@param resultsIterator A reference to an iterator that can be used to

retrieve the rest of the results. This reference will

be null if all results were returned in the first

batch.

*/

GetResultsSetType scopedGet (

in NameType baseName,

in ScopeType scope,

in ushort depth,

in Istring filter,

in Istring language,

in IStringSetType attributes,

in ushort howMany,

out GetResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter, UnknownScope,

UnknownLangauge);

}; // end of BasicMooService interface

// AdvancedMooService Interface

/** The advanced scoping and filtering interface provides a common service

for performing multiple-attribute updates on multiple objects, and for

deleting multiple objects.

*/

interface AdvancedMooService : BasicMooService {

/** This operation is used to modify multiple attributes in multiple

objects using a small number of method invocations. The method returns

the first batch of results, a list of objects for which one or more

modifications failed. Each result indicates the attribute(s) on that

object that could not be updated.

@param baseName
The name of the object at the base of the scope tree.

@param scope
The type of scope to use. See scopeType for details.

@param depth
The number of “hops” to follow from the base object

(ignored when scope does not depend on it).

@param filter
A string containing an expression to be evaluated with

attribute values from each object in the scope.

Attribute values are returned only for those object

for which the expression evaluates to true.

@param language
A string identifying the language in which the filter

expression is written.

@param modifications The list of modifications to be made to each

object.

@param failuresOnly If true only results for failed objects will be

returned.

@param howMany
The maximum number of objects for which results should

be returned in the first batch.

@param resultsIterator A reference to an iterator that can be used to

retrieve the rest of the results. This reference will

be null if all results were returned in the first

batch.

*/

UpdateResultsSetType scopedUpdate (

in NameType baseName,

in ScopeType scope,

in ushort depth,

in Istring filter,

in Istring language,

in ModificationSeqType modifications,

in boolean failuresOnly,

in ushort howMany,

out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter, UnknownScope,

UnknownLanguage);

/** This operation is used to delete multiple objects using a small

number of method invocations. The method returns the first batch of

results, a list of the objects that could not be deleted.

@param baseName
The name of the object at the base of the scope tree.

@param scope
The type of scope to use. See scopeType for details.

@param depth
The number of “hops” to follow from the base object

(ignored when scope does not depend on it).

@param filter
A string containing an expression to be evaluated with

attribute values from each object in the scope.

Attribute values are returned only for those object

for which the expression evaluates to true.

@param language
A string identifying the language in which the filter

expression is written.

@param howMany
The maximum number of objects for which results should

be returned in the first batch.

@param resultsIterator A reference to an iterator that can be used to

retrieve the rest of the results. This reference will

be null if all results were returned in the first

batch.

*/

DeleteResultsSetType scopedDelete (

in NameType baseName,

in ScopeType scope,

in ushort depth,

in Istring filter,

in Istring language,

in ushort howMany,

out DeleteResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter, UnknownScope,

UnknownLanguage));

}; // end of AdvancedMooService interface

}; // end of module MooService

#endif // end of #ifndef Moo_IDL

_1000033847.doc

MO

ITU_M3100::Network

CentralNet

NorthernNet

SouthernNet

Object

ITU_M3100::ManagedElement

ITU_M3100::Connection

ITU_M3100::Trail

C1157

A549

R5968

Element1

Element7

Element9

ITU_M3100::Equipment

ITU_M3100::Software

Object

Object

MO

MO

(The root Naming Context)

(The Network Name Bindings)

(Naming Context for the CentralNet Managed Object)

(The CentralNet Network Managed Object)

(The Element9 ME Managed Object)

(The R5698 Connection Managed Object)

(The Naming Context for Element9)

(The Naming Context for Connection R5968)

(Name Bindings for

Managed Elements)

(Name Bindings for Connections

contained under CentralNet)

_1000033873.doc

EMS1

EMS2

Object

Object

Root

Network1

Root

EMS

Root Context=EMS1

Root Context=EMS2

Network1

EMS

NMS

ITU_M3100::Network

ITU_M3100::Network

_992068076.doc

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

F

F

Notification

Service

Event

Channel

QoS

QoS

QoS

QoS

QoS

QoS

F

F

F

F

= Filter

F

_998935881.ppt

root

Managed

Element

Trail

Termination

Point

Equipment

Circuit Pack

Containing

Entity

Contained

Entity

_992069496.doc

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

F

F

Notification

Service

Event Channel

QoS

QoS

QoS

QoS

QoS

QoS

Log Filter

Log

Persistent Store

Non-Event Writer

F

F

F

F

F

= Filter

_988693956.doc

domain_type

type_name

event_name

ohf_name1

ohf_name2

…

ohf_namen

fd_name1

fd_name2

…

fd_namen

remainder_of_body

ohf_value1

ohf_value2

Event Header

ohf_valuen

fd_value1

fd_value2

Event Body

fd_valuen

Fixed Header

Variable Header

Filterable Body

Fields

Remaining Body

“Telecommunications”

<null>

Optional header fields may be included to support features like Quality of Service

void attributeValueChange (

in AttributeValueChangeInfo

attributeValueChangeInfo

);

Other parameters would go in additional rows

_985441850.doc

Sync Client

Async Client

Async-aware ORB

Servant

IDL - Stub (sync)

Implied-IDL - Stub (async)

IDL - Skeleton (sync)

