
3GPP TSG SA4#90 meeting
(S4-161162
24 - 28 October, 2016, Bangalore, India

	CR-Form-v9.9

	 PSEUDO CHANGE REQUEST

	

	(

	26.347
	CR
	
	(

rev
	-
	(

Current version:
	0.3.1
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	TRAPI: Service APIs for DASH Streaming

	
	

	Source to WG:
(

	Qualcomm Incorporated, Expway

	Source to TSG:
(

	

	
	

	Work item code:
(

	TRAPI
	
	Date: (

	10/23/2016

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(

	Provides the API for DASH streaming delivery services following S4-161035

	
	

	Summary of change:
(

	Detailed semantics
Note that the CR is not yet complete and requires further updates.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	6.3

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
(

	The document is not considered complete and many updates are necessary. A revised version will be provided.

=== FIRST CHANGE ===
6.3
DASH Streaming Service API

6.3.1
Introduction

The DASH Streaming Service API provides …
6.3.2
MBMS Client State Model for DASH Streaming (Informative)
Figure 1 provides an informative client state model in order to provide description on the appropriate messages on the DASH streaming service API. Four different states are defined as listed in Table 1. State changes may happen based on

· Callback or action from App or the DASH client
· Timer expiration in the MBMS client
· Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

[image: image1]
Figure 1: State Diagram
Table 1 defines a state model for the MBMS client along with the parameters in each state.
Table 1 States and Parameters of MBMS Client

	States and Parameters
	Definiton

	IDLE
	In this state the MBMS client does not have a registered application and it may not keep the servide definition up to date.

	NON_AVAILABLE
	In this state an application cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered application(s), it may keep the servide definition up to date, and it may be providing file capture services to the application(s).
For each registered application with appId, the MBMS client maintains the following internal parameters. In this state the MBMS client sends callback notifications to the application.

	
	string appId
	A unique ID provided by the application, see clause xx.

	
	sequence<string> serviceClassList
	A list of service classes identifying the services the application will have access to, see clause xx.

	ACTIVE
	In this state the MBMS client provides streaming services to the application(s) with registration state.

For each service for each registered application, the MBMS client maintains the following internal parameters

	
	Service ID
	The service ID for a File Delivery Application service over which the MBMS client collects files for application(s), see clause xx.

	
	Service class
	The service class associated with the File Delivery Application service assigned the Service ID, see clause xx.

	
	String mpdURI
	

	STALLED
	

	
	
	

6.2.3
Methods

6.2.3.1
Overview

Table 2 provides an overview over the methods defined for the File Delivery Application Service API. Different types are differentiated, namely state changes triggered by the app, status query of the app to the client, parameter updates as well as notifications from the client. The direction of the main communication flow is provided.
Table 2 Methods defined for File Delivery Application Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerStreamingApp
	State change
	A -> C
	Application registers a callback listener with the MBMS client
	6.2.3.2

	deregisterStreamingApp
	State change
	A -> C
	Application deregisters with the MBMS client
	6.2.3.3

	startStreamingService
	State change
	A -> C
	Starts streaming service
	6.2.3.4

	stopStreamingService
	State change
	A -> C
	Stop streaming service
	6.2.3.5

	getStreamingServices
	Status query
	C <-> A
	Get list of currently active services
	6.2.3.6

	getVersion
	Status query
	C <-> A
	Retrieves the list of files previously captured for the application
	6.2.3.7

	setStreamingServiceClassFilter
	Update to parameter list
	A -> C
	Application sets a filter on file delivery services in which it is interested
	6.2.3.10

	registerStreamingResponse
	Update to parameter list
	A -> C
	The response to the application streaming service register API
	6.2.3.12

	serviceStarted
	Notification
	C -> A
	Notification to application when a new file is downloaded per application capture request
	6.2.3.13

	streamingServiceListUpdate
	Notification
	C -> A
	Notification to application on an update of the available for file delivery services
	6.2.3.14

	streamingServiceError
	Notification
	C -> A
	Notification to application when there is an error with broadcast download of service
	6.2.3.15

	serviceStalled
	Notification
	C -> A
	Notification to application that download of a requested file failed
	6.2.3.16

6.3.3.2

Registration

6.3.3.2.1
Overview

An MBMS Aware Application calls the registerStreamingApp() interface to register with the MBMS Client to consume streaming services. The registerStreamingApp() interface has two purposes:

1) It signals to the MBMS Client that an application is interested to consume MBMS DASH Streaming Services.

2) It allows the application to identify its callback listeners defined in the Streaming Service API for the MBMS Client to provide asynchronous notifications to the application on relevant events associated with streaming.
Note: Since some application development frameworks do not support callback functions, an MBMS Aware Application for these frameworks will not provide callback listeners in the registerStreamingApp() interface. Instead, the application will implement the necessary approach available on these frameworks to receive event notifcations from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.
Figure X shows the registration process.

[image: image2.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerStreamingApp()

deregisterStreamingApp()

getStreamingServices()

registerStreamingResponse()

 Figure X Application Registration sequence diagram
6.3.3.2.2
Parameters
The parameters for the registerFdApp() API are:

· string appId – provides a unique ID for the application registerting with the MBMS client, which uses this identity to maintain state information for a particular MBMS Aware Application. The uniqueness of the ID is in the context of any application that may possibly register with MBMS client. Uniqueness is typically provided on platform level.
· any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to communicate with the MBMS client via platform (e.g., HLOS) services.
· sequence<string> serviceClassList – provides a comma-separated list of service classes which the application is interested to register. Each service class string can be any string or it may be empty.
· ILTEFileDeliveryServiceCallback callBack – provides the MBMS client with the call back functions associated with DASH Streaming Application Service APIs for the registering MBMS Aware Application.
Note: The callback element in the IDL description is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported on a given application development framework, the same information content as defined on the callback structures is to be provided to the application via the notification method available with that development framework when the respective condition is met.

6.3.3.2.3
Pre-Conditions

The application has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The application is pre-configured with the set of service classes that allows it to consume the DASH Streaming Services associated with these service classes.
The application has access to a DASH Streaming client.

The application may use this method at launch or after a deregisterStreamingApp() has been called.

The MBMS client is in IDLE state.
6.3.3.2.5
Usage of Method for Application
The application uses the method registerStreamingApp() to register with the MBMS Client to consume Streaming Services.
The application provides its appId and, if applicable, some platform specific application context, platformSpecificAppContext.

The application provides the set of service classes which the application is interested to register.
6.3.3.2.5
Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client shall run the following steps:

1. Check input parameters

a. If appId is an empty string then throw a MISSING_PARAMETER result code in the registerFdResponse()and abort these steps.

b. If serviceClassList is an empty, the MBMS client will considered the application to be registered with a service class that is also empty and only allow the application to have access to File Delivery Application Services that are not associated with a service class (i.e., the USD for these services do not have a serviceClass defined).
c. If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerFdApp() interface to send notification of event occurences to the Application.
2. generates a response registerStreamingResponse() as defined in XXX.
6.3.3.2.6
Post-Conditions

The MBMS client sends a registerStreamingResponse() as defined in 6.3.3.3.
The MBMS client is in REGISTERED state.
6.2.3.3

DASH Streaming Application Service Registration Response
6.2.3.3.1
Overview

As illustrated in Figure 3, the MBMS client responds to an Application call to the registerStreamingApp() API with a registerStreamingResponse() call back providing the result of the registration request.
6.2.3.3.2 Parameters
The parameters for the registerStreamingResponse() API are:
· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

· REGISTER_SUCCESS – indicates that the registration has been processed successfly and the application can proceed with other API interactions with the MBMS client for File Delivery Application Services.
· FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the the registration has failed since the File Delivery Application Service API did not find an MBMS client available on the UE on which the application is running and no MBMS service will be available to the application.
· MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.

· string message – provides an associated text description of the error message. The message may be empty.

· unsigned long acceptedFdRegistrationValidityDuration – when returning REGISTER_SUCCESS, this parameter indicates the registration validity duration the MBMS client will provide to the registering application.
6.3.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerStreamingApp() API with the parameters documented in 6.3.3.2.2.

6.3.3.3.4
Operation of Method (MBMS Client requirements)

Based on the parameters of the registerStreamingApp(), the MBMS client shall provide a response registerFdResponse() as follows:

1) If the MBMS client functions cannot be activated, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message.
2) If the MBMS client functions can be activated, then

a. the RegResponseCode is set to REGISTER_SUCCESS registration response code

b. a message may be generated

3) Sends the response with the above parameters
If the MBMS client functions can be activated and the response is sent, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching streaming services using the information in the User Service Description (USD).
6.3.3.3.5
Usage of Method for Application

Once the application receives a the registerStreamingResponse() with the RegResponseCode set to REGISTER_SUCCESS, the application can proceed with other API interactions with the MBMS client.
6.3.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.
If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.
6.3.3.3.7
Implementation and Usage Guidelines
If the MBMS client is temporarily in NOT_AVAILABLE , the application may periodically recheck if the state of the MBMS client changes by retrying the registerStreamingRequest() API.

6.3.3.4
Getting information on available DASH Streaming Application Services
6.3.3.4.1
Overview

The registerStreamingApp() interface returns the complete list of available Streaming Services information. As illustrated in Figure 3, after a successful registration with the MBMS client, the MBMS Aware Application can use the getStreamingServices() API to discover the available Streaming Services associated with the service classes registered via the registerStreamingApp().
6.3.3.4.2
Parameters
The getStreamingServices() API returns a list describing the available DASH Streaming Service, where each service is described by the following output only parameters:
· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.
· string name – offers a title for the user service on the language identified in the lang parameter.
· string lang – identifies a natural language identifier per [xx].

· string serviceClass – identifies the service class which is associated with the service.
· string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.
· string serviceLanguage – indicates the available language for the service and represented as an identifier per [xx].

· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.
· The possible values are:
· BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.
· BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.
· SERVICE_UNAVAILABLE
– if content for the service is at all available at the current device location.
· string mpdUri – provides an HTTP URL where the MPD for the DASH Streaming Application Service is hosted and available for DASH clients access.
· EmbmsCommonTypes::Date activeBroadcastPeriodStartTime – signals the current/next active DASH Streaming Application Service start time, when DASH media segments and other resources start being broadcast over the air.

· EmbmsCommonTypes::Date activeBroadcastPeriodEndTime – signals the current/next active DASH Streaming Application Service stop time, when DASH media segments and other resources stop being broadcast over the air..
6.3.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state or in CAPTURE_NOTIFY state and may or may not have acquired any USD information for services that are included in the service class list.
6.3.3.4.5
Usage of Method for Application (Application Requirements)
The application should use this call right after the registerStreamingResponse() notification as defined in XXX is received or after the streamingServiceListUpdate() notification as defined in xxx is received.

The application should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the streaming service.

The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the application.

The mpdURI should be used by the application to initiate playback by initiating a DASH client..

 The parameters activeBroadcastPeriodStartTime and activeBroadacstPeriodEndTime provides the application the ability to determine the current broadcast state for the service as follows:

· If the current time is such that activeBroadcastPeriodStartTime ≤ current time ≤ activeBroadcastPeriodEndTime, DASH content is being broadcast for the service at the current time.

· If the activeBroadcastPeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeBroadcastPeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.
6.3.3.4.5
Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client shall set the parameters as follows:

· If no MBMS user service is available in the MBMS client for the registered service class by the application, an empty list is returned
· For any MBMS user service for which the USD as defined in TS26.346 [XXX] is available in the MBMS client for the service classes registered by the application one entry in the list is generated as follows:

· For each userServiceDescription.name element, a (name, lang) pair is generated and added to the serviceNameList parameter with name set to the value of the USD element, and if present, the lang set to the value of the associated @lang attribute. If no @lang attribute is present, the lang parameter is set to an empty string.
· If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to serviceClass. If not present, the serviceClass is set to an empty string.
· The value of the attribute userServiceDescription@serviceId is assigned to serviceId.
· If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to serviceLanguage. If not present, the serviceLanguage is set to an empty string.

· If the UE is currently in the broadcast coverage area for the service, the serviceBroadcastAvailability is set to BROADCAST_AVAILABLE, if not, it is set to BROADCAST_UNAVAILABLE.
· ASSIGN MPD
· EmbmsCommonTypes::Date activeDownloadPeriodStartTime – signals the current/next active File Delivery Application Service start time, when files start being broadcast over the air.

· EmbmsCommonTypes::Date activeDownloadPeriodEndTime – signals the current/next active File Delivery Application Service stop time, when files stop being broadcast over the air.

6.3.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The application uses the serviceId to identify the service in subsequent communication with the MBMS client.
6.3.3.5
Updating the registered service classes

6.3.3.5.1
Overview

While an application is actively registered with the MBMS client to consume DASH Streaming Services, the MBMS Aware Application can call the setStreamingServiceClassFilter() API to update the list of service classes the application wants to be registered with, see figure 5.

[image: image3.emf]MBMS Aware

Application

MBMS Client

registerStreamingApp()

deregisterStreamingApp()

setStreamingServiceClassFilter()

registerStreamingResponse()

streamingServiceListUpdate()

getStreamingServices()

Figure 5 Sequence diagram for updating the registered service classes for an application
6.3.3.5.2
Parameters
The parameters for the setFdServiceClassFilter() method are:
· sequence<string> serviceClassList – see 6.3.3.2.2
6.3.3.5.3
Pre-Conditions

The application is actively registered with the MBMS client to consume DASH Streaming Services, and MBMS client is in REGISTERED state for the application.
6.3.3.5.4
Usage of Method for Application

The MBMS Aware Application may invoke the setStreamingServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The application should be aware that the updates are only active once an an streamingServiceListUpdate() notification is received that confirms the new service class filters.
6.3.3.5.5
Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client shall run the following steps:

· It updates the internal variable serviceClassList to the parameter value provided in the call.

· The MBMS client dis-associates the service classes previously associated with the MBMS Aware Application that are not included on this list.
· The MBMS client associates the service classes not previously associated with the MBMS Aware Application that are newly included on this list.

· The MBMS client issues a streamingServiceListUpdate() notification as defined in XXXX to the application to alert it of this effect.

6.3.3.5.6
Post-Conditions

The MBMS client issues an streamingServiceListUpdate() notification as defined in XXXX.
6.3.3.6
Start DASH Streaming Service
6.3.3.6.1
Overview

After the DASH Streaming Application Service registration, the MBMS Aware Application can make calls on the startStreamingService() API for the MBMS client to start reception of DASH content received over unicast or broadcast, depending on the streamingSubtype and current serviceBroadcastAvailability for the service as shown in Figure 6.

[image: image4.emf]startStreamingService()

stopStreamingService()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

Figure 6 Application starts DASH streaming services
6.3.3.6.2
Parameters
The parameters for the startStreamingService() API are:

· string serviceId – see 6.3.3.4.2. The service ID for the service for which the files are captured.

6.3.3.6.3 Pre-Conditions

The application is registered with the MBMS client to consume DASH Streaming Services.

The fileURI format is not validated by the MBMS client.
6.3.3.6.4
Usage of Method for Application

The MBMS Aware Application can make calls on the startStreamingService() API for the MBMS client to start reception of DASH content received over unicast or broadcast,
When application is no longer interested in consuming the Streaming Service, it should call the stopStreaming() interface as defined in XXX.

6.3.3.6.5 Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client shall run the following steps:

-
write down details in MBMS Client
-
issue serviceStarted

6.3.3.6.6
Post-Conditions

The MBMS client is in ACTIVE state for the requested serviceID.

6.3.3.7
Notification that DASH Streaming for a Service has started
6.3.3.7.1
Overview

As illustrated in Figure 6, once the MBMS client has successfully all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.
6.3.3.7.2
Parameters
The parameters for the serviceStarted() API are:

· string serviceId – definition see above.
6.3.3.7.3
Pre-Conditions

The MBMS client is in ACTIVE state for the serviceId.

6.3.3.7.4
Operation of Method (MBMS Client requirements)

The MBMS client shall invoke the serviceStarted() with the following

· The serviceId is set to the service that this captured file is associated to.

· <describe the API between DASH client and MBMS client (refer elsewhere>
6.3.3.7.5
Usage of Method for Application

Once the application receives the callback, the application may start the streaming service by calling a DASH client..
6.3.3.7.6
Post-Conditions

The MBMS client is in ACTIVE state

The DASH client can communicate with the MBMS client.
6.3.3.8
Stop DASH Streaming Service
6.3.3.8.1
Overview

As figure 17 illustrates, when an MBMS Aware Application that issued a startStreamingService() for a service is no longer interested in consuming the DASH content for that service, it will call the stopStreamingService() API, which will stop download of segments for the service over broadcast. The application should also stop the stream playback by the DASH client.

The parameter for the stopStreamingService() API is:

· string serviceId – identifies the DASH Streaming Application Service which the MBMS client is to stop reception of DASH content.
6.3.3.8.2
Parameters
none

6.3.3.8.3
Pre-Conditions

The MBMS client is in REGISTERED state for this application.
6.3.3.8.4
Usage of Method for Application

MBMS Aware Application registered with the MBMS client via the registerFdApp() API should involke the deregisterFdApp() before exiting.
6.3.3.8.5
Operation of Method (MBMS Client requirements)

The MBMS client stops sending any notifications to the client.
6.3.3.8.6
Post-Conditions

The app is no longer registered with the MBMS client.
6.3.3.9
DASH Streaming Application Service De-registration
6.3.3.9.1
Overview

An MBMS Aware Application registers services classes with the MBMS client to request the start of streaming for DASH Streaming Application Services. The MBMS Aware Application that registered with the MBMS client via the registerStreamingApp() API should involke the deregisterStreamingApp() before exiting. The MBMS clients stops monitoring for Service Announcement updates when there are no applications registered. There are no parameters for the registerStreamingApp() API.
6.3.3.9.2
Parameters
6.3.3.9.3
Pre-Conditions

6.3.3.9.4
Usage of Method for Application

6.3.3.9.5
Operation of Method (MBMS Client requirements)

6.3.3.9.6
Post-Conditions

6.3.3.10
Notification that DASH Streaming for a Service has stalled

6.3.3.10.1
Overview

[image: image5.emf]startStreamingService()

MBMS Aware

Application

MBMS Client

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast

coverage

Stop Playback

Get MPD/DASH Segments

serviceStalled()

Mobility into broadcast

coverage

Start Playback (MPD url)

serviceStarted()

Figure 18 Signaling that a DASH streaming service stalled
The MBMS client will enable consumption of a DASH Streaming Application Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. However, due to UE mobility in and out of broadcast coverage for some DASH Streaming Application Services, the serviceBroadcastAvailability for those services may change to SERVICE_UNAVAILABLE (i.e., the UE moves out of coverage for that service). Other circunstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client will signal the application that the service is temporarily not available for playback by invoking the serviceStalled() API. When broadcast reception of the service is re-established, the MBMS client will signal the application that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in figure 18.

The MBMS Aware Application can stop the DASH client playback on reception of the serviceStalled() call, but it should not stop the MBMS client from trying to collect DASH content over broadcast for the requested service. This will enable the MBMS client to signal that content is available via broadcast again once the UE moves back into the broadcast coverage for the service, as described above. The application should also properly represent the service interruption to the user.

The parameter for the serviceStalled() API are:

· string serviceId – identifies the DASH Streaming Application Service for which broadcast receptions have temporarily stalled.
· StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

· RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

· END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeBroadcastPeriodEndTime time has been reached.

· OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.
6.3.3.10.2
Parameters
6.3.3.10.3
Pre-Conditions

6.3.3.10.4
Usage of Method for Application

6.3.3.10.5
Operation of Method (MBMS Client requirements)

6.3.3.10.6
Post-Conditions

6.3.3.11
Notification of DASH Streaming Application Service errors

6.3.3.11.1
Overview

[image: image6.emf]startStreamingService()

streamingServiceError()

MBMS Aware

Application

MBMS Client

startStreamingService() validation

errors detected

Figure 19 Signaling errors with the startStreamingService() request from the DASH Streaming Application

[image: image7.emf]stopStreamingCapture()

streamingServiceError()

MBMS Aware

Application

MBMS Client

stopStreamingCapture() validation

errors detected

Figure 20 Signaling errors with the stopStreamingService() request from the DASH Streaming Application
As illustrated in figure 19, the startStreamingService() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the application’s startStreamingService(). Figure 20 also illustrates that the streamingServiceError() is used to signal the error code for the result of processing the application’s a stopStreamingService() request. The parameters for the streamingServiceError() API are:

· string serviceId – identifies the DASH Streaming Application Service on which the MBMS client failed to process the startStreamingService() or the stopStreamingService() request.

· FdErrorCode errorCode – identifies the error code for the reason causing the startStreamingService() or the stopStreamingService() request for the serviceId to fail. The available error codes are:

· STREAMING_INVALID_SERVICE – signals that serviceID defined on the startStreamingService() or the stopStreamingService() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

· STREAMING_UNKNOWN_ERROR – signals an error codition not explicitly identified.

string errorMsg – may provide additional textual description of the error condition.
6.3.3.11.2
Parameters
6.3.3.11.3
Pre-Conditions

6.3.3.11.4
Usage of Method for Application

6.3.3.11.5
Operation of Method (MBMS Client requirements)

6.3.3.11.6
Post-Conditions

6.3.3.13
Checking the version for DASH Streaming Application Service interface

6.3.3.13.1
Overview

In order for the MBMS Aware Application to know the version of the DASH Streaming Application Service interface, the getVersion() API is provided. In this version of the specification the getVersion() API is to return version 1.0.
6.3.3.13.2
Parameters
6.3.3.13.3
Pre-Conditions

6.3.3.13.4
Usage of Method for Application

6.3.3.13.5
Operation of Method (MBMS Client requirements)

6.3.3.13.6
Post-Conditions
6.3.4
IDL

#include "EmbmsCommonTypes.idl"
module StreamingService

{

 //Forward Declaration
 interface ILTEStreamingServiceCallback;

 /**
 * @name StreamingErrorCode
 * @brief List of the errors for streaming service
 */
 enum StreamingErrorCode

 {

 STREAMING_INVALID_SERVICE, /**< Invalid service ID */
 STREAMING_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for streaming service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };

 /**
 * @name RegisterStreamingAppData
 * @brief Streaming app registration information
 */
 struct RegisterStreamingAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name StreamingServiceClassList
 * @brief ServiceClass information which the app is interested in. It is for setStreamingServiceClassFilter API.
 */
 typedef sequence<string> StreamingServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name StreamingServiceInfo
 * @brief Streaming service information
 */
 struct StreamingServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */

 string mpdUri; /**< MPD URI used by DASH player */
 EmbmsCommonTypes::Date activeBroadcastPeriodStartTime; /**< The current/next active file download service start time, when files
 start being broadcast over the air */
 EmbmsCommonTypes::Date activeBroadcastPeriodEndTime; /**< The current/next active file download service end time, when files
 stop being broadcast over the air */
 sequence<long> SAIList; /**< Servcie Area IDs based on current location of the device*/
 };

 /**
 * @name StreamingServices
 * @brief List of streaming service info objects
 */
 typedef sequence<StreamingServiceInfo> StreamingServices;

 /**
 * @name StartStreamingServiceData
 * @brief Start streaming service information. It is used by StartStreamingService API.
 */
 struct StartStreamingServiceData

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StopStreamingServiceData
 * @brief Stop streaming service information.
 * It is used by the StopStreamingService API.
 */
 struct StopStreamingServiceData

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief Streaming service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief Streaming service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StreamingServiceErrorNotification
 * @brief Streaming service error information. It is used by the StreamingServiceErrorNotification API.
 */
 struct StreamingServiceErrorNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 StreamingErrorCode errorCode; /**< Streaming service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief Streaming service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 StalledReasonCode reason; /**< Streaming service stalled reason ID */
 };

 /**
 * @name RegisterStreamingResponseNotification
 * @brief Streaming app registeration response information
 */
 struct RegisterStreamingResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTEStreamingService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current Streaming service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerStreamingApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterStreamingAppData
 @see registerStreamingResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerStreamingApp(in RegisterStreamingAppData regInfo, in ILTEStreamingServiceCallback callBack);

 /**
 @name deregisterStreamingApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterStreamingApp();

 /**
 @name startStreamingService
 @brief Start download of segments of streaming service over broadcast
 @param[in] StartStreamingService Parameters for starting the streaming services API
 @pre Application is registered for streaming service
 @see StartStreamingServiceData
 @see serviceStarted()
 @see streamingServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startStreamingService(in StartStreamingServiceData serviceInfo);

 /**
 @name stopStreamingService
 @brief Stop download of segments of Streaming service over broadcast
 @param[in] StopDASHService Parameters for starting the streaming services API
 @pre Application is registered for DASH service
 @see serviceStopped()
 @see StopStreamingServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopStreamingService(in StopStreamingServiceData serviceInfo);

 /**
 @name setStreamingServiceClassFilter
 @brief Application sets a filter on streaming services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with streaming service
 @see serviceUpdate()
 @see getStreamingServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setStreamingServiceClassFilter(in StreamingServiceClassList serviceClassList);

 /**
 @name getStreamingServices
 @brief Retrieves the list of streaming services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] StreamingServices List of filtered streaming services
 @pre Application is registered for streaming service and received streamingServiceListUpdate notification
 @see StreamingServices
 @see streamingServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getStreamingServices(out StreamingServices services);

 };

 interface ILTEStreamingServiceCallback

 {

 /**
 @name registerStreamingResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for registering a streaming response
 @pre Application called registerStreamingApp
 @see RegisterStreamingResponseNotification
 @see registerStreamingApp()
 **/
 void registerStreamingResponse(in RegisterStreamingResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that streaming service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that streaming service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for streaming service and called stopStreamingService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name streamingServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startStreamingService
 @see StreamingServiceErrorNotification
 **/
 void streamingServiceError(in StreamingServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for streaming service stalled notification
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name streamingServiceListUpdate
 @brief Notification to application on an update that is available for streaming services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for streaming service.
 @post call getStreamingServices()
 **/
 void streamingServiceListUpdate();

 };

};

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected and the CRs which are linked. This is particularly important where the affected specs belong to a different working group than that which will agree the present CR.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�Some of the response code description seems duplicate with what is described in section 6.2.3.3.4. Please check if we the duplicate description.

�Please update the references list. From CR161035: Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

��Please update the references list. From CR161035: Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

�Update IDL

�Need to check further

�Updated accordingly based on the updates to the description for the serviceBroadcastAvailability agreed in off-lined discussion.

�Updated based on agreement on offline discussion

�Updated based on off-line discussion

�Update IDL

�Update IDL

[image: image8.png]registerStreamingApp()

IDLE

Out-Of-Coverage

STALLED
[A
deregisterStreamingApp()
In-Coverage
L BN
REGISTERED ACTIVE

stopStreaming()

_1525523981.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1534002115.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

_1534004652.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startStreamingService()

streamingServiceError()

MBMS Aware
Application

MBMS Client

startStreamingService() validation
errors detected

_1534666018.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopStreamingCapture()

startStreamingService()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1533995029.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

_1525523943.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

