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5.1.13.2
Stable voiced signal classification
…
The smoothing of the normalized correlation is done as follows
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Finally, VC mode is also selected in frames for which the flag 
[image: image2.wmf]spitch

f

 = Stab_short_pitch_flag  = flag_spitch  has been previously set to 1 in the module described in sub-clause 5.1.10.8. Further, when the signal has very high pitch correlation, 
[image: image3.wmf]spitch

f

 is also set to 1 so that the VC mode is maintained to avoid selecting Audio Coding (AC) mode later, as follows,
If (
[image: image4.wmf]spitch

f

=1 or

      (dpit1 <= 3 AND dpit2 <= 3 AND dpit3 <= 3 AND 
[image: image5.wmf]m

Voicing

 > 0.95 AND 
[image: image6.wmf]sm

Voicing

 > 0.97) or

      (AC_old=0 AND 
[image: image7.wmf]sm

Voicing

> 0.97))

{


VC = 1;
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Voicing

 and 
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 are defined in subclause 5.1.10.8, and AC_old=0 means the previous Audio Coding mode is not selected.

The decision taken so far (i.e. after UC and VC mode selection) is called the “raw” coding mode, denoted
[image: image14.wmf]raw

c

. The value of this variable from the current frame and from the previous frame is used in other parts of the codec.

5.1.13.6.5
Improvement of the classification for mixed and music content

…
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where 
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 denote respectively the log energy spectrum of the current frame and the log energy spectrum of the frame two frames ago, 
[image: image18.wmf]m

 denotes the number of local peaks. If 
[image: image19.wmf]m

= 0, 
[image: image20.wmf]flux

 is set to 5. The computed 
[image: image21.wmf]flux

 is stored into a buffer 
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 of 60 frames if there is no sound attack in the past 3 frames (including the current frame), that is if 
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. Moreover, if the long-term speech/music decision 
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is greater than 0.8 meaning a strong music signal in previous classifications, then the value of
[image: image25.wmf]flux

 is upper limited to 20 before it is stored into the 
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.  The 
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 buffer 
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 is altered at every first active frame after an inactive segment (flagged by
[image: image29.wmf]LSAD

f

) that all values in the buffer excluding the one just calculated and stored for the current frame are changed to negative values.

The effective portion of the buffer 
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 is determined in each frame after the calculation and buffering of the parameter
[image: image31.wmf]flux

. The effective portion is defined as the portion in the 
[image: image32.wmf]flux

 buffer 
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which contains continuous non-negative values starting from the value of the latest frame . If percussive music is detected, that is if the percussive music flag 
[image: image34.wmf]pc
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 is set to 1, each value in the effective portion of the 
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 buffer 
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 is initialized to 5.
The tilt parameter of the LP analysis residual energies 
[image: image37.wmf]R

tilt

is calculated as
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where 
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 is the LP error energies computed by the Levinson-Durbin algorithm. The computed 
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 is stored into a buffer 
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The high-band spectral peakiness parameter 
[image: image43.wmf]h
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 reflects an overall tonality of the current frame at its higher frequency band and is calculated from the peak to valley distance map 
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The calculated 
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 is stored into a buffer 
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The three tonal parameters 
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 are also calculated from the peak to valley distance map 
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denotes the first number of harmonics found from the spectrum of the current frame. 
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 is calculated as
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[image: image55.wmf]2
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 denotes the second number of harmonics also found from the spectrum of the current frame. 
[image: image56.wmf]2
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 is defined more strictly than 
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 and is calculated as
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[image: image59.wmf]l

NT

denotes the number of harmonics found only at the low frequency band of the current frame’s spectrum and is calculated as
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The calculated values of 
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 are stored into their respective buffers 
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all of 60 frames.

The sum of correlation map 
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 as calculated by
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is also stored into a buffer 
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 of 60 frames, where 
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 is the correlation map calculated in subclause 5.1.11.2.5.
The voicing parameter 
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 is defined as the difference of log-likelihood between speech class and music class as calculated in subclause 5.1.13.6.3. The 
[image: image72.wmf]vm

 is calculated as 
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where 
[image: image74.wmf]s
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 are the log-likelihood of speech class and the log-likelihood of music class respectively. 
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is stored into a buffer 
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The speech/music decision 
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 is first initialized as a hysteresis of the long-term speech/music decision 
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 from the previous frame, i.e.
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where the superscript [-1] denotes the value from the previous frame. Then, the 
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 can be altered through successive classifications. Let 
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 denotes the length of the effective portion in
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, different classification procedures are followed. If 
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where the superscript [-1] denotes the value from the previous frame. If the total frame energy 
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Otherwise, 
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where 
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5.1.14.2
TCX/HQ MDCT technology selection at 13.2 and 16.4 kbps

…

[image: image203.wmf]floor

E

is the averaged energy only for the local minima of the spectrum. With the notation of 5.1.11.2.5, it is defined as:
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Correlation map sum, 
[image: image205.wmf]sum

m

 is defined in 5.1.11.2.5.

Indication of possible switching,
[image: image206.wmf]Switch
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 =TRUE when previous core was not Transform coding, or followings are satisfied.
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where 
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Indication of preference for TCX, 
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 = TRUE when followings are satisfied:
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Indication of preference for HQ MDCT, 
[image: image216.wmf]HQ

f

 = TRUE when followings are satisfied:
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where transient_frame is the output of the time-domain transient detector (see 5.1.8). For 16.4 kbps, 
[image: image218.wmf]TCX

f

 is set to FALSE and 
[image: image219.wmf]HQ

f

 to TRUE when transient_frame is detected.

Based on the above definitions and thresholds listed in the table below, switching between HQ and MDCT based TCX is carried out as follows. Switching between HQ and TCX can only occur when 
[image: image220.wmf]Switch

f

 is TRUE. In this case, TCX is used if 
[image: image221.wmf]TCX
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 is TRUE, or otherwise HQ is used if 
[image: image222.wmf]TCX

f

 is TRUE. In any other case, the same kind of transform coding is applied as in the previous frame. If the previous frame was not coded by transform coding, HQ is used for the low rate (13.2 kbps) and TCX for the high rate (16.4 kbps).

In case input signal is noisy speech (noisy_speech_flag==TRUE && vadflag== FALSE) , transition from TCX to HQ is prohibited at 16.4 kbps.
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 is reset to 0 if 
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 is FALSE, otherwise it is incremented by one (with a maximum allowed value of 2)
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 are reset to FALSE and -1, respectively, upon encoder initialization or when a non-transform-coded frame is encountered.

Table 22: List of thresholds used in TCX/HQ MDCT (Low Rate HQ) selection
	Parameter
	Meaning
	13.2 kbps
	16.4 kbps

	SIG_LO_LEVEL_THR
	Low level signal
	22.5
	23.5

	SIG_HI_LEVEL_THR
	High level signal
	28.0
	19.0

	COR_THR
	correlation
	80.0
	62.5

	VOICING_THR
	voicing
	0.6
	0.4

	SPARSENESS_THR
	sparseness
	0.65
	0.4

	HI_ENER_LO_THR
	High energy low limit
	9.5
	12.5

	HYST_FAC
	Hysteresis control
	0.8
	0.8

	MDCT_SW_SIG_LINE_THR
	Significant Spectrum
	2.85
	2.85
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	Significant peak
	36.0
	36.0


5.1.14.4
TD/Multi-mode FD BWE technology selection at 13.2 kbps and 32 kbps

The input WB or SWB signal is divided into low band signal and high band signal (wideband input) or super higher band signal (super wideband input). Firstly, the low band signal is classified based on the characteristics of the low band signal and coded by the LP-based approach or the transform-domain approach.
The selection between TD BWE and multi-mode FD BWE technology of super higher band signal or high band signal at 13.2 kbps (WB and SWB) and 32 kbps (SWB) is performed based on the characteristic of the input signal and coding modes of the low band signal. Except for MDCT mode, if the input signal is classified as music signal, the high band signal or the super higher band signal is encoded by multi-mode FD BWE;if the input signal is classified as speech signal, the high band signal or the super higher band signal is encoded by TD BWE. In the case that the low band signal is classified as IC mode, the high band signal or the super higher band signal is also encoded by multi-mode FD BWE.

If the decision in the first stage of the speech/music classifier
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, i.e. the input signal is classified as music signal, or the decision in the first stage of the speech/music classifier
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and the decision in the second stage of the speech/music classifier
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, or the low band signal is classified as IC mode, the high band or the super higher band signal is encoded by multi-mode FD BWE, otherwise, the high band or super higher band signal is encoded by TD BWE. It is noted that, when the flag of the super wideband noisy speech
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, the super higher band is encoded by TD BWE. It is the same TD/multi-mode FD BWE technology selection for FB inputs.

5.2.6.1.6
Generation of the upsampled version of the lowband excitation
…
For each ACELP core coding subframe, i, a random noise scaled by a factor voice factor, [image: image232.wmf]i

Vf

 is first added to the fixed codebook excitation that is generated by the ACELP core encoder. The voice factor is determined using the subframe maximum normalized correlation parameter, [image: image233.wmf],

i

b

 that is derived during the ACELP encoding. First the [image: image234.wmf]i

b

 factors are combined to generate [image: image235.wmf]i
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[image: image237.wmf]i
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 calculated above is limited to a maximum of 1 and a minimum of 0. 
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The resampled output is scaled by the ACELP fixed codebook gain and added to a delayed version of itself.
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where gc is the subframe ACELP fixed codebook gain, gp is the subframe ACELP adaptive codebook gain and P is the open loop pitch lag.
5.2.6.1.11
Envelope modulated noise mixing

…

If the lowband coder type is unvoiced, the excitation [image: image242.wmf](
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where
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And then pre-emphasised with [image: image246.wmf]m

=0.68 to generate the final excitation which is the de-emphasised effect since the used spectrum is flipped.
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If the lowband coder type was not un-voiced, the final excitation is calculated as
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For bit rates less than 24.4 kb/s, the mixing parameters [image: image250.wmf]1
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 and [image: image251.wmf]2

a

 are estimated for other low band coder types as,
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For bit rates 24.4 kb/s and 32 kb/s, the mixing parameters [image: image254.wmf]1

a

, 
[image: image255.wmf]2

a

are estimated for other low band coder types as follows:
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where the parameter [image: image258.wmf]formant

fac

 is defined in equation (731).
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 is then de-emphasised to generate the final excitation. 

5.3.3.2.8.1.8.4
Decision of harmonic model

At the initial estimation, number of used bits without harmonic model, [image: image261.wmf]bits
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, and one with harmonic model, [image: image262.wmf]hm
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used
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is obtained and the indicator of consumed bits  
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is defined as
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where [image: image269.wmf]hm

bits

Index

_

denotes the additional bits for model parameters of periodic harmonic structure, and[image: image270.wmf]stop

 and [image: image271.wmf]hm
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indicate the consumed bits when they are larger than the target bits. Thus, the larger
[image: image273.wmf]B
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, the more preferable to use harmonic model. Relative periodicity [image: image274.wmf]hm
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is defined as the normalized sum of absolute values for peak regions of the shaped MDCT coefficients as
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5.3.4.1.4.3.2.1
Allocating bits for fine gain adjustment
Bit-allocation process is performed in the following manner when the signal is classified as harmonic. Firstly, two bits are reserved for transmitting the noise factor information (cf. Sec.5.3.4.1.4.3.3.3.6) followed by four bits are allocated for performing gap filling using PFSC based approach. Then some bits are reserved for applying fine gain quantization to the band energies that are larger than the others.

…
5.3.4.1.4.1.5.3.3.1
Selection of representative MDCT coefficients
Similarly to G.718 Annex B, a band search approach is used. The last four bands (i.e. b=18 to 21 in 13.2 kbps and b=20 to 23 in 16.4 kbps) are then subject to be encoded with PFSC. As shown in the table 108, the widths of the bands are 55, 68, 84, and 105 for 13.2 kbps, and 59, 74, 92, and 115 for 16.4 kbps.
To reduce computational load for calculating correlation, only limited number of input (target) MDCT coefficients are selected as representative MDCT coefficients and used for correlation calculation. The selection of the MDCT coefficients is performed by amplitude threshold process, i.e. an MDCT coefficient is selected if its absolute value is greater than a threshold. The threshold is determined using the average and standard deviation of the absolute values of the MDCT coefficients in a subjected high-frequency band.
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Here [image: image277.wmf]i

thr

is the initial threshold for the i-th high-frequency band, [image: image278.wmf]i

avg

 is the average of the absolute values of the MDCT coefficients in the i-th high-frequency band, [image: image279.wmf]i

s

 is the standard deviation of the absolute values of the MDCT coefficients in the i-th high-frequency band, and [image: image280.wmf]b

 is a factor for controlling the selected number of the MDCT coefficients. [image: image281.wmf]b

is chosen so that a calculated threshold becomes higher than a threshold which is expected to be appropriate for selecting the limited number of the MDCT coefficients. 
If the number of selected MDCT coefficients is less than a pre-determined number, the threshold is updated by the following equation, and an additional selection process is performed.
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Here, [image: image283.wmf]a

 is the weakest attenuation factor and [image: image284.wmf]b

is the strongest attenuation factor, and [image: image285.wmf]0
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 is the pre-determined number of the MDCT coefficients to be selected in the end, and [image: image287.wmf]i
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 is remaining number of MDCT coefficients to be selected. [image: image288.wmf]¢
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 is the updated threshold. By using this equation, the threshold is calculated according to the number of non-selected MDCT coefficients, i.e. the larger the number of non-selected MDCT coefficients is, the lower the threshold become. The above equation is equivalent to the following equation. [image: image289.wmf]i
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 is the number of already selected MDCT coefficients.
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This threshold update is performed twice using a different set of [image: image291.wmf]a

 and [image: image292.wmf]b

 unless the number of selected MDCT coefficients does not reach the pre-determined number.

The selected MDCT coefficients (target MDCT coefficients for the band search) are stored in a memory as their frequency positions and used for the band search process.
5.3.4.1.4.1.5.3.3.2
Matching process
Once the representative MDCT coefficients are selected, a matching process is performed by calculating the correlation between the representative MDCT coefficients and normalized low-frequency MDCT coefficients derived from the envelope normalized MDCT coefficients calculated in subclause 5.3.4.1.4.1.5.3.2. Since the correlation is calculated only using the selected MDCT coefficients, required computational complexity can be saved.
The task of the matching process is to find k' which maximizes S(k').
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where [image: image294.wmf])
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, [image: image295.wmf])
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and [image: image296.wmf]j
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 denote the following.
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 : correlation between representative MDCT coefficients and normalized low-frequency MDCT coefficients for the k’-th lag candidate,
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 : energy of normalized low-frequency MDCT coefficients for the k’-th lag candidate
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Nlag

 : number of lag candidates for the j-th band.
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[image: image304.wmf]j
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 denote the followings.
[image: image308.wmf]j
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: selected number of representative MDCT coefficients in the j-th band,
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: frequency position of the k-th representative MDCT coefficient in the j-th band,
[image: image310.wmf]]
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: the k’-th lag candidate for the j-th band,
[image: image311.wmf]j

k

: starting frequency position of normalized low-frequency MDCT coefficients for the j-th band.
The lag candidates are defined as the frequency positions of non-zero normalized low-frequency spectrum. Therefore [image: image312.wmf]]
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 means the k’-th non-zero normalized low-frequency MDCT coefficients frequency position in the j-th band search range. The j-th sub-band search range is started at[image: image313.wmf]j

k

, which is defined as offsets from the zero frequency point of the low-frequency spectrum. [image: image314.wmf]j

k

= {0, 0, 64, 64}
By using this lag candidate representation, even when the bit budget for the lag information is small, actual lag search range can be wide, and it enables to guarantee to generate candidate spectra which have at least one non-zero spectrum.
figure 76 shows a conceptual block diagram of the matching process. For the lag search, only the TCQ quantized component is used as the low-frequency MDCT coefficients while both of the TCQ-quantized and noise-filled low-frequency MDCT coefficients are used for generating high-frequency spectrum and calculating the scaling factors.

The best k', which maximizes S(k'), is packed into the bit stream as an encoded parameter of the best lag candidate.
6.2.2.3.11
IGF temporal flattening

The reconstructed signal by IGF is temporally flattened in the frequency domain when 
[image: image315.wmf]1
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. The temporal flattening is performed in a frequency-selective manner as follows. 
The selection of the spectral contents to be temporally flattened is done by comparing the quantized spectral coefficients with 0 and the contents whose coefficients are quantized to 0 are selected. 
In order to maintain the significant spectral contents, they are temporarily replaced by the spectra which are similarly generated to the filled spectra by IGF:
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where 
[image: image318.wmf]]

[

tb

X

dec

 is the quantized MDCT coefficient after arithmetic decoding and 
[image: image319.wmf]]

[

tb

X

 is the reconstructed MDCT coefficient by IGF.
The linear prediction of the spectra 
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 is done and the linear prediction coefficients 
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 are calculated. Then the temporally flattened spectrum is given by the following filtering:
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Finally, the significant spectral contents are restored by:
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and then the frequency-selectively temporally flattened spectrum 
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 is output to IMDCT for getting the time domain signal.
6.2.3.1.1
Mode decoding
Based on the encoded bandwidth and operated bit-rate, mode information is decoded from 1 or 2 bits. Based on the decoded mode information, decoding configurations like band structures are set. The band structure definition for NB, WB, SWB, and FB is the same as encoder presented in table 103 to 108.
6.2.3.1.2.1.2
Resized Huffman decoding mode
If IsTransient is True
If the frame is Transient, the Huffman decoding is then performed on the transmitted differential indices. The Huffman codes for the differential indices are given in table 111 in subclause 5.3.4.1.3.3.
If IsTransient is False
For Non-Transient frames, the Huffman decoding is then performed on the transmitted differential indices. The Huffman codes for decoding the indices are given in table 115 in subclause 5.3.4.1.3.3.3. The differential indices decoded using table 115 takes the form, 
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the decoded differential indices 
[image: image327.wmf])

(

b

I

M

¢

D

 are reconstructed which is exactly reverse to the encoder described in subclause 5.3.4.1.3.3.3 equation (1040). The way to reconstruct the differential index, which corresponds to the modification in encoder, can be done as shown in the following equation.
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6.2.3.1.3.3.4.3.1
Overview
This subclause is only applied to SWB and FB input signals. The spectral coefficients which belong to bands which are assigned zero bits from the bit‑allocation subclause are not quantized. This means that not all transform coefficients are transmitted to the decoder. From the noise filled quantized spectrum, the gaps in the high frequency region 
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 which has zero bit allocation are identified and are filled with the new generated spectrum. The predicted spectrum is generated using normalized noise filled quantized spectrum described in subclause 6.2.3.1.3.3.4.3.2.

Based on the bit allocation described in subclause 6.2.3.1.3.3.3, if any of 
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 is allocated with zero bits, the corresponding band with start and end positions 
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has a gap and it is filled with the predicted spectrum described in subclause 6.2.3.1.3.3.4.3.5 corresponding to 
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6.2.3.1.3.3.4.3.3
Decoding of lag index

Lag index 
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 for sub-bands i=0,1 is decoded from the bit stream. For sub-bands 0 and 1, the starting position 
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 using lag index 
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is defined in equation (1147) and end of the desired portion 
[image: image338.wmf]i

end

k

is defined equation (1148).

Based on the starting position and width of search band the predicted spectrum is generated from the envelope normalized noise filled quantized spectrum. The detailed description of the predicted spectrum generation is described in following subclause 6.2.3.1.3.3.4.3.5.

6.2.3.1.3.3.4.3.7
Signal generation for predicted spectrum

First, the tonal components 
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 is extracted from the desired portion of envelope normalized quantized spectrum
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 is the same as equations (1147) and (1148): As the normalized quantized spectrum characteristics are flat all the values during the normalization process will have similar values, all the non-zero coefficients in the desired region of 
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where, 
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 are defined as follows
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 is the tonal resolution obtained from the normalized quantized spectrum for sub band i=0,1
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 is the tonal components extracted from the normalized quantized spectrum for sub band i=0,1

The tonal information
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, for i=0, 1 obtained from normalized quantized spectrum is used for sub band i=2, 3.

Based on the band definition described in table108, the high frequency band ranges are defined
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. Using the band definitions for high frequency region, the extracted tonal components and its corresponding pulse resolutions are restructured, now the restructured 
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 is used for generating predicted spectrum. For example, the restructured information for sub band i=0 is equivalent to 
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6.2.3.2.1.3.2.3
Noise level adjustment

After the fine structure of the spectral holes has been determined, the noise-filled part of the spectrum is attenuated according to the received NoiseLevel index. In the case of transient mode, the NoiseLevel is not estimated in the encoder and is automatically set to the value corresponding to zero index, i.e., 0 dB.

This operation is summarized by the following equation:
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For SWB processing at 24.4 or 32 kbps in case of low spectral stability, an additional adaptive noise-fill level adjustment is employed. First, an envelope adjustment vector 
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are identified. The attenuation for each of these regions are adjusted according to
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…
6.3.3.2.1.1
Optimized cubic interpolation

The missing signal at the output sampling frequency is partly available in the memory buffer at the internal sampling frequency, 12.8 kHz or 16 kHz. By doing low delay resampling like interpolation method of this memory a good estimation of the missing signal can be obtained. Third order cubic interpolation is used here, where cubic curves are used to interpolate the output values within 3 input interval delimited by 4 input samples. Respectively, in each input interval the interpolation can be made by using 3 different cubic curves. To further improve the quality of this estimation the interpolated samples are obtained by computing a weighted mean value of the possible cubic interpolated values computed on the plurality intervals covering the time position of the sample to interpolate.

The length of the resampling buffer (input to cubic interpolation)  is 1.25 ms (16 samples at 12.8 kHz sampling rate or 20 samples at 16 kHz sampling rate) plus 2 past samples used as memory for the first cubic interpolations of the first 2 intervals. In cubic interpolation, 4 consecutive input samples determinate a cubic curve, the general equation of this curve is 

. To simplify the computations of the coefficients the temporal index of the 4 consecutive input samples are always considered as 
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To get the output resampled signal often the value of the output is needed to be determined between two input samples, in the interval limited by these input samples. As mentioned above, in cubic interpolation one cubic curve covers 3 intervals and respectively each interval can be covered by 3 different cubic curves:  by the interval central [0, 1] of the central cubic curve or by the interval [1,2] of the previous cubic curve or the interval [-1, 0] of the next cubic curve. In the following the index 
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corresponds to the beginning of the input interval where the output interpolated sample is computed. Let’s note the coefficients of the cubic curve of which the central interval is used 
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The interpolated output value 
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The weights used are same for each interpolated value, 
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=1/3. To reduce the complexity the values of x/3, x2/3, x3/3, (x-1)/3, (x-1)2/3, (x-1)3/3, (x+1) /3, (x+1)2/3, and (x+1)3/3, are tabulated for all possible values of 
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are needed with a multiplication by 1/3 when the output value is computed. For example to upsample from 12.8 kHz to 32 kHz the required values of 
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 are 0.2, 0.4, 0.6 and 0.8.

The last 2intervals cannot be covered by 3 cubic curves as future samples are not available to compute all curves. Here simplified interpolation is used. For the last but one input interval the central interval of the last possible cubic curve is used to compute the interpolated signal:
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and for the last input interval the interval [1,2] of the same last cubic curve is used to compute the interpolated signal
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In case of subsampling, the output samples after the last input sample cannot be interpolated, that causes a small delay of up to 3 output samples.

*** End of changes ***
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