Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #77
S4-140212
20 - 24 January 2014
revision of S4-140032
Seoul, Korea
Agenda item:
7.7.1
Source:

Qualcomm Incorporated

Title:
MI-EMO: FLUTE Enhancements - Backwards-Compatibility
Document for
Discussion and Agreement
1 Introduction
From the discussions in the telcos it was considered that using LCT in RFC 5651 has many advantageous functionalities, as it is well specified, and especially permits to use existing LCT extension headers and also to define new extension headers in a proprietary manner. Therefore, upgrading to LCT as defined in RFC 5651 is a desired objective in FLUTE enhancements.

However, this upgrade results in some issues that are discussed in this document and we provide some options on how to address these issues.
This document discusses backward compatibility from an IETF standard's perspective for FLUTE, ALC and LCT. The following happened after the completion of TS26.346 initial version that relies on FLUTE, ALC and LCT:
· RFC 3450: Asynchronous Layered Coding (ALC) Protocol Instantiation was obsoleted by RFC 5775 in April 2010
· RFC 3451: Layered Coding Transport (LCT) Building Block was obsoleted by RFC 5651 in October 2009
· RFC 3926: FLUTE - File Delivery over Unidirectional Transport was obsoleted by RFC 6726 in November 2012
TS26.346 still refers to the initial experimental IETF standards and no updates were done in 3GPP. Updates are not trivial as backwards-compatibility issues need to be taken into account. However, in the course of FLUTE enhancements, especially with the definition of FLUTE+ in 3GPP, this issue should be tackled. Some more background and a proposal is provided here.

2 Background
Assuming we just upgrade all RFCs to the new versions the following issue exists. There is a statement in RFC6726 which says the following:

 A FLUTE session consistent with this specification MUST use FLUTE

 version 2 as specified in this document. Thus, all sessions

 consistent with this specification MUST set the FLUTE version to 2.

 The FLUTE version is carried within the EXT_FDT Header Extension

 (defined in Section 3.4.1) in the ALC/LCT layer. A FLUTE session

 consistent with this specification MUST use ALC version 1 as

 specified in [RFC5775], and LCT version 1 as specified in [RFC5651].

This means that if we upgrade to RFC6726, we need to upgrade RFC 5651 and RFC 5775. However, there is no statement the other way round.

However, there is another issue in RFC 6726:

11.1. RFC 3926 to This Document
 Incremented the FLUTE protocol version from 1 to 2, due to concerns

 about backwards compatibility. For instance, the LCT header changed

 between RFC 3451 and [RFC5651]. In RFC 3451, the T and R fields of

 the LCT header indicate the presence of Sender Current Time and

 Expected Residual Time, respectively. In [RFC5651], these fields

 MUST be set to zero and MUST be ignored by receivers (instead, the

 EXT_TIME Header Extensions can convey this information if needed).

 Thus, [RFC5651] is not backwards compatible with RFC 3451, even

 though both use LCT version 1. FLUTE version 1 as specified in

 [RFC3926] MUST use RFC 3451. FLUTE version 2 as specified in this

 document MUST use [RFC5651]. Therefore, an implementation that

 relies on [RFC3926] and RFC 3451 will not be backwards compatible

 with FLUTE as specified in this document.

This means if we upgrade from RFC3451 to RFC5651 for LCT, then we basically must use FLUTE version 2. This is very subtle. If this red sentence would not be there, we may be able to use FLUTE version 1 as specified in RFC3926 also with RFC5651, but this precludes it.

This has some consequences:

· If we touch any of the RFCs to upgrade, we must upgrade also FLUTE and this breaks backward compatibility as FLUTE changes the version number from RFC3926 to RFC6726.
· This means we have four options:

1) we upgrade all the way back to Rel-9 to be able to use RFC5651

2) we change to the new RFCs and break backward-compatibility from Rel-12 on

3) we stick with old RFCs forever
4) we request a change to RFC5651 to remove the red sentence above
5) we doing something smart
· It seems that option 1is very unsuitable for reasons of existing implementations, but also negative promotion of the existing MBMS specs and systems and so on.

· Stick with the experimental RFCs forever is also not suitable as they are obsoleted and the standard RFCs should be used and we loose the opportunity to do enhancements based on the provided LCT functionalities.
· if we do option 2, we basically do greenfield from Rel-12 onwards, but this results in many compatibility issues of deployments so this is unsuitable.
Also worth to note is that in the old LCT (RFC3451) there are two flags, T and R, and two fields, the sender current time (SCT) and expected residual time (ERT), where the T and R fields are used to signal the existence of the SCT and ERT fields, that were part of the old LCT header. In the new LCT (RFC5651), the T and R fields are not used (are reserved bits and must be set to zero and ignored), and there is not possible SCT and ERT in the main part of the LCT header, and instead these fields can be added as extension headers. However, TS26.346 explicitly states in 7.2.7 that T and R shall be set to 0.

3 Proposed way forward on RFCs
Based on this analysis we propose a way forward that addresses

· backward-compatibility across Releases if the service provider wants to address this. Backward-compatibility is considered according to Type 1 as defined in section XX of TR26.848.
· enables introduction of FLUTE enhancements by FLUTE+ based on the new RFCs for LCT and possibly ALC.
Therefore, we propose

· to introduce RFC5651 for LCT level (and possibly RFC 5775 for ALC) for Rel-12 onwards. This enables using the new LCT.
· We do NOT introduce RFC6726 as it breaks backward-compatibility according to the above considerations.
·
·
·
· to provide a documentation in Rel-12 on how to deploy FLUTE+ in a backward-compatible manner to earlier Releases using RFC3451. This would mostly say:

· use the FDT with version 1 according to RFC 3926.
· set reserved bits to zero

· and possibly a few other constraints (we need to check all features of the the new RFC and if they are used, what are the consequences for receivers implement against the old RFCs).
To address the last bullet point above, two options are considered:

· We address this in 3GPP TS26.346

· We correct RFC5651 in IETF
4 Other Backward-Compatibility Issues

In addition to the issues discussed above it is proposed to provide one clear requirement.
· FLUTE+ must support a mode that is enables backward-compatible service offering according to Type 1 as defined in section XX of TR26.848.
·
5 Proposal

It is proposed to
· include the essence of the document discussed in section 1-4 into TR26.848.
· request the correction of RFC5651 in IETF to remove the requirement stated in red above.

- 1/2 -

