	
	[bookmark: _Ref193182647][bookmark: _Ref194395219][bookmark: _Toc268297856] Guidelines for Implementation:
Ad Insertion in DASH

	

	July 29, 2014
DASH Industry Forum

Version 0.5
for DASH-IF internal review
please submit comments latest by August 8, 2014 here:
https://github.com/Dash-Industry-Forum/AdInsertion/issues
or dashif+iop@groupspaces.com with a subject tag [Ad TF]

 [image:]
Note: This document is a recommendation rather than a specification.

Scope
This document provides recommendations for implementing ad insertion in DASH. Second edition of DASH (ISO/IEC 23009-1:2014 2nd edition) is the baseline for this document. Furthermore, this document defines several interoperability points.
Disclaimer
The version 0.5 of the document is intended for internal review. Comments are expected to be submitted latest by August 8, 2014 here:
· https://github.com/Dash-Industry-Forum/AdInsertion/issues or
· dashif+iop@groupspaces.com with a subject tag [Ad TF]
This is a document made available by DASH-IF. The technology embodied in this document may be covered under patents, including patents owned by such companies. No patent license, either implied or express, is granted to you by this document. This draft specification is provided on an as-is basis without any warranty whatsoever.
In addition, this document may include references to documents and/or technologies controlled by third parties. Those documents and technologies may be subject to third party rules and licensing terms. No intellectual property license, either implied or ex-press, to any third party material is granted to you by this document or DASH-IF. DASH-IF makes no any warranty whatsoever for such third party material.
Contents
Guidelines for Implementation: Ad Insertion in DASH	i
1	Introduction	7
1.1	General	7
1.2	DASH Concepts	7
1.2.1	Remote Elements	7
1.2.2	Periods	8
1.2.3	DASH events	9
1.2.4	MPD Updates	10
1.2.5	Session information	10
1.2.6	Tracking and reporting	10
2	Architectures	11
3	Server-based Architecture	12
3.1	Mapping into DASH	13
3.1.1	Period elements	13
3.1.2	Asset Identifiers	13
3.1.3	MPD updates	13
3.1.4	MPD events	14
3.2	Workflows	14
3.2.1	Linear	14
3.2.2	On Demand	17
3.2.3	Capture to VoD	18
3.2.4	Slates and ad replacement	18
3.2.5	Blackouts and Alternative content	18
3.2.6	Tracking and reporting	18
3.3	Examples	19
3.3.1	MPD with mid-roll ad breaks and default content	19
4	App-based Architecture	21
4.1	Mapping into DASH	21
4.1.1	MPD	22
4.1.2	DASH events	22
4.1.3	Asset Identifiers	23
4.2	Workflows	23
4.2.1	Linear	23
4.2.2	On Demand	24
5	Items to resolve	24
5.1	Trusted client	24
5.1.1	Possible approaches	24
6	Interoperability points	25
6.1	Server-driven interoperability points	25
6.1.1	Static Multiperiod	25
6.1.2	Static just-in-time	26
6.1.3	Dynamic multiperiod	27
6.1.4	Dynamic just-in-time	28
6.2	App-driven interoperability points	28
6.2.1	On Demand	28
6.2.2	Live	29
7	Gaps	29
8	References	30

List of Figures
[bookmark: _GoBack]Figure 1: XLink resolution	8
Figure 2: Server-based architecture	12
Figure 3: Live workflow	15
Figure 4: Ad Decision	17
Figure 5: Example of MPD for "Top Gun" movie	20
Figure 6: App-based architecture	21
Figure 7: Inband carriage of SCTE 35 cue message	22
Figure 8: In-MPD carriage of SCTE 35 cue message	23
[bookmark: _Toc204395863]

Acronyms, abbreviations and definitions
Ad Break: A location or point in time where one or more ads may be scheduled for delivery; same as avail and placement opportunity.
Ad Decision Service: functional entity that decides which ad(s) will be shown to the user. It interfaces deployment-specific and are out of scope for this document.
Ad Management Module: logical service that, given cue data, communicates with the ad decision service and determines which advertisement content (if at all) should be presented during the ad break described in the cue data.
Cue: indication of time and parameters of the upcoming ad break. Note that cues can indicate a pending switch to and ad break, pending switch to a next ad within an ad break, and pending switch from an ad break to the main content.
CDN node: functional entity returning a segment on request from DASH client. There are no assumptions on location of the node.
Packager: functional entity that processes conditioned content and produces media segments suitable for consumption by a DASH client. This entity is also known as fragmentor, encapsulator, or segmentor. Packager does not communicate directly with the server – its output is written to the origin.
Origin: functional entity that contains all media segments indicated in the MPD, and is the fallback if CDN nodes are unable to provide a cached version of the segment on client request.
Splice Point: point in media content where
MPD Generator: functional entity returning an MPD on request from DASH client. It may be generating an MPD on the fly or returning a cached one.
XLink resolver: functional entity which returns one or more remote elements on request from DASH client.

[bookmark: _Toc268297857]Introduction
[bookmark: _Ref193281613][bookmark: _Toc268297858]General
This document specifies the reference architecture and interoperability points for a DASH-based ad insertion solution.
The baseline reference architecture is based on [11] , and addresses both server-based and app-based scenarios. The former approach is what is typically used for Apple HLS, while the latter is typically used with Microsoft SmoothStreaming and Adobe HDS.
[bookmark: _Ref356823936]Outlines for both architectures are described in [12].
[bookmark: _Toc268297859]DASH Concepts
DASH ad insertion relies heavily on several DASH tools, which are introduced in this section. The correspondence between these tools and ad insertion concepts will be established later. Remote elements
[bookmark: _Toc268297860]Remote Elements
Remote elements are elements that are not fully contained in the MPD document but are referenced in the MPD with an HTTP-URL using a simplified profile of XLink.
A remote element has two attributes, @xlink:href and @xlink:actuate. @xlink:href contains the URL for the complete element, while @xlink:actuate specifies the resolution model. The value "onLoad" requires immediate resolution at MPD parse time, while "onRequest" allows deferred resolution at a time when an XML parser accesses the remote element. In this text we assume deferred resolution of remote elements, unless explicitly stated otherwise. While there is no explicit timing model for earliest time when deferred resolution can occur, the spec strongly suggests it should be close to the expected playout time of the corresponding period.

[bookmark: _Toc268297904]Figure 1: XLink resolution
Resolution (a.k.a. dereferencing) consists of two steps. Firstly, a DASH client issues an HTTP GET request to the URL contained in the @xlink:href, attribute of the in-MPD element, and the XLink resolver responds with a remote element entity in the response content. In case of error response or syntactically invalid remote element entity, the @xlink:href and @xlink:actuate attributes are removed from the in-MPD element.
If the value of the @xlink:href attribute is urn:mpeg:dash:resolve-to-zero:2013, HTTP GET request is not issued, and the in-MPD element is removed from the MPD. This special case is used when a remote element can be accessed (and resolved) only once during the time at which a given version of MPD is valid.
If syntactically valid remote element entity was received, the DASH client will replace in-MPD element with remote period entity.
Once a remote element entity is resolved into a fully specified element, it may contain an @xlink:href attribute, which contains a new XLink URL allowing repeated resolution.
Note that the only information passed from the DASH client to the XLink resolver is encoded within the URL. Hence there may be a need to incorporate parameters into it, such as splice time (i.e., PeriodStart for the remote period) or cue message.
A specification of XLink behavior in DASH is provided in [2] sec. 5.5.3.
[bookmark: _Toc268297861]Periods
Timing
Periods are time-delimited parts of a media presentation, starting at offset PeriodStart from its start. PeriodStart can be explicitly stated using the Period@start attribute or indirectly computed using Period@start and Period@duration of the previous periods.
Precise period duration of period i is given by PeriodStart(i+1) – PeriodStart(i). This can accommodate the case where media duration of period i is slightly longer than the period itself, in which case a client will schedule the start of media presentation for period i+1 at time PeriodStart(i+1).
Period@presentationTimeOffset specifies the offset of the earliest presentation time of the first segment of period i from PeriodStart(i) .
Segment Availability
In case of dynamic MPDs, Period-level BaseURL@availabilityTimeOffset allow earlier availability start times. A shorthand notation @availabilityTimeOffset="INF" at a Period-level BaseURL indicates that the segments within this period are available at least as long as the current MPD is valid. This is the case with stored ad content. Note that DASH also allows specification of @availabilityTimeOffset at AdaptationSet and Representation level.

Seamless transition
The DASH specification says nothing about period transitions – i.e., there are no guarantees seamless continuation of playout across the period boundaries. Content conditioning and receiver capability requirements should be defined for applications relying on this functionality.

Period labeling
Period-level AssetIdentifier descriptors identify the asset to which a given period belongs. Beyond identification, this can be used for implementation of client functionality that depends on distinguishing between ads and main content (e.g. progress bar and random access).

[bookmark: _Ref361667222][bookmark: _Toc268297862]DASH events
DASH events are messages having type, timing and optional payload. They can appear either in MPD (as period-level event stream) or inband, as ISO-BMFF boxes of type `emsg`. The `emsg` boxes appear at the very beginning of the segment, so that DASH client will need a minimal amount of parsing to detect them.
DASH defines two events that are processed directly by a DASH client: MPD Validity Expiration and MPD Patch. Both signal to the client that the MPD needs to be updated – the former providing the publish time of the MPD that should be used, and the latter providing an XML patch that can be applied to the client’s in-memory representation of MPD, as an alternative to requesting a new MPD.
User-defined events are also possible. The DASH client does not deal with them directly – they are passed to an application, or discarded if there is no application willing to process these events. A possible client implementation would register callbacks to specific event types, and these would be called on arrival of these events.
In the ad insertion context, user-defined events can be used to signal information, such as cue messages (e.g. SCTE 35, see 3.2.1.1.3 or 4.1.2)
[bookmark: _Ref361076930][bookmark: _Toc268297863]MPD Updates
If MPD@type='dynamic', it can be periodically updated. These updates can be synchronous, in which case their frequency is limited by MPD@minimumUpdatePeriod. In the asynchronous case MPD updates are triggered by DASH events (see above). An `emsg` event box for the MPD Validity Expiration event specifies the time after which current MPD is invalid and a new MPD (with a newer @publishTime) must be obtained to continue playout. Use of MPD Patch events provides an optimization that allows not requesting an MPD, and rather specifying the difference between the new and the old MPD. This is convenient when changes are relatively small – e.g., addition of a remote period. In case of more extensive changes, MPD Update message can be used to carry the complete MPD inband.
When new period containing stored ads is inserted into a linear program, and there is a need to unexpectedly alter this period the inserted media will not carry the `emsg` boxes – these will need to be inserted on-the-fly by proxies. In this case use of synchronous MPD updates may prove simpler.
MPD@publishTime provides versioning functionality: MPD with later publication times include all information that was included all MPDs with earlier publication times.
[bookmark: _Ref372704975][bookmark: _Toc268297864]Session information
In order to allow fine-grain targeting and personalization, we should be able to know the identity of the viewer, i.e. maintain a notion of a session.
HTTP is a stateless protocol, however state can be preserved by the client and communicated to the server.
The simplest way of achieving this is use of cookies. According to RFC 6265, cookies set via 2xx, 4xx, and 5xx responses must be processed and have explicit timing and security model.
Another alternative is use of HTTPS [or OATC???] in which case the identity of the requester can be verified.

[bookmark: _Ref372704974][bookmark: _Toc268297865]Tracking and reporting
The simplest tracking mechanism is server-side logging of HTTP GET requests. Knowing request times and correspondence of segment names to content constitutes an indication that a certain part of the content was requested. If MPDs (or remote element entities) are generated on the fly and identity of the requester is known, it is possible to provide more precise logging. Unfortunately this is a non-trivial operation, as same user may be requesting parts of content from different CDN nodes (or even different CDNs), hence log aggregation and processing will be needed.
Another approach is communicating with existing tracking server infrastructure using existing external standards.

[bookmark: _Toc268297866]Architectures
The possible architectures can be classified based on the location of component that communicates with the ad decision service: a server-based approach assumes a generic DASH client and all communication with ad decision services done at the server side (even if this communication is triggered by a client request for a segment, remote element, or an MPD. The app-based approach assumes an application running on the UE and controlling one or more generic DASH clients.
Yet another classification dimension is amount of media engines needed for a presentation – i.e., whether parallel decoding needs to be done to allow seamless transition between the main and the inserted content, or content is conditioned well enough to make such transition possible with a single decoder.
Workflows can be roughly classified into linear and elastic. Linear workflows (e.g., live feed from an event) has ad breaks of known durations which have to be taken: main content will only resume after the end of the break and the programmer / operator needs to fill them with some inserted content. Elastic workflows assume that the duration of an ad break at a given cue location not fixed, thus the effective break length can vary (and can be zero if a break is not taken).

[bookmark: _Ref376804500][bookmark: _Ref383278517][bookmark: _Toc268297867]Server-based Architecture

[bookmark: _Toc268297905]Figure 2: Server-based architecture
In the server-based model, all ad-related information is expressed via MPD and segments, and ad decisions are triggered by client requests for MPDs and for resources described in them (segments, remote periods).
Server-based model is inherently MPD-centric – all data needed to trigger ad decision is concentrated in the MPD. In case where ad break location (i.e., its start time) is unknown at the MPD generation time, it is necessary to rely on MPD update functionality. The two possible ways of achieving these are described in 1.2.4.
In the live case, packager receives feed containing inband cues, such as MPEG-2 TS with SCTE 35 cue messages [6]. Packager ingests content segments into the CDN, passing manifest and cue data to the ad management module. In the on demand case, cues can be provided out of band.
Ad management module is located at the server side (i.e., in the cloud), thus all manifest conditioning is done at the server side. The ad management module contacts the ad decision service and receives information on ads that will be spliced. It further conditions the manifest and ingests it into the CDN. 	Comment by Keith Millar: Names don’t reflect diagram above.
This is also not a good description, as for Fully addressable the client is likely to communicate with the Manifest conditioner and the MPD is unlikely to endup on the CDN. It will be delivered directly by the Manifest conditioner.
[[AG: to be fixed, diagram will be replaced]]
[bookmark: _Toc268297868]Mapping into DASH
[bookmark: _Toc361220639][bookmark: _Toc268297869]Period elements
A single ad is expressed as a single Period element.
Periods with content that is expected to be interrupted as a result of ad insertion should contain explicit start times (Period@start), rather than durations. This allows insertion of new periods without modifying the existing periods. If a period has media duration longer then the distance between the start of this period and the start of next period, use of start times implies that a client will start the playout of the next period at the time stated in the MPD, rather than after finishing the playout of the last segment.
An upcoming ad break is expressed as a single Period element, possibly remote.
Remote Period will be resolved on demand into one or more than one Period elements. It is possible to embed parameters from the cue message into the XLink URL of the corresponding remote period, in order to have them passed to the ad decision system via XLink resolver at resolution time.
In an elastic workflow, when an ad break is not taken, the remote period will be resolved into a period with zero duration. This period element will contain no adaptation sets.
If a just-in-time remote Period dereferencing is required by use of @xlink:actuate="onRequest", MPD update containing a remote period should be triggered close enough to the intended splice time. This can be achieved using MPD Validity events and full-fledged MPD update, or using MPD Patch and MPD Update events (see sec. 1.2.4 and 1.2.3).
It may be operationally simpler to avoid use of onRequest dereferencing in case of linear content.
[bookmark: _Toc361220641][bookmark: _Toc268297870]Asset Identifiers
AssetIdentifier descriptors identify the asset to which a period belongs. This can be used for implementation of client functionality that depends on distinguishing between ads and main content (e.g. progress bar).
Periods with same AssetIdentifier should have identical adaptation sets, initialization segments and same DRM information (i.e., DRM systems, licenses). This allows reuse of at least some initialization data across periods of the same asset, and ensures seamless continuation of playback if inserted periods have zero duration

[bookmark: _Ref361667193][bookmark: _Toc268297871]MPD updates
MPD updates are used to implement dynamic behavior. An updated MPD may have additional (possibly – remote) periods. Hence, MPD update should be triggered by the arrival of the first cue message for an upcoming ad break. Ad breaks can also be canceled prior to their start, and such cancellation will also trigger an MPD update.
Frequent regular MPD updates are sufficient for implementing dynamic ad insertion. Unfortunately they create an overhead of unnecessary MPD traffic – ad breaks are rare events, while MPD updates need to be frequent enough if a cue message is expected to arrive only several seconds before the splice point. Use of HTTP conditional GET requests (i.e., allowing the server to respond with "304 Not Modified" if MPD is unchanged) is helpful in reducing this overhead, but asynchronous MPD updates avoid this overhead entirely.
DASH events with scheme "urn:mpeg:dash:event:2013" are used to trigger asynchronous MPD updates.
The simple mapping of live inband cues in live content into DASH events is translating a single cue into an MPD Validity expiration event (which will cause an MPD update prior to the splice time). MPD Validity expiration events need to be sent early enough to allow the client request a new MPD, resolve XLink (which may entail communication between the resolver and ADS), and, finally, download the first segment of the upcoming ad in time to prevent disruption of service at the splice point.
[bookmark: _Toc268297872]MPD events
In addition to tracking events (ad starts, quartile tracking, etc.) the server may also need to signal additional metadata to the video application. For example, an ad unit may contain not only inline linear ad content (that is to be played before, during, or after the main presentation), it may also contain a companion display ad that is to be shown at the same time as the video ad. It is important that the server be able to signal both the presence of the companion ad and the additional tracking and click-through metadata associated with the companion.
With that said, there is no need to have a generic DASH client implement this functionality – it is enough to provide opaque information that the client would pass to an external module. Event schemeIdUri provides us with such addressing functionality, while MPD events allow us to put opaque payloads into the MPD.

[bookmark: _Toc268297873]Workflows
In the workflows below we assume that our inputs are MPEG-2 transport streams with embedded SCTE 35 cue messages. In our opinion this will be a frequently encountered deployment, however any other in-band or out-of-band method of getting cue messages and any other input format lend themselves into the same model.
[bookmark: _Toc361220646][bookmark: _Ref361148871][bookmark: _Toc268297874]Linear
A real-time MPEG-2 TS feed arrives at both packager and MPD generator. While real-time multicast feeds are a very frequently encountered case, the same workflow can apply to cases such as ad replacement in a pre-recorded content (e.g., in time-shifting or PVR scenarios).
MPD generator generates dynamic MPDs. Packager creates DASH segments out of the arriving feed and writes them into the origin server. Client periodically requests the MPDs so that it has enough time to transition seamlessly into the ad period.
Packager and MPD generator may be tightly coupled (e.g. co-located on the same physical machine), or loosely coupled as they both are synchronized only to the clock of the feed.

[bookmark: _Toc268297906]Figure 3: Live workflow
Cue Interpretation by the MPD generator
When an SCTE 35 cue message indicating an upcoming splice point is encountered by the MPD generator, the latter creates a new MPD for the same program, adding a remote period to it.
The Period@start attribute of the inserted period has splice_time() translated into the presentation timeline. Parameters derived from the cue message are inserted into the Period@xlink:href attribute of the inserted period. Examples below show architectures that allow finer targeting.
[bookmark: _Ref361147401]Example 1: Immediate ad decision
MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the generator updates its template. At each MPD request, the generator customizes the request based on the information known to it about the requesting client. The generator contacts ad decision server and produces one or more non-remote ad periods. In this case XLink is not needed.
Example 2: Stateful cue translation
MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the generator updates its template. At each MPD request, the generator customizes the request based on the information known to it about the requesting client.
The operator targets separately male and female audiences. Hence, the generator derives this from the information it has regarding the requesting client (see 1.2.5), and inserts an XLink URL with the query parameter ?sex=male for male viewers, and ?sex=female for the female viewers.
[bookmark: _Ref361147217]Example 3: Stateless cue translation
At cue message arrival, the MPD generator extracts the entire SCTE 35 splice_info_section (starting at the table_id and ending with the CRC_32) into a buffer. The buffer is then encoded into URL-safe base64url format [RFC 4648], and inserted into the XLink URL of a new remote Period element. splice_time is translated into Period@start attribute. The new MPD is pushed to the origin.
Note: this example follows the technique defined for HLS in [OATC], but uses slightly different encoding as the section is included in a URI.
Cue Interpretation by the packager
Cue interpretation by the packager is optional and is an optimization, rather than core functionality.
On reception of an SCTE 35 cue message signaling an upcoming splice, an `emsg` with MPD Validity Expiration event is inserted into the first available segment. This event triggers an MPD update, and not an ad decision, hence the sum of the earliest presentation time of the `emsg`-bearing segment and the `emsg`.presentation_time_delta should be sufficiently earlier than the splice time. This provides the client with sufficient time to both fetch the MPD and resolve XLink.
splice_time() of the cue message is translated into the media timeline, and last segment before the splice point is identified. If needed, the packager can also finish the segment at the splice point and thus having a segment shorter than its target duration.
Multiple cue messages
There is a practice of sending several SCTE 35 cue messages for the same splice point (e.g., the first message announces a splice in 6 seconds, the second arrives 2 seconds later and warns about the same splice in 4 seconds, etc.). Both the packager and the MPD generator react on the same first message (the 6-sec warning in the example above), and do nothing about the following messages.
Cancelation
It is possible that the upcoming (and announced) insertion will be canceled (e.g., ad break needed to be postponed due to overtime). Cancelation is announced in a SCTE 35 cue message.
When cancelation is announced, the packager will insert the corresponding `emsg` event and the MPD generator will create a newer version of the MPD that does not contain the inserted period or sets its duration to zero. This implementation maintains a simpler less-coupled server side system at the price of an increase in traffic.
Early termination
It is also possible that a planned ad break will need to be cut short – e.g., an ad will be cut short and there will be a switch to breaking news. The DASH translation of this would be creating an `emsg` at the packager and updating the MPD appropriately. Treatment of early termination here would be same as treatment of a switch from main content to an ad break.
It is easier to manipulate durations when Period@duration is absent and only Period@start is used – this way attributes already known to the DASH client don’t change.
Ad decision

[bookmark: _Toc268297907]Figure 4: Ad Decision
A client will attempt to dereference a remote period element by issuing an HTTP GET for the URL that appears in Period@xlink:href. The HTTP server responding to this request (XLink resolver) will contact the ad decision service, possibly passing it parameters known from the request URL and from client information available to it from the connection context. In case described in 3.2.1.1.3, the XLink resolver has access to a complete SCTE 35 message that triggered the splice.
The ad decision service response identifies the content that needs to be presented, and given this information the XLink resolver can generate one or more Period elements that would be then returned to the requesting DASH client.
A possible optimization is that resolved periods are cached – e.g. in case of 3.2.1.1.1 "male" and "female" versions of the content are only generated once in T seconds, with HTTP caching used to expire the cached periods after T seconds.
[bookmark: _Toc268297875]On Demand
In a VoD scenario, cue locations are known ahead of time. They may be available multiplexed into the mezzanine file as SCTE 35 or SCTE 104, or may be provided via an out-of-band EDL.
In VoD workflows both cue locations and break durations are known, hence there is no need for a dynamic MPD. Thus cue interpretation (which is same as in 3.2.1) can occur only once and result in a static MPD that contains all remote elements with all Period elements having Period@start attribute present in the MPD.
In elastic workflows ad durations are unknown, thus despite our knowledge of cue locations within the main content it is impossible to build a complete presentation timeline. Period@duration needs to be used. Remote periods should be dereferenced only when needed for playout. In case of a “jump” – random access into an arbitrary point in the asset – it is a better practice not to dereference Period elements when it is possible to determine the period from which the playout starts using Period@duration and asset identifiers. The functionality described in 3.2.1 is sufficient to address on-demand cases, with the only difference that a client should be able to handle zero-duration periods that are a result of avails that are not taken.
[bookmark: _Toc268297876]Capture to VoD
Capture to VoD use case is a hybrid between pure linear and on demand scenarios: linear content is recorded as it is broadcast, and is then accessible on demand. A typical requirement is to have the content available with the original ad for some time, after which ads can be replaced
There are two possible ways of implementing the capture-to-VoD workflow.
The simplest is treating capture-to-VoD content as plain VoD, and having the replacement policy implemented on the XLink resolver side. This way the same Period element(s) will be always returned to the same requester within the window where ad replacement is disallowed; while after this window the behavior will be same as for any on-demand content. An alternative implementation is described in 3.2.4 below.
[[Ed.: address blackout use cases]]
[bookmark: _Ref383280498][bookmark: _Toc268297877]Slates and ad replacement
A content provider (e.g., OTT) provides content with ad breaks filled with its own ads. An ISP is allowed to replace some of these with their own ads. Conceptually there is content with slates in place of ads, but all slates can be shown and only some can be replaced.
An ad break with a slate can be implemented as a valid in-MPD Period element that also has XLink attributes. If a slate is replaceable, XLink resolution will result in new Period element(s), if not – the slate is played out.
[bookmark: _Toc268297878]Blackouts and Alternative content
In many cases broadcast content cannot be shown to a part of the audience due to contractual limitations (e.g., viewers located close to an MLB game will not be allowed to watch it, and will be shown some alternative content). While unrelated to ad insertion per se, this use case can be solved using the same “default content” approach, where the in-MPD content is the game and the alternative content will be returned by the XLink resolver if the latter determines (in some unspecified way) that the requester is in the blackout zone.
[bookmark: _Toc268297879]Tracking and reporting
A Period, either local or a remote entity, may contain an EventStream element with an event containing IAB VAST 3.0 Ad element. DASH client does not need to parse the information and act accordingly – if there is a listener to events of this type, this listener can use the VAST 3.0 Ad element to implement reporting, tracking and companion ads. The processing done by this listener does not have any influence on the DASH client, and same content would be presented to both “vanilla” DASH client and the player in which a VAST module registers with a DASH client a listener to the VAST 3.0 events.
[bookmark: _Toc387318624][bookmark: _Toc387318625][bookmark: _Toc387318626][bookmark: _Toc387318628][bookmark: _Toc387318629][bookmark: _Toc387318630][bookmark: _Toc387318631][bookmark: _Toc387318632][bookmark: _Toc387318633][bookmark: _Toc387318635][bookmark: _Toc387318636][bookmark: _Toc387318637][bookmark: _Toc387318638][bookmark: _Toc387318643][bookmark: _Toc387318646][bookmark: _Toc387318648][bookmark: _Toc387318649][bookmark: _Toc268297880]Examples
[bookmark: _Toc268297881]MPD with mid-roll ad breaks and default content
In this example, a movie (“Top Gun”) is shown on a linear channel and has two mid-roll ad breaks. Both breaks have default content that will be played if the XLink resolver chooses not to return new Period element(s) or fails.
In case of the first ad break, SCTE 35 cue message is passed completely to the XLink resolver, together with the corresponding presentation time. The syntax in this case is similar to what is proposed in [7] for HLS.
In case of the second ad break, proprietary parameters u and z describe the main content and the publishing site.

	<?xml version="1.0"?>
<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 type="dynamic"
 minimumUpdatePeriod="PT2S"
 timeShiftBufferDepth="PT600S"
 minBufferTime="PT2S"
 profiles="urn:mpeg:dash:profile:isoff-live:2011"
 availabilityStartTime="2012-12-25T15:17:50">
 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <!-- Movie -->
 <Period duration="PT600.6S" id="movie period #1">
 <AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"
 value="md:cid:EIDR:10.5240%2f0EFB-02CD-126E-8092-1E49-W">
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828" 	Comment by Keith Millar: First Period should have a start attribute.
 frameRate="24000/1001" segmentAlignment="true" startWithSAP="1">
 <BaseURL>video_1/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth$/$Number%05d$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>

 <!-- Mid-roll advertisement, passing base64url-coded SCTE 35 to XLink resolver -->
 <Period duration="PT60.6S" id="ad break #1"
 xlink:href="https://adserv.com/avail.mpd?time=54054000&id=1234567&
 cue=DAIAAAAAAAAAAAQAAZ_I0VniQAQAgBDVUVJQAAAAH+cAAAAAA=="
 xlink:actuate="onRequest" >

 <!-- Default content, replaced by elements from remote entity -->
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"
 frameRate="30000/1001"
 segmentAlignment="true" startWithSAP="1">
 <BaseURL availabilityTimeOffset="INF">default_ad/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth%/$Time$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>

 <!—Movie, cont'd -->
 <Period duration="PT600.6S" id="movie period #2">
 <AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"
 value="md:cid:EIDR:10.5240%2f0EFB-02CD-126E-8092-1E49-W">
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"
 frameRate="24000/1001"
 segmentAlignment="true" startWithSAP="1">
 <BaseURL>video_2/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth%/$Time$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>

 <!-- Mid-roll advertisement, using proprietary parameters -->
 <Period start="PT60.6S" id="ad break #2"
 xlink:href=”https://adserv.com/avail.mpd?u=0EFB-02CD-126E-8092-1E49-W&z=spam”
 xlink:actuate="onRequest" >

 <!-- Default content, replaced by elements from remote entity -->
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828"
 frameRate="30000/1001"
 segmentAlignment="true" startWithSAP="1">
 <BaseURL availabilityTimeOffset="INF">default_ad2/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
 media="$Bandwidth%/$Time$.mp4v"/>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 </Period>
</MPD>

[bookmark: _Toc268297908]Figure 5: Example of MPD for "Top Gun" movie
[bookmark: _Toc361220656][bookmark: _Toc351719933][bookmark: _Toc351719934][bookmark: _Ref361668816][bookmark: _Toc268297882]App-based Architecture

[bookmark: _Toc268297909]Figure 6: App-based architecture

Inputs in this use case are same as the ones described in sec. 3. At the packaging stage, cues are translated into a format readable by the app or/and DASH client and are embedded into media segments or/and into the manifest
Ad management module is located at the client side. The DASH client receives manifest and segments, with cues embedded in either one of them or in both.
Cue data is passed to the ad management module, which contacts the ad decision service and receives information on content to be played. This results in an MPD for an inserted content and a splice time at which presentation of main content is paused and presentation of the inserted content starts.
Note that this architecture does not assume multiple decoders – with careful conditioning it is possible to do traditional splicing where inserted content is passed to the same decoder. In this case it is necessary to keep a player state and be able to initialize a player into this state.
[bookmark: _Toc268297883]Mapping into DASH
This section details mapping of elements of the reference architecture into DASH concepts per the 2nd edition of the specification (i.e., ISO/IEC 23009-1:2014).
[bookmark: _Toc268297884]MPD
Each ad decision results in a separate MPD. A single MPD contains either main content or inserted content; existence of multiple periods or/and remote periods is possible but not essential.
[bookmark: _Ref376796461][bookmark: _Toc268297885]DASH events
Cue messages are mapped into DASH events, using inband `emsg` boxes and/or in-MPD events. Note that SCTE 35 cue message may not be sufficient by itself.
The examples below show use of SCTE 35 in user-defined events, and presentation time indicates the timing in within the Period.
Figure 7 below shows the content of an `emsg` box at the beginning of a segment with earliest presentation time T. There is a 6-sec warning of an upcoming splice – delta to splice time is indicated as 6 seconds – and duration is given as 1 minute. This means that an ad will start playing at time T + 6 till T + 66. This example follows a practice illustrated in [7].

[bookmark: _Ref376802353][bookmark: _Toc268297910]Figure 7: Inband carriage of SCTE 35 cue message
Figure 8 below shows the same example with an in-MPD SCTE35 cue message. The difference is in the in-MPD event the splice time is relative to the Period start, rather than to the start of the event-carrying segment. This figure shows a one-minute ad break 10 minutes into the period.
	<EventStream schemeIdUri="urn:scte:scte35:2013:xml">
 <Event timescale="90000" presentationTime="54054000" duration="5400000" id="1">
 <scte35:SpliceInfoSection scte35:ptsAdjustment="0" scte35:tier="22">
 <scte35:SpliceInsert
 scte35:spliceEventId="111"
 scte35:spliceEventCancelIndicator="false"
 scte35:outOfNetworkIndicator="true"
 scte35:uniqueProgramId="65535"
 scte35:availNum="1"
 scte35:availsExpected="2"
 scte35:spliceImmediateFlag="false">
 <scte35:Program>
 <!-- Event timing is given by Event@presentationTime, -->
 <!-- splice_time() processing is up to the application -->
 <scte35:SpliceTime scte35:ptsTime="122342"/>
 </scte35:Program>
 <scte35:BreakDuration
 scte35:autoReturn="false" scte35:duration="5400000"/>
 </scte35:SpliceInsert>
 <scte35:AvailDescriptor scte35:providerAvailId="332"/>
 </scte35:SpliceInfoSection>
 </Event>
</EventStream>

[bookmark: _Ref376802644][bookmark: _Toc268297911]Figure 8: In-MPD carriage of SCTE 35 cue message

[bookmark: _Toc268297886]Asset Identifiers
See sec. Error! Reference source not found. for details.
[bookmark: _Toc268297887]Workflows
[bookmark: _Toc268297888]Linear
A real-time MPEG-2 TS feed arrives at a packager. While real-time multicast feeds are a very frequently encountered case, the same workflow can apply to cases such as ad replacement in a pre-recorded content (e.g., in time-shifting or PVR scenarios).
Packager creates DASH segments out of the arriving feed and writes them into the origin server. The packager translates SCTE 35 cue messages into inband DASH events, which are inserted into media segments.
MPD generator is unaware of ad insertion functionality and the packager does the translation of SCTE 35 cue messages into inband user-defined DASH events. On reception of an SCTE 35 cue message signaling an upcoming splice, a `emsg` with a translation of the cue message in its `emsg`.message_data[] field is inserted into the most recent segment. This event triggers client interaction with an ad decision server, hence the sum of the earliest presentation time of the `emsg`-bearing segment and the `emsg`.presentation_time_delta should be a translation of splice_time() into the media timeline.
An alternative implementation which is more compatible with server-based architecture in sec. 3: an MPD generator can generate separate MPDs for both server-based and app-based architectures creating remote periods for server-based and in-MPD SCTE 35 events for app-based architectures, while a packager can insert inband MPD Validity Expiration
A DASH client will pass the event to the app controlling it (e.g., via a callback registered by the app). The app will interpret the event and communicate with the ad decision server using some interface (e.g., VAST). This interface is out of the scope of this document.
The communication with ad decision service will result in an MPD URL. An app will pause the presentation of the main content and start presentation of the inserted content. After presenting the inserted content the client will resume presentation of the main content. This assumes either proper conditioning of the main and inserted content or existence of separate client and decoder for inserted content. The way pause/resume is implemented is internal to the API of the DASH client. Interoperability can be achieved by using the DASH MPD fragment interface Error! Reference source not found..
[bookmark: _Toc268297889]On Demand
As in the server-based case, functionality defined for the live case is sufficient. Moreover, the fact that that app-based implementation relies heavily on app's ability to pause and resume the DASH client, support for elastic workflows is provided out of the box.
In the on demand case, as cue locations are well-known, it is advantageous to provide a static MPD with SCTE 35 events than run a dynamic service that relies on inband events.
[bookmark: _Toc387318668][bookmark: _Toc387318670][bookmark: _Toc387318671][bookmark: _Toc387318673][bookmark: _Toc387318674][bookmark: _Toc268297890]Items to resolve
[bookmark: _Toc268297891]Trusted client
Authorizing a client to access content. This is a "no-DRM" / "conditional access" option, where only a proof of DASH client identity is needed to allow all access to the media. The main use case is disallowing clients that allow ad skipping.
Note that this functionality is an alternative to using a DRM, not something that is used in parallel to it (as client authentication is a part of functionality provided by a DRM)
[bookmark: _Toc268297892]Possible approaches
(a) OMAP
(b) Clear key encryption: DASH client will communicate with an external server, the latter will authenticate it and provide it with a key. The client will then use the key to decrypt the segments. This can be done with Segment Encryption and Authentication, ISO/IEC 23009-4.
DASH-IF may want to provide input(s) to MPEG DASH CE's, and ask for MPEG guidance via a liaison.
[bookmark: _Toc268297893]Interoperability points
[bookmark: _Toc268297894]Server-driven interoperability points
[bookmark: _Ref387300093][bookmark: _Ref387141838][bookmark: _Toc268297895]Static Multiperiod
General
This interoperability point assumes multi-period DASH content, with each Period corresponding either to inserted content or a single ad. This IOP assumes all elements are non-remote, i.e. no XLink implementation is needed. The downside is that ad decisions need to be made by the time MPD is generated.
The compliance to Server-Driven Static Multiperiod IOP may be signaled by a @profiles attribute with the value http://dashif.org/guidelines/adin/static#multiperiod
[bookmark: _Ref387301061]Guidelines for Content Authoring
Multi-period content
The DASH-IF DASH-AVC/264 Live Services document sec. 4.3.3 provides guidelines for multi-period content. These guidelines should be followed.

Asset Identifiers
AssetIdentifier descriptor shall be used for distinguishing parts of the same asset within a multi-period MPD, hence it shall be used for main content.
In order to enable better tracking and reporting, unique IDs should be used for different assets. Hence it is recommended to use AssetIdentifier descriptors in inserted content as well.
1.) The value of @schemeIdUri shall be "urn:org:dashif:asset-id:2014"
2.) The value of @value attribute descriptor shall be a MovieLabs ContentID URN ([10], 2.2.1) for the content. It shall be the same for all parts of an asset. Preferred scheme is EIDR.
3.) If the period is the last period of a multi-period asset, the author may add "one-off" self-contained period (e.g., an advertisement), the value of the AssetIdentifier@id attribute shall be a UUID.
NOTE: if (3) above is not done, the random access logic for a repeated ad will consider every repeated appearance of the ad as a continuation of its previous appearance(s). This way, a second appearance of an ad will have playout bar start at 50%.

The AssetIdentifier descriptor should be used for all multi-period assets.
If a period has single-period semantics (i.e., an asset is completely contained in a single period, and its continuation is not expected in the future), the author shall not use asset identifier on these assets.
Periods that do not contain non-remote AdaptationSet elements, as well as zero-length periods shall not contain the AssetIdentifier descriptor.
On Demand content
In case the main content complies with ISO-BMFF On Demand profile, we can assume it is stored as a single file. There is no need to create per-period files if this content is offered as multi-period. All periods for this asset will have same BaseURL values and different SegmentBase@presentationTimeOffset values, each corresponding to the media time equivalent to PeriodStart. The file will contain `sidx` box(es), and the client will read the index information to calculate the segment offsets taking the value of SegmentBase@presentationTimeOffset into account. Note: as of April 2014, this is insufficiently clear from the standard.
tba
[bookmark: _Ref387317174][bookmark: _Toc268297896]Static just-in-time
General
This interoperability point assumes multi-period DASH content, MPD that contains Period@xlink:href and Period@xlink:actuate. It is a superset of Static Multiperiod IOP (see 6.1.1), with the addition of XLink.
The compliance to Static Just-in-time IOP may be signaled by a @profiles attribute with the value "http://dashif.org/guidelines/adin/static#jit"
[bookmark: _Ref387317506]Guidelines for Content Authoring
General
Guidelines in 6.1.1.2 above apply
[bookmark: _Ref387328927]Remote Periods
MPD contains remote periods, some of which may have default content. Some of which are resolved into multiple Period elements.
After dereferencing MPD may contain zero-length periods or/and remote Periods.
In case of Period@xlink:actuate="onRequest", MPD update and XLink resolution should be done sufficiently early to ensure that there are no artefacts due to insufficient time given to download the inserted content. Let Pm be the period carrying main content, and Pi – remote period carrying inserted content immediately following it. Let the effective duration of period Pm (i.e., PeriodStart(Pi) - PeriodStart(Pm)) be T. Also, let MBT be MPD@minBufferTime. Dereferencing Pi should be done at time T - 2×MBT. If there is no response by T - 1×MBT, the client may assume that dereferencing failed.

[bookmark: _Ref387328246][bookmark: _Toc268297897]Dynamic multiperiod
General
This interoperability point is an extension of Static Multiperiod IOP (see 6.1.2 above), with the difference that the content contains DASH MPD Validity Expiration events to trigger MPD updates
The compliance to Dynamic Multiperiod IOP may be signaled by a @profiles attribute with the value "http://dashif.org/guidelines/adin/dynamic#multiperiod"
Guidelines for Content Authoring
General
Guidelines in 6.1.2.2 above apply.
Inband MPD Validity Expiration events are expected to occur in some of the media segments
Alternatively, MPD Validity Expiration events may appear as MPD events. Either one of the mechanisms – MPD events or inband events – may be used in a single period.
NOTE: additional user-defined events (either inband or MPD) may be present, but the client is not expected to process them,
Signaling
Presence of inband MPD Validity Expiration events shall always be signaled using AdaptationSet.InbandEventStream element with @schemeIdUri=" urn:mpeg:dash:event:2012".
Inband MPD Validity expiration events shall be present in video. If these events are used, all video adaptation sets shall carry them.
Placement
`emsg` boxes shall be aligned: if segment SR1(i) is the ith segment of a representation R1 within an adaptation set containing N representations, then if SR0(i) contains an `emsg` box, identical `emsg` box will be carried in segments SR2(i) …, SRN(i). This means that irrespective of representation selected, all `emsg` boxes will be read if media from an adaptation set is played out. Note: this definition will be superseded by the event alignment definition in ISO/IEC 23009-1:2014 AMD1.
If several `emsg` boxes are present in a segment and one of them is the MPD Validity Expiration event, `emsg` carrying it shall always appear first.
[bookmark: _Ref387328933]Timing behavior
Let Pm be the period carrying main content, and Pi – period carrying inserted content immediately following it. Let the effective duration of period Pm (i.e., PeriodStart(Pi) - PeriodStart(Pm)) be T. Also, let MBT be MPD@minBufferTime. The `emsg` carrying MPD Validity Expiration event that triggers MPD update that adds period Pi should be carried in a segment with EPT ≤ T - 2×MBT.
[bookmark: _Toc268297898]Dynamic just-in-time
General
This interoperability point is a combination of Dynamic Multiperiod IOP (see 6.1.3 above) and Static Just-in-time IOP (see 6.1.2 above). MPD may contain remote Period elements (i.e., Period@xlink:href and Period@xlink:actuate may be present) and MPD updates may be triggered by MPD Validity Expiration events.
The compliance to Dynamic Just-in-time IOP may be signaled by a @profiles attribute with the value "http://dashif.org/guidelines/adin/dynamic#jit"
Guidelines for Content Authoring
Timing aspects
Recommendations 6.1.2.2.2 and 6.1.3.2.4 both apply. Care needs to be taken so that the client is given a sufficient amount of time to (a) request and receive MPD update, and (b) dereference the upcoming remote period.
Remote Periods
In case of Period@xlink:actuate="onRequest", following dereferencing – when done at most 2×MBT seconds before the PeriodStart), the first resulting Period shall always be a valid period (i.e. not require an extra round of immediate dereferencing – though it may contain XLink attributes for later re-resolution). If the remote element entity contains more than one Period element, later periods may be remote elements w/o valid content.

[bookmark: _Toc268297899]App-driven interoperability points
[bookmark: _Toc268297900]On Demand
General
This interoperability point assumes separate MPDs for main and inserted content. Moreover, it assumes on demand type of application (not DASH profile!), where all placement opportunities are known ahead of time.
Thus DASH is only used as means of transport for cue messages. This profile further relies on SCTE 35 cue messages embedded in the MPD.
The compliance to App-driven On Demand IOP may be signaled by a @profiles attribute with the value "http://dashif.org/guidelines/adin/app#vod"
Guidelines for Content Authoring
MPD Events
Period elements contain an EventStream element with EventStream@schemeIdUri="urn:scte:scte35:2013:xml". Event elements contain XML representation of an SCTE 35 command as a payload (.i.e., the same schema as used in Error! Reference source not found. above). This XML representation is defined in [6]. Note that SCTE 35 201X schema allows both more verbose detailed representation of SCTE 35 cue messages and a more compact base64-coded one. The latter can be used if verbosity is a concern.
MPD events with schemeIdUri="urn:scte:scte35:2013:xml" may be used only when MPD@type='static'.
[bookmark: _Toc268297901]Live
General
This interoperability point assumes separate MPDs for main and inserted content and linear type of application. While there is no dependency on ISO-BMFF Live profiles – the only assumption is unpredictability of placement opportunities – we expect this IOP be used with Live profiles.
DASH is only used as means of transport for cue messages. This profile further relies on SCTE 35 cue messages embedded in media segments.
The compliance to App-driven Live IOP may be signaled by a @profiles attribute with the value "http://dashif.org/guidelines/adin/app#live"
Guidelines for Content Authoring
Inband Events
Media segments contain inband events with scheme "urn:scte:scte35:2013:bin" a complete SCTE 35 section as a payload. Sum of the earliest presentation time of the `emsg`-bearing segment and `emsg`.presentation_time_delta is a translation of the splice time into the media timeline.
Event Signaling
Presence of inband SCTE 35 events shall always be signaled using AdaptationSet.InbandEventStream element with @schemeIdUri="urn:scte:scte35:2013:xml".
[Ed.: Signal essentiality of SCTE 35 events]
Event Alignment
`emsg` boxes shall be aligned: if segment SR1(i) is the ith segment of a representation R1 within an adaptation set containing N representations, then if SR0(i) contains an `emsg` box, identical `emsg` box will be carried in segments SR2(i) …, SRN(i). This means that irrespective of representation selected, all `emsg` boxes will be read if media from an adaptation set is played out.

[bookmark: _Toc268297902][bookmark: _Toc387318686]Gaps
1. [bookmark: _Toc387318687][bookmark: _Toc387318688]Handle blackouts;
2. Handle feeds – i.e., make sure we can respond to period duration changes when in dereferenced periods

[bookmark: _Toc268297903]References
[1] [bookmark: _Ref217470528][bookmark: _Ref214439504]DASH Industry Forum, "Guidelines for Implementation: DASH264 Interoperability Points", http://dashif.org/w/2013/08/DASH-AVC-264-v2.00-hd-mca.pdf .
[2] [bookmark: _Ref201584516]ISO/IEC 23009-1:2012 Information technology -- Dynamic adaptive streaming over HTTP (DASH) -- Part 1: Media presentation description and segment formats.
[3] ISO/IEC 23009-1:2014 2nd Ed., Information technology -- Dynamic adaptive streaming over HTTP (DASH) -- Part 1: Media presentation description and segment formats.
IAB Video Multiple Ad Playlist (VMAP),http://www.iab.net/media/file/VMAPv1.0.pdf
[4] IAB Video Ad Serving Template (VAST), http://www.iab.net/media/file/VASTv3.0.pdf
[5] [bookmark: _Ref356391439][bookmark: _Ref365038391]ANSI/SCTE 35 2013a, Digital Program Insertion Cueing Message for Cable
[bookmark: _Ref383275719]ANSI/SCTE 67 2014, Recommended Practice for SCTE 35 Digital Program Insertion Cueing Message for Cable
ANSI/SCTE 172, Constraints on AVC Video Coding for Digital Program Insertion
[6] EIDR ID Format - EIDR_ID_Format_v1.02_Jan2012-1.pdf, www.eidr.org
[7] [bookmark: _Ref356824873]Common Metadata, TR-META-CM, ver. 2.0, January 3, 2013, available at , http://www.movielabs.com/md/md/v2.0/Common_Metadata_v2.0.pdf
[8] [bookmark: _Ref356393151]Kevin Streeter, Adobe Primetime Ad Signaling and Workflow available at http://files.groupspaces.com/dashif/files/747942/PrimetimeAdSignaling_DASHIF.pptx
[9] [bookmark: _Ref356828851]Kilroy Hughes, DASH Ad Insertion, available at http://files.groupspaces.com/dashif/files/692405/DASH+Ad+Insertion.pptx
		DASH-IF Ad Insertion (for internal review)
7

7
		DASH Ad Insertion
image2.emf
HTTP GET(@xlink:href)

Success?Valid period?No

No

Replace MPD element with element(s) from

remote element entity

Remove used @xlink attributes

Yes

Period content

presented

Yes

Period ignored

Is XLink URN

“resolve-to-zero”?

NoYes

Dereferencing start

oleObject1.bin
�

�

�

�

HTTP GET(@xlink:href)

Success?

image3.emf
Media Engine

DASH

Access Client

Ad Decision Server

Origin

Content

+ events (?)

ad

ad

ad

content

content

content

MPD

MPD,

segments

Media Engine

DASH

Access Client

Ad Decision Server

MPD GeneratorPackager

CDN/Origin

Content

+ MPD validity events

ad

ad

ad

content

content

content

MPD

MPD,

segments

Segments

and timing

MPD

XLink

Resolver

Content + cues

Cues

Periods

XLink

oleObject2.bin
Media Engine

DASH
Access Client

Ad Decision Server

 Content + cues

Cues

Periods

Origin

Content
+ events (?)

ad

ad

ad

content

content

content

MPD

MPD,
segments

XLink

Media Engine

DASH
Access Client

Ad Decision Server

MPD Generator

Packager

CDN/Origin

Content
+ MPD validity events

ad

ad

ad

content

content

content

MPD

MPD,
segments

Segments
and timing

MPD

XLink Resolver

image4.emf
Buffer packets and

create segments

Buffer had SCTE 35?

Prepend MPD

Validity Expiration

event to segment

Write to originno

yes

TS packet is new

SCTE 35?

Discard packet

Update MPD with

new remote period

yes

no

MPEG-2 TS

MPEG-2 TS

M

P

E

G

-

2

T

S

M

P

E

G

-

2

T

S

oleObject3.bin
�

�

�

image5.emf
Dash ClientMPD GeneratorXLink Resolver

MPD

GET(MPD)

GET(XLink URL)

Ad Decision Server

RequestAd(avail)

Ad Decision

CDN node

Ad Period (Entity)

Ad Segment

GET(Ad Segment)

oleObject4.bin
Dash Client

MPD Generator

XLink Resolver

GET(MPD)

MPD

Ad Period (Entity)

GET(XLink URL)

Ad Decision Server

GET(Ad Segment)

RequestAd(avail)

Ad Decision

CDN node

Ad Segment

image6.emf
Origin

eventssegments

MPD URLs

App

DASH client

(main content)

Ad Decision Server

MPD

Generator

Content

+ cues

Packager

MPD

Content + events

ad

ad

content

content

content

MPD (content)

DASH client

(ads)

MPD (ads)

MPD, segments

segments

SCTE 130 / VMAP

events

Cues

Ad Management

Service

ad

oleObject5.bin
MPD URLs

App

DASH client (main content)

Ad Decision Server

MPD Generator

Content
+ cues

Packager

Origin

MPD

Content + events

ad

ad

ad

content

content

content

MPD (content)

DASH client (ads)

MPD (ads)

MPD, segments

segments

SCTE 130 / VMAP

events

 Cues

Ad Management Service

events

segments

image7.emf
scheme_id_uri=”urn:scte:scte35:2013:xml”

value=1001

timescale=90000

presentation_time_delta=540000

id=0

message_data[]=

<SpliceInfoSectionptsAdjustment="0"scte35:tier="22">

<SpliceInsert

spliceEventId="111" spliceEventCancelIndicator="false"

outOfNetworkIndicator="true"uniqueProgramId="65535"

availNum="1" availsExpected="2" spliceImmediateFlag="false">

<Program><SpliceTimeptsTime="122342"/></Program>

<BreakDurationautoReturn="false"duration="5400000"/>

</SpliceInsert>

<AvailDescriptorscte35:providerAvailId="332"/>

</SpliceInfoSection>

duration=5400000

oleObject6.bin
�

scheme_id_uri=”urn:scte:scte35:2013:xml”

value=1001

timescale=90000

presentation_time_delta=540000

id=0

image1.png

