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5.2.6.1
Bandwidth extension in time domain

The time-domain bandwidth extension (TBE) module codes the signal content beyond the range of frequencies that are coded by the low band core encoder. The inaccuracies in the representation of the spectral and the temporal information content at higher frequencies in a speech signal are masked more easily than contents at lower frequencies. Consequently, TBE manages to encode the spectral regions beyond what is coded by the core encoder in speech signals with far fewer bits than what is used by the core encoder.

The TBE algorithm is used for coding the high band of clean and noisy speech signals when the low band is coded using the ACELP core. The input time domain signal of current frame is divided into two parts: the low band signal and the super higher band (SHB) signal for SWB signal (
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). While the SWB TBE encoding of upper band (6.4 to 14.4 kHz or 8 to 16 kHz) is supported at bitrates 9.6 kbps, 13.2 kbps, 16.4 kbps, 24.4 kbps, and 32 kbps; the WB TBE encoding of upper band (6 to 8 kHz) is supported at 9.6 kbps and 13.2 kbps. Specifically, at 13.2 kbps and 32 kbps the SWB TBE algorithm is employed as the bandwidth extension algorithm when the speech/music classifier determines that the current frame of signal is active speech or when GSC coding is selected to encode super wideband noisy speech. Similarly, at 9.6 kbps, 16.4 kbps and 24.4 kbps the TBE algorithm is used to perform bandwidth extension for all ACELP frames. The ACELP/MDCT core coder selection at 9.6 kbps, 16.4 kbps and 24.4 kbps is based on an open-loop decision as described in subclause 5.1.14.1.
In coding the higher frequency bands that extend beyond the narrowband frequency range, bandwidth extension techniques exploit the inherent relationship between the signal structures in these bands. Since the fine signal structure in the higher bands are closely related to that in the lower band, explicit coding of the fine structure of the high band is avoided. Instead, the fine structure is extrapolated from the low band. The high level architecture of the TBE encoder is shown in figure 44 below. The front end processing to generate the high band target signal in figure 44, is replaced by a simple flip-and-decimate-by-4 operation in the WB TBE framework.
5.2.6.1.2
TBE LP analysis
…

The autocorrelation coefficients [image: image3.wmf](
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where 
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 is obtained by multiplying 
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A bandwidth expansion is applied to the autocorrelation coefficients by multiplying the coefficients by the expansion function:
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The bandwidth expanded autocorrelation coefficients are used to obtain LP filter coefficients, [image: image9.wmf], 1,,1 1,

SHB

k

ak

=¼

 by solving the following set of equations using the Levinson-Durbin algorithm.
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It should be noted that [image: image11.wmf]1
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5.2.6.1.13
Post processing of the shaped excitation

The shaped excitation [image: image12.wmf])
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e

is the synthesized high band signal which is generated by passing the excitation signal  [image: image13.wmf])
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 through the LPC synthesis filter. The excitation signal  [image: image14.wmf])
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 is determined by the low band model parameters and the coefficients of the LPC synthesis filter are determined by the high band model parameters. A short-term post-filter is applied to the synthesized high band signal to obtain a short-term post-filtered signal. Comparing with the shape of the spectral envelope of the synthesized high frequency band signal, the shape of the spectral envelope of the short-term post-filtered signal is closer to the shape of the spectral envelope of the high-frequency band signal. The short-term post-filter includes a pole-zero filter, the coefficients of the pole-zero filter are set by the set of high band model parameters. It is described as follows:


[image: image15.wmf](

)

11

1

0

,

...

1

...

1

)

(

)

(

2

2

2

1

1

2

2

2

1

1

=

<

<

<

-

-

-

-

-

-

-

-

=

=

-

-

-

-

-

-

M

z

z

z

z

z

z

Z

H

Z

H

z

H

M

M

M

M

M

M

d

n

f

g

b

g

a

g

a

g

a

b

a

b

a

b

a


(726)


[image: image16.wmf](

)

(

)

f

f

f

g

z

H

z

H

/

ˆ

=


(727)

[image: image17.wmf])

(

z

H

f

 is derived from the quantized LPC coefficients (see subclause 5.2.6.1.3) with the factors [image: image18.wmf]b
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controlling the degree of the short-term post‑filtering. 
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 are the quantized LPC coefficients. The factors[image: image21.wmf]b

 and [image: image22.wmf]g

are calculated according to:
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where [image: image24.wmf]formant

fac

 is parameter that jointly controls envelope shape and excitation noisiness. It is based on the spectral tilt, determined by the LPC coefficient[image: image25.wmf]SHB
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where [image: image27.wmf]past
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The gain term [image: image31.wmf]f
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 is calculated from the truncated impulse response [image: image32.wmf])
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The shaped excitation [image: image35.wmf])
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 is divided into four subframes[image: image36.wmf]4
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is filtered through [image: image38.wmf]f

n

g

z

H

/

)

(

, and then filtered with the synthesis filter [image: image39.wmf])

(

/

1

z

H

d

 to produce [image: image40.wmf]4

,

3

,

2

,

1

),

80

*

)

1

(

(

=

-

+

j

j

n

r

s

e

.
After filtering the synthesized high band signal using the pole-zero filter, filter [image: image41.wmf])
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then compensates for the tilt in the pole-zero filter [image: image42.wmf])
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 and is given by:
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where [image: image45.wmf]m

is set to default constant value or adaptively calculated according to the high band coding parameters and the synthesized high band signal. The calculation process is as follows: [image: image46.wmf]'
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A gain term [image: image50.wmf]|
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 is applied to compensate for the decreasing effect of [image: image51.wmf]f
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is passed through the tilt compensation filter [image: image60.wmf])
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 resulting in the post‑filtered speech signal [image: image61.wmf]4
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Adaptive Gain Control (AGC) is applied to compensate for any gain difference between the synthesized speech signal[image: image62.wmf]4
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  and the post‑filtered signal[image: image63.wmf]4
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 for each subframe is calculated by:
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…
5.3.4.1.2
Grouping of spectral coefficients
The spectral coefficients are divided to obtain bands of variable lengths; the total number of bands varies depending on the signal bandwidth (NB, WB, SWB, and FB), operational bitrates and the classifier. Tables 103 to 108 describe the band structure for different signal bandwidths and operational bitrates. The NB band structure is used for NB signals, the WB band structure is used for WB signals, and the SWB band structure is used for SWB and FB signals.
The total number of bands and the corresponding bandwidth used for NB, WB and SWB is presented in table 102. The band structure and the number of bands for FB are same as SWB for 13.2 and 16.4 kbps.
…
5.3.4.1.4.1.4.2
The adjustment of quantized energy envelope prior to bit allocation

…
e) Initialize an adjustment factor [image: image66.wmf])
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 for each band to 1, and then adjust the quantized energy envelopes of high frequency bands as follows:
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is satisfied at 13.2kbps,
the quantized energy envelopes of the last [image: image69.wmf]bands
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 bands are adjusted as follows:
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2) Otherwise, the adjustment factors of the last 2 bands are calculated:
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Then, the adjustment factors of the last 2 bands are updated further according to [image: image72.wmf])
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Finally, the quantized energy envelopes of the last 2 bands are adjusted: [image: image74.wmf])
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 is the tonality flag which is calculated in subclause 5.3.4.1.4.1.3, i.e. the classification mode of the band, and [image: image76.wmf])
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is obtained from the previous frame and indicates whether the bits are allocated to the highest two bands of the previous frame or not. If [image: image77.wmf])
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of the previous frame is allocated bits; Otherwise, if [image: image79.wmf])
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of the previous frame is not allocated bits -. After bit allocation, the flag [image: image81.wmf])
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of the current frame is preserved for the next frame.
To adjust the quantized energy envelops of low frequency bands at NB, the following steps are performed:
a) Initialize [image: image84.wmf]bands
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 to 3, select [image: image85.wmf]bands
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 low frequency bands from [image: image86.wmf]bands
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 bands. For each band, calculate the magnitude envelope:
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b) Then, calculate the sum of the magnitude envelopes for high frequency bands:
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the variable[image: image89.wmf]bands

N

 is assigned to different value for different bit rates, specifically it is assigned to 13,14,15,17 for 7.2kbps, 8kbps, 9.6kbps and 13.2kbps respectively.
c) Search the peak of magnitude envelopes and calculate the sum of the magnitude envelops for low frequency bands:
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d) Initialize a flag [image: image92.wmf]flag
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 is a flag to indicate whether second stage bit allocation algorithm is used in TCQ module. When [image: image94.wmf]flag

SEC

 is equal to 0, second stage bit allocation algorithm will be used. When [image: image95.wmf]flag
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 is equal to 1, the second stage bit allocation algorithm will not be used. The flag is utilized in subclause 5.3.4.1.4.1.5.1.2.
e) Determining whether to modify the energy envelops of the three low frequency bands according to their energy characteristics and spectral characteristics. The energy characteristics denote the ratio between the energy of three low frequency bands and the energy of the other bands which are determined by [image: image96.wmf]sumH
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The spectral characteristics denote the degree of spectrum fluctuation which are determined by[image: image98.wmf]peakL
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f) If the following conditions are satisfied,
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, the flag 
[image: image100.wmf]flag
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 is set to 1, and the quantized energy envelops of the three low frequency bands are adjusted as follows:
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To adjust the quantized energy envelopes of high frequency bands at WB, the following steps are performed:
a) Encode two bits to indicate whether the highest two bands of the previous frame is encoded. Define two band boundaries [image: image102.wmf]bands
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and[image: image103.wmf]bands
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. If the bit rate is 13.2kbps, set [image: image104.wmf]bands

L

and[image: image105.wmf]bands

H

 to 8 and 15, respectively; Otherwise, set [image: image106.wmf]bands
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 to 8 and 16, respectively. The bandwidths of low frequency bands and high frequency bands are obtained as follows:
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b) For each band, calculate the magnitude envelope:
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Then, calculate the sum of the differences between the consecutive 2 magnitude envelopes and the sum of the magnitude envelopes for part of the high frequency bands:
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c) The energies of low frequency bands and high frequency bands are computed as follows:
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d) Obtain adjustment factors [image: image113.wmf])
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and for the highest [image: image117.wmf]1
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 bands, update the adjustment factors [image: image118.wmf])
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 and then adjust the quantized energy envelopes of the highest [image: image121.wmf]b
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 bands [image: image122.wmf])
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To adjust the quantized energy envelopes of low frequency bands at WB, the following steps are performed:
a) Initialize a low frequency band boundary [image: image123.wmf]bands

L

 to 6. For each band, calculate the magnitude envelope:
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b) Then, calculate the sum of the magnitude envelopes for high frequency bands:
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the variable[image: image126.wmf]bands

N

is assigned to different value for different bit rate, specifically it is assigned to 18, 20 for 13.2kbps and 16.4kbps respectively.
c) Search the peak of magnitude envelopes and calculate the sum of the magnitude envelops for low frequency bands:
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d) Determining whether to modify the quantized energy envelops of the six low frequency band according to their energy characteristics and spectral characteristics. The energy characteristics denote the ratio between the energy of six low frequency bands and the energy of the other bands which are determined by [image: image129.wmf]sumH
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 and [image: image130.wmf]sumL
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;
The spectral characteristics denote the degree of spectrum fluctuation which are determined by[image: image131.wmf]peakL
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If the conditions [image: image132.wmf])
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are satisfied, the flag[image: image134.wmf]1
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, and the quantized energy envelops of the six low frequency bands are adjusted as follows:
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Finally, the adjusted quantized energy envelopes [image: image136.wmf]M
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and the initial quantized energy envelopes  
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are used in the first bit allocation module.
5.3.4.1.4.3.3.3.4
Structure analysis for Harmonics

This subclause gives a technical overview of the structure analysis for harmonics which is applied for SWB and FB Harmonic signals. The purpose of this subclause is to estimate the harmonics from the quantized spectrum and the estimated harmonic is used for generating the new tonal spectrum for the HF region at the decoder, where the HF region is calculated using the frequency transition[image: image138.wmf]t

f

 which is estimated based on the received bit allocation.

The first step of the structure analysis is to extract a portion from the quantized spectrum. A portion from 2 kHz to 6.4 kHz for 13.2 kbps and from 2- 7.5 kHz for 16.4 kbps is used for structure analysis.

From the extracted portion, structure for harmonics is analysed. The detail procedure of this subclause comprises the following steps:

1) Grouping of spectral coefficients into a number of blocks of equal length; in total 16 and 19 blocks (Nblock) are formed for 13.2 and 16.4. Kbps with a length of 16 coefficients per block.
2) Extract the spectral peak magnitude [image: image139.wmf])
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3) From the extracted spectral peaks identify the spectral peaks whose spacing lie closely and discard the spectral peak from analysis which is not perceptually important.

4) Split the extracted portion into regions with cut-off at 140, 200, 16Nblock-1 spectral coefficients and count the peaks in each region according to
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Before the process counter[image: image143.wmf]h
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is set to zero.

5) Calculate the spacing between the identified peak positions and identify the minimum and maximum spacing between spectral peaks.
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6) Calculate sum of spacing according to
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where [image: image153.wmf]3
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7) Estimate the harmonic frequency based on the spacing between the identified peak positions according to the following.
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are the estimated harmonic frequencies, which can be used for generating the missing bands.
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5.3.4.1.4.3.3.3.5
Noise filling for the predicted spectrum

First high-frequency region [image: image157.wmf])
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here lagsi is the number of search positions and it is according to equation (1149), lag index value [image: image165.wmf]i

BestIdx

is obtained from subclause 5.3.4.1.4.3.3.3.3.

Estimate the position of harmonics for band i =0, 1 in the predicted spectrum, according to
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where 
[image: image168.wmf]pos
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_

 represents the first tonal position of the HF spectrum estimated based on the end tonal frequency position in the low frequency spectrum. [image: image169.wmf]tot
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 represents pulse resolution for predicted spectrum and [image: image170.wmf]2
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 is obtained from subclause 5.3.4.1.4.3.3.3.4.
Fill the bands[image: image171.wmf])
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6.2.3.1.3.1.4.3.3
Scaling and noise smoothing

Scaling factors are calculated for the predicted bands using the decoded band energies. Each scaling factor is calculated as the square root of the quotient of the quantized band energy divided by its corresponding band energy from the predicted high-frequency spectrum. The calculated scaling factors are attenuated by the scaling factor of 0.9 and applied to the predicted high-frequency spectrum.

Inter-frame smoothing process for the noise components are applied as described in subclause 5.3.4.1.4.1.5.3.3.3.
The Normal mode PFSC decoding overview is shown in figure 98.
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Figure 98: Block diagram of the Normal mode PFSC decoder
6.2.3.1.3.3
Harmonic Mode

6.2.3.1.3.3.1
Overview

The high-level decoder structure of the Harmonic mode is basically the same with the Normal mode. The main difference can be found in its detailed structure of the PFSC block, and it is shown in the following figure.
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Figure 99: Block diagram of the Harmonic mode decoder overview
6.2.3.1.3.3.4.3.7
Tonal generation for predicted spectrum

First, the tonal components 
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 is the same as equations (1147) and (1148): As the normalized quantized spectrum characteristics are flat all the values during the normalization process will have similar values, all the non-zero coefficients in the desired region of 
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where, 
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 are defined as follows
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 is the tonal resolution obtained from the normalized quantized spectrum for sub band i=0,1
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 is the tonal components extracted from the normalized quantized spectrum for sub band i=0,1

The tonal information
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, for i=0, 1 obtained from normalized quantized spectrum is used for sub band i=2, 3.

Based on the band definition described in table 108, the high frequency band ranges are defined
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. Using the band definitions for high frequency region, the extracted tonal components and its corresponding pulse resolutions are restructured, now the restructured 
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 is used for generating predicted spectrum. For example, the restructured information for sub band i=0 is equivalent to 
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6.2.3.2.5.2
High frequency envelope de-quantization
The envelope VQ indices 
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At 24.4kbps, the de-quantized high frequency envelope can be determined by:
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While at 32kbps, the de-quantized high frequency envelope can be determined by:
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6.2.4.1.2
Unfolding and windowing
The frame 
[image: image198.wmf])
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[image: image199.wmf]1
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,  coming from the inverse eDCT transform is unfolded in order to obtain two frames that can be used for overlap- add with the previous unfolded frame to remove the aliasing introduced by the folding process at the encoder.

Similar to the folding done at the encoder, unfolding and window decimation operations are combined in the same process to automatically resample the ALDO windows at 48 and 25.6 kHz while keeping perfect reconstruction conditions.  The decimation factor and offset parameters are the same are the one used in the encoder.
The frame 
[image: image200.wmf])

(

~

n

x

q

 issued from the eDCT inverse transform is unfolded into a block 
[image: image201.wmf]q
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 of length 
[image: image202.wmf]2
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. The ALDO window is stored at a sampling rate corresponding to two frames of length 
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 (
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).  The ratio between 
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and 
[image: image206.wmf]L

is called the decimation factor (
[image: image207.wmf]f
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).  The unfolding and windowing process is illustrated in figure 109.
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Figure 109: Unfolding and windowing with ALDO window.

The unfolded frame is obtained for 
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where 
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 is the time-reversed version of the ALDO window 
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[image: image218.wmf]f

d

 is the decimation factor and 
[image: image219.wmf]d

 is the offset.
For the 32 kHz case, to have perfect reconstruction, the ALDO window decimated from 48 to 16 kHz applied on one sample over 2, the other samples are weighted by a complementary window 
[image: image220.wmf])
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. For this 32 kHz case, the unfolded frames are given by:



[image: image221.wmf](

)

(

)

(

)

16

216

2221

2

qq

La

N

TnxnhNndd

f

=+---

æö

ç÷

èø

%

,
(1887)


[image: image222.wmf](

)

(

)

216

212121

2

qq

Lcomp

L

TnxnhNn

+=++--

æö

ç÷

èø

%

,
(1888)


[image: image223.wmf](

)

(

)

16

2

3

21211

22

qq

La

N

L

TnxLnhndd

f

++=--+--+

æö

æö

æö

ç÷

ç÷

ç÷

èø

èø

èø

%

,
(1889)


[image: image224.wmf](

)

16

2

3

2211

22

qq

Lcomp

N

L

TnxLnhn

+=-----

æö

æö

ç÷

ç÷

èø

èø

%

,
(1890)


[image: image225.wmf](

)

(

)

(

)

216

221

2

qq

La

L

TLnxnhNndd

f

+=-----

æö

ç÷

èø

%

,
(1891)


[image: image226.wmf](

)

(

)

(

)

216

21211

2

qq

Lcomp

L

TLnxnhNn

++=--+--

æö

ç÷

èø

%

,
(1892)


[image: image227.wmf](

)

16

2

3

21211

22

qq

La

N

L

Tnxnhndd

f

++=-+--+

æö

æö

æö

ç÷

ç÷

ç÷

èø

èø

èø

%

,
(1893)


[image: image228.wmf](

)

16

2

3

221

22

qq

Lcomp

N

L

Tnxnhn

+=---

æö

æö

ç÷

ç÷

èø

èø

%

,
(1894)
where 
[image: image229.wmf]16

N

 is the length of the 16kHz frame, 
[image: image230.wmf]L

 is the length of MDCT core frame at 32kHz, 
[image: image231.wmf]3
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 is the decimation factor and 
[image: image232.wmf]1
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d

 is the offset.
6.3.7.2.1
TBE mode

The following steps are performed when TBE mode is used to generate the SHB signal for wideband output:

1) Estimate the high band LSF, gain shape according to the corresponding parameters of the previous frame or by looking for the pre-determined tables

2) Reconstruct an initial SHB signal according to the TBE algorithm described in subclause 5.2.6.1.

3) Predict a global gain of the initial SHB signal according to the spectral tilt parameter of the current frame and the correlation of the low frequency signal between the current frame and the previous frame

4) Modify the initial SHB signal by the predicted global gain to obtain a final SHB signal

5) Finally, the final SHB signal and low frequency signal are combined to obtain the output signal.

The spectral tilt parameter can be calculated as described by the algorithm described in equations (800) and (801), and the correlation of the low frequency signals of the current frame and the previous frame can be the energy ratio between the current frame and the previous frame..

In detail, the algorithm of predicting the global gain is described as follows:

1) Classify the signal of the current frame to fricative signal 
[image: image233.wmf]1
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or non- fricative signal 
[image: image234.wmf]0
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 according to the spectral tilt parameter and the correlation of the low frequency signal between the current frame and the previous frame: 
When the spectral tilt parameter of the current frame is larger than 5 and the FEC class of the low frequency signal is UNVOICED_CLAS, or the spectral tilt parameter is larger than 10. And if the signal of the previous frame is non-fricative signal, and the correlation parameter is larger than a threshold, or if the signal of the previous frame is fricative signal and the correlation parameter is less than a threshold, the current frame is classified as fricative signal 
[image: image235.wmf]0
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. Otherwise, the current frame is classified as fricative signal 
[image: image236.wmf]1
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.
2) For non-fricative signal, the spectral tilt parameter is limited to the range [0.5, 1.0]. For fricative signal, the spectral tilt parameter is limited to not larger than 8. The limited spectral tilt parameter is used as the global gain of the SHB signal.

3) 

For some speacial cases: If the energy of the SHB signal(calculated by the global gain and 
[image: image238.wmf]SHB
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) is larger than the energy of the signal with the frequency range in [3200, 6400] 
[image: image239.wmf]LH
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, the global gain of the SHB signal is calculated as follows:
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where 
[image: image241.wmf]SHB

E

¢

is the energy of the initial SHB signal. 
If the energy of the SHB signal is less than 0.05 times of the energy of the signal with the frequency range in [3200, 6400] 
[image: image242.wmf]LH

E

, the global gain of the SHB signal is calculated as follows:
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1) 

For non-fricative signal, the global gain is multiplied by 2; and for fricative signal, the global gain is multiplied by 8.  And then the global gain of the SHB signal 
[image: image245.wmf]SHB
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 will be smoothed further as follows:

· If the signal of the current frame and the previous frame are both fricative signal and 
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· else if the energy ratio of the low frequency signal between the current frame and the previous frame is in the range of [0.5, 2], and the modes of the signal of the current frame and the previous frame are both fricative or are both non-fricative
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· Otherwise
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where 
[image: image250.wmf]ener

R

is the energy ratio between the final SHB signal of the previous frame and the initial SHB signal of the current frame.

At the end, fade out the global gain of the SHB signal frame by frame as follows:
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5.3.4.2.3.1
HVQ classifier
Instantaneous noise-level[image: image252.wmf])
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are estimated from the absolute values of transform coefficients[image: image254.wmf])
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at 24.4 kb/s and [image: image256.wmf]320
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at 32 kb/s. The noise-level is calculated as:
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where
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The peak-level is calculated as

[image: image259.wmf](

)

1

,

,

0

)

(

1

)

(

)

(

-

=

-

+

=

L

k

k

X

k

E

k

E

M

pe

pe

L

b

b


(1206)

where
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and both [image: image261.wmf])
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are initialized to 800.

The per-band averages of noise-level [image: image263.wmf])
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 and peak-level [image: image264.wmf])
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 are calculated by averaging instantaneous level in a band (every 32 bins). The number of bands is [image: image265.wmf]7
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at 24.4 kb/s and [image: image266.wmf]10
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at 32 kb/s.
The average of the elements of the first half of [image: image267.wmf]ne
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gives the noise-floor gain[image: image268.wmf])
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, while the second half of coefficients forms[image: image269.wmf])
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 produce two peak energy gains [image: image271.wmf])

0

(

pe

G

and[image: image272.wmf])

1

(

pe

G

.

The decision to switch to HVQ mode is based on the threshold in table 140, and three variables, [image: image273.wmf]peaks
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, [image: image274.wmf]sharp
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, and [image: image275.wmf]sharp
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, defined below.

The threshold for selecting peak candidates is calculated as:
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Absolute values of transform coefficients[image: image278.wmf]M

X

 are compared to the threshold[image: image279.wmf])
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, and the ones with amplitude above it, form a vector of peak candidates. Elements from the peaks candidate vector are extracted in decreasing order, and when a peak is extracted the threshold over the neighboring peaks is adjusted with {0.7071068, 0.5000000, 0.2500000, 0.5000000, 0.7071068}. This procedure produces a set of spectral peaks, with number[image: image280.wmf]peaks
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.
*** End of changes ***
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