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-------------------------------------START OF MODIFIED CLAUSE--------------------------------
Annex B (informative):
Reference algorithm for echo control characteristics evaluation.

B.1
General

In this annex, a reference algorithm for evaluation of the echo control characteristics is described in pseudo code. The output of an implementation of the test method with the stimuli from the file “echo_control_reference_files.zip” should equal the results presented in Table 3a and Table 3b. To run the verification, the additional file named “p501-downlink_WB.pcm” in the pseudo code shall be created from the concatenated full band speech samples  FB_female_conditioning_seq_long.wav and  FB_male_female_single-talk_seq.wav from ITU-T Recommendation P.501, and processed with the following set of commands based on ITU-T Recommendation G.191:

filter -down HQ3 far_end_signal_48k.pcm far_end_signal_16k.pcm
filter P341 far_end_signal_16k.pcm p501-downlink_WB.pcm

Table 3a: Characterization of segment 1.

	
	Double talk
	Single talk

	Category
	Activity
	Av. Level [dB]
	Activity
	Av. Level [dB]

	A1
	60.8%
	-1,2
	95,1%
	0,1

	A2
	39.2%
	-5,1
	1,4%
	-4,8

	B
	0,0%
	0
	0,0%
	0

	C
	0,0%
	0
	0,0%
	0

	D
	0,0%
	0
	0,0%
	0

	E
	0,0%
	0
	0,3%
	9,4

	F
	0,0%
	0
	3,2%
	8,7

	G
	0,0%
	0
	0,0%
	0


Table 3b: Characterization of segment 2.

	
	Double talk
	Single talk

	Category
	Activity
	Av. Level [dB]
	Activity
	Av. Level [dB]

	A1
	50.2%
	-1.1
	93,8%
	0,2

	A2
	40.8%
	-7.3
	0,3%
	-5.6

	B
	1.2%
	-16,9
	0,0%
	0

	C
	7.1%
	-17,2
	0,0%
	0

	D
	0,0%
	0
	0,0%
	0

	E
	0,0%
	0
	0,5%
	9,5

	F
	0,7%
	4.0
	5.5%
	6,2

	G
	0,0%
	0
	0,0%
	0


The pseudo-code reference algorithm produces a text file output, and the implementation of the test method may be tested with the test script on the data in the file “echo_control_reference_files.zip” for which the result shall equal

ms01-rec2; segm. 1; Processed signal; 

active speech level [dBovl]; -45.8; RMS level [dBovl]; -51.5; speech activity; 0.269

ms01-rec2; segm. 1; Near end signal; 

active speech level [dBovl]; -42.6; RMS level [dBovl]; -49.1; speech activity; 0.225

ms01-rec2; segm. 1; Downlink signal; 

active speech level [dBovl]; -26.6; RMS level [dBovl]; -27.4; speech activity; 0.823

ms01-rec2; segm. 1; delay 0; DL delay 0; 


DT activity 0.100; 0.608; 0.392; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000;
ms01-rec2; segm. 1; delay 0; DL delay 0; 

DT level diff; -1.2; -5.1; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;

ms01-rec2; segm. 1; delay 0; DL delay 0; 


ST activity 0.664; 0.951; 0.014; 0.000; 0.000; 0.000; 0.003; 0.032; 0.000;
ms01-rec2; segm. 1; delay 0; DL delay 0; 

ST level diff; 0.1; -4.8; 0.0; 0.0; 0.0; 9.4; 8.7; 0.0;

ms01-rec2; segm. 2; Processed signal; 

active speech level [dBovl]; -42.0; RMS level [dBovl]; -44.4; speech activity; 0.581

ms01-rec2; segm. 2; Near end signal; 

active speech level [dBovl]; -40.6; RMS level [dBovl]; -42.7; speech activity; 0.625

ms01-rec2; segm. 2; Downlink signal; 

active speech level [dBovl]; -26.5; RMS level [dBovl]; -27.2; speech activity; 0.841

ms01-rec2; segm. 2; delay -1; DL delay 0; 


DT activity 0.348; 0.502; 0.408; 0.012; 0.071; 0.000; 0.000; 0.007; 0.000;
ms01-rec2; segm. 2; delay -1; DL delay 0; 


DT level diff; -1.1; -7.3; -16.9; -17.2; 0.0; 0.0; 4.0; 0.0;
ms01-rec2; segm. 2; delay -1; DL delay 0; 


ST activity 0.362; 0.938; 0.003; 0.000; 0.000; 0.000; 0.005; 0.055; 0.000;
ms01-rec2; segm. 2; delay -1; DL delay 0; 


ST level diff; 0.2; -5.6; 0.0; 0.0; 0.0; 9.5; 6.2; 0.0;
-------------------------------------END OF MODIFIED CLAUSE--------------------------------
-------------------------------------START OF MODIFIED CLAUSE-------------------------------
B.3
Reference algorithm

B.3.1
Main algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% processedData:           processed samples

% originalData:            near-end-only samples

% downlinkData:            down-link (loudspeaker) samples

% processedSegmentSet:     set of indices to processed data segments 

% originalSegmentSet:      set of indices to original data segments 

% PROC_FILE:               name shown in diagrams

% downlinkSystemDelayInMs: delay in DL signal from data to acoustic out 

% sampleRate:              sampling frequency of the data

% resultsFile:             output file 

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ecEvaluation(...

  processedData, ...

  nearendData, ...

  downlinkData, ...

  indexProcessed, ...

  indexNearend, ...

  PROC_FILE, ...

  downlinkSystemDelayInMs, ...

  sampleRate, ...

  resultFile)

fid = fopen(resultFile, 'a');

% Define the categories

global D1 D2 D3 D4 L1 L2 L3;

D1 = 25;

D2 = 150;

D3 = 25;

D4 = 150;

L1 = 4;

L2 = -4;

L3 = -15;

global FRAME_LENGTH_MS ...

       MAX_DURATION_MS ...

       MAX_DURATION_FRAMES ...

       MAX_LEVEL_DIFFERENCE ...

       MIN_LEVEL_DIFFERENCE ...

       HISTOGRAM_RESOLUTION_MS

FRAME_LENGTH_MS = 5;

MAX_DURATION_MS = 200;

MAX_DURATION_FRAMES = MAX_DURATION_MS/FRAME_LENGTH_MS;

MAX_LEVEL_DIFFERENCE = 40;

MIN_LEVEL_DIFFERENCE = -40;

HISTOGRAM_RESOLUTION_MS = FRAME_LENGTH_MS;

% Main processing loop

frameLengthInSamples = FRAME_LENGTH_MS*sampleRate/1000; % 5ms frames

for segment = 1:length(indexProcessed)

  % Get the data samples for the segment  

  segmentDataProcessed = cell2mat(indexProcessed(segment));

  segmentDataNearend = cell2mat(indexNearend(segment));

  index = (sampleRate*segmentDataProcessed(1)+1):sampleRate*segmentDataProcessed(2);

  x = processedData(index);

  z = downlinkData(index);

  index = (sampleRate*segmentDataNearend(1)+1):sampleRate*segmentDataNearend(2);

  y = nearendData(index);

  % Estimate and compensate for delay between processed and near end

  [x, y, z, delay] = compensateDelay(x, y, z, 0.5*sampleRate);
  % Compute the signal levels and classify the frames

  [Rx, Ry, Rz, doubleTalkFrames, singleTalkFrames] = ...

  computeSignalLevels(x, y, z, ...

                      sampleRate, frameLengthInSamples, ...

                      downlinkSystemDelayInMs, ...

                      PROC_FILE, segment, fid);

  % Evaluate double-talk performance                

  numberOfDoubleTalkFrames =0;
  % Iterate over blocks of consecutive indices

  H_dt = [];

  doubleTalkFramesBlocks = findConsecutiveBlocks(doubleTalkFrames);

  for i = 1:size(doubleTalkFramesBlocks,1)

    IdxFrom = doubleTalkFramesBlocks(i,1);

    IdxTo = doubleTalkFramesBlocks(i,2);

    currentBlockLength = IdxTo - IdxFrom;

    if currentBlockLength > 1

        [H_dt_Tmp, ld_ax_dt, dur_ax_dt] = levelTimeStatistics(Rx(IdxFrom:IdxTo), Ry(IdxFrom:IdxTo));

        if isempty(H_dt)

            H_dt = H_dt_Tmp;

        else

            H_dt = H_dt + H_dt_Tmp;

        end

        numberOfDoubleTalkFrames = numberOfDoubleTalkFrames + currentBlockLength;

    end    

  end



  [C_dt, L_dt] = evaluateHistogram(H_dt, ld_ax_dt, dur_ax_dt, ...

                                   numberOfDoubleTalkFrames);

  activityFactorDoubleTalk = numberOfDoubleTalkFrames/length(Rx);

  % Evaluate single-talk performance                

  numberOfSingleTalkFrames = 0;

  % Iterate over blocks of consecutive indices

  H_st = [];

  singleTalkFramesBlocks = findConsecutiveBlocks(singleTalkFrames);

  for i = 1:size(singleTalkFramesBlocks,1)

    IdxFrom = singleTalkFramesBlocks(i,1);

    IdxTo = singleTalkFramesBlocks(i,2);

    currentBlockLength = IdxTo - IdxFrom;

    if currentBlockLength > 1

        [H_st_Tmp, ld_ax_st, dur_ax_st] = levelTimeStatistics(Rx(IdxFrom:IdxTo), Ry(IdxFrom:IdxTo));

        if isempty(H_st)

            H_st = H_st_Tmp;

        else

            H_st = H_st + H_st_Tmp;

        end

        numberOfSingleTalkFrames = numberOfSingleTalkFrames + currentBlockLength;

    end    

  end


  [C_st, L_st] = evaluateHistogram(H_st, ld_ax_st, dur_ax_st, ...

                                   numberOfSingleTalkFrames);

  activityFactorSingleTalk = numberOfSingleTalkFrames/length(Rx);

  % Save to result file

  writeResultsToFile(fid, ... 

                     PROC_FILE, ...

                     segment, ...

                     delay, ...

                     round(downlinkSystemDelayInMs), ...

                     activityFactorDoubleTalk, ...

                     activityFactorSingleTalk, ...

                     C_dt, ...

                     C_st, ...

                     L_dt, ...

                     L_st);  

end

fclose(fid);

B.3.2
Delay compensation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Compensate for delay in processed file

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [x, y, z, delay] = ...

compensateDelay(...

  x, ...

  y, ...

  z, ...

  maxLag)

ii = 1:min(1000000, length(x));

r = xcorr(x(ii), y(ii), maxLag);

[~, delay] = max(abs(r)); 

delay = delay-maxLag-1;

if (delay > 0) 

  x = x((delay+1):end);

  z = z((delay+1):end);

  y = y(1:(end-delay));

elseif (delay < 0) 

  y = y((-delay+1):end);

  x = x(1:(end+delay));

  z = z(1:(end+delay));

end;

B.3.3
Signal level computation and frame classification

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Determine speech activity and signal levels

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Rx, Ry, Rz, doubleTalkFrames, singleTalkFrames] = ...

computeSignalLevels(x, y, z, ...

                    sampleRate, frameLengthInSamples, ...

                    downlinkSystemDelayInMs, ...

                    PROC_FILE, segment, fid)

LEVEL_METER_INIT_TIME_MS = 100;

DOWNLINK_HANGOVER_FRAMES = 40;

NEAREND_HANGOVER_FRAMES = 40;

levelMeterInitTime = LEVEL_METER_INIT_TIME_MS*sampleRate/1000;   

% Level according to IEC61672

Rx = IEC61672(x, sampleRate, 12.5);

Ry = IEC61672(y, sampleRate, 12.5);

Rz = IEC61672(z, sampleRate, 12.5);

% Correct for system delay

nRz = length(Rz);

minRz = min(Rz(levelMeterInitTime:end));

Rz = [minRz*ones(floor(downlinkSystemDelayInMs*sampleRate/1000), 1); Rz];

Rz = Rz(1:nRz);

% Sub-sample and avoid initialization period of level meter

Rx = Rx(levelMeterInitTime:frameLengthInSamples:end);

Ry = Ry(levelMeterInitTime:frameLengthInSamples:end);

Rz = Rz(levelMeterInitTime:frameLengthInSamples:end);

% Active speech level according to P.56

[activeSpeechLevelProcessed, ...

 longTermLevelProcessed, ...

 activityFactorProcessed] = ...

speechLevelMeter(x, sampleRate);  

[activeSpeechLevelNearend, ...

 longTermLevelNearend, ...

 activityFactorNearend] = ...

speechLevelMeter(y, sampleRate);  

[activeSpeechLevelDownlink, ...

 longTermLevelDownlink, ...

 activityFactorDownlink] = ...

speechLevelMeter(z, sampleRate);  

% Write active speech levels to file

writeSpeechLevelsToFile(PROC_FILE, segment, fid, ...

  activeSpeechLevelProcessed, ...

  activeSpeechLevelNearend, ...

  activeSpeechLevelDownlink, ...

  longTermLevelProcessed, ...

  longTermLevelNearend, ...

  longTermLevelDownlink, ...

  activityFactorProcessed, ...

  activityFactorNearend, ...

  activityFactorDownlink);

% 

% Only evaluate for active downlink/near-end speech including hang-over

%

activeRyFrames = find(Ry > activeSpeechLevelNearend-15.9);  

activeRzFrames = find(Rz > activeSpeechLevelDownlink-15.9);

% Downlink with added hangover

activeDownlinkSpeechFrames = zeros(size(Rz));

activeDownlinkSpeechFrames(activeRzFrames) = ones(size(activeRzFrames));

activeDownlinkSpeechFrames = conv(activeDownlinkSpeechFrames, ...

                                  ones(DOWNLINK_HANGOVER_FRAMES, 1));

activeDownlinkSpeechFrames = activeDownlinkSpeechFrames(1:length(Rz));

% Near-end

activeNearEndSpeechFrames = zeros(size(Ry));

activeNearEndSpeechFrames(activeRyFrames) = ones(size(activeRyFrames));

activeNearEndSpeechHtFrames = conv(activeNearEndSpeechFrames, ...

                                  ones(NEAREND_HANGOVER_FRAMES, 1));

activeNearEndSpeechHtFrames = activeNearEndSpeechHtFrames(1:length(Rz));

% Only evaluate double talk when both rx+hangover and near-end

doubleTalkSpeechFrames = (activeDownlinkSpeechFrames & ...

                          activeNearEndSpeechFrames);

doubleTalkFrames = find(doubleTalkSpeechFrames > 0);

% Single talk defined as rx and no near-end including 200 ms hangover  

singleTalkSpeechFrames = (activeDownlinkSpeechFrames & ...

                          ~activeNearEndSpeechHtFrames);

singleTalkFrames = find(singleTalkSpeechFrames > 0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Average speech and noise levels

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [...

  activeSpeechLevel, ...

  longTermLevel, ...

  activityFactor ...

  ] = ...

speechLevelMeter(x, sampleRate)

SPEECH_LEVEL_HANGOVER_TIME_IN_MS = 200;

% Filter data

g = exp(-1/(0.03*sampleRate));

p = filter((1-g), [1, -g], abs(x));

q = filter((1-g), [1, -g], abs(p));

% Add 200ms hangover

hTimeInSamples = SPEECH_LEVEL_HANGOVER_TIME_IN_MS*sampleRate/1000;

qht = q;

for loop = 1:hTimeInSamples

  qht = max(qht, [zeros(loop, 1); q(1:end-loop)]);

end    

% Compute cumulative histogram of signal power with hangover

nData = length(x);

cBins = 2.0.^(0:14)';

histogramCsum = zeros(size(cBins));

for loop = 1:length(cBins)

  histogramCsum(loop) = length(find(qht>cBins(loop)));

end

% Get the levels

sumSquare = sum(x.^2);

refdB = 20*log10(32768);

longTermLevel = 10*log10(sumSquare/nData) - refdB;

A = 10*log10(sumSquare./histogramCsum) - refdB;

C = 20*log10(cBins) - refdB;

Diff = A-C;

if ((A(1) == 0) || ((A(1) - C(1)) <= 15.9))

  activeSpeechLevel = -100;

else  

  index = find(Diff <= 15.9, 1, 'first');

  if (Diff(index) == 15.9)

    activeSpeechLevel = A(index);

  else

    C_level = C(index) + ...

             (15.9 - Diff(index))* ...

             (C(index)-C(index-1))/(Diff(index)-Diff(index-1));

    activeSpeechLevel = A(index) + ...

                        (C_level - C(index))* ...

                        (A(index)-A(index-1))/(C(index)-C(index-1));

  end

end

activityFactor = 10.0^((longTermLevel-activeSpeechLevel)/10);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Speech level meter according to IEC61672

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Rx = IEC61672(x, sampleRate, tc)

%

% 

% This functions computes the power of a sampled signal

% using a discrete filter with time constant equivalent to a first order 

% continous time exponential averaging circuit, 

%

%              1/tc

%      Rx = ----------  x^2 

%            s + 1/tc

%

% according to IEC 61672 (1993, section 7.2).

%

T = 1/sampleRate;

tc = tc/1000;

%

% Design H by sampling of Hc

%

la = exp(-T/tc);

B = 1-la;

A = [1, -la];

Rx = filter(B, A, x.^2);

%

% Transform Rx to dBov (square wave), 

%

% 0 dBov <=> power of maximum square wave signal, 32768

%

%        10^0 = 32768^2/X  => X = 32768^2

%

% Avoid log(0) by using log(max(eps, Rx))

%

Rx = 10*log10(max(eps, Rx)/32768/32768);

B.3.4
Level vs time computation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Computation of level and time statistics

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [...

  levelVsDurationHistogram, ...

  levelDifferenceAxis, ...

  durationAxis] = ...

levelTimeStatistics(processedLevel, nearEndLevel)

global MAX_DURATION_FRAMES MAX_LEVEL_DIFFERENCE MIN_LEVEL_DIFFERENCE

FIRST_OCCURENCE = 1;

%

% Compute level difference

%

levelDifference = processedLevel - nearEndLevel;

%

% Only evaluate in integers (rounded towards 0) of dB and limit to max/min difference

%

levelDifference = fix(levelDifference);

levelDifference = min(levelDifference, MAX_LEVEL_DIFFERENCE);

levelDifference = max(levelDifference, MIN_LEVEL_DIFFERENCE);

%

% Produce axis

%

levelDifferenceAxis = MIN_LEVEL_DIFFERENCE:MAX_LEVEL_DIFFERENCE;

durationAxis = 1:(MAX_DURATION_FRAMES+1); 

%

% Set initial values for computations and loop through all frames

%

numberOfEvaluatedFrames = length(levelDifference);

levelIncludedInEvaluation = (MAX_LEVEL_DIFFERENCE+1)*...

                            ones(numberOfEvaluatedFrames, 1);

levelAndRunLength = zeros(numberOfEvaluatedFrames, 4);

levelVsDurationHistogram = zeros(MAX_LEVEL_DIFFERENCE+ ...

                                 (-MIN_LEVEL_DIFFERENCE)+1, ...

                                 MAX_DURATION_FRAMES+1);

previousLevelDifference = 0;

for frame = 1:numberOfEvaluatedFrames-1;

  currentLevelDifference = levelDifference(frame);

  %

  % Evaluate all levels from the previous level up to the current level

  %

  if currentLevelDifference <= 0

    firstEvaluatedLevelDifference = max(min(0, previousLevelDifference), ...

                                        currentLevelDifference);

    step = -1;

  else

    firstEvaluatedLevelDifference = min(max(0, previousLevelDifference), ...

                                        currentLevelDifference);  

    step = 1;

  end

  %

  % Loop the levels to be evaluated

  %    

  for evaluatedLevelDifference = ...

          firstEvaluatedLevelDifference:step:currentLevelDifference

    %

    % Check that the current frame is not already included 

    % in evaluation for earlier frames

    %

    if (evaluatedLevelDifference ~= levelIncludedInEvaluation(frame))

      if (evaluatedLevelDifference > 0)

        duration = find(levelDifference(frame+1:end) < ...

                        evaluatedLevelDifference, FIRST_OCCURENCE);

      else 

        duration = find(levelDifference(frame+1:end) > ...

                        evaluatedLevelDifference, FIRST_OCCURENCE);

      end

      if (isempty(duration))

        duration = numberOfEvaluatedFrames-frame+1;

      end

      %

      % Set the frames during duration of the level difference 

      % as being evaluated

      %

      if (duration > 1)

        levelIncludedInEvaluation(frame:(frame+duration-1)) = ...

            evaluatedLevelDifference*ones(duration, 1);

      end;

      %

      % Add the number of frames in the duration that have 

      % absolute level diff greater or equal to evalutedLevel

      %

      durationIndex = min(duration, MAX_DURATION_FRAMES);

      levelIndex = evaluatedLevelDifference+(-MIN_LEVEL_DIFFERENCE)+1;

      levelVsDurationHistogram(levelIndex, durationIndex) = ...

        levelVsDurationHistogram(levelIndex, durationIndex) + duration;  

    end

  end

  previousLevelDifference = currentLevelDifference;

end

B.3.5
Categorization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%

% Evaluate the histogram data

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [categories, averageLevelsInCategories] = ...

evaluateHistogram(...

  histogramData, ...

  levelDiff_ax, ...

  duration_ax, ...

  numberOfFrames)

global D1 D2 D3 D4 L1 L2 L3 HISTOGRAM_RESOLUTION_MS;

D1_scaled = D1/HISTOGRAM_RESOLUTION_MS;

D2_scaled = D2/HISTOGRAM_RESOLUTION_MS;

D3_scaled = D3/HISTOGRAM_RESOLUTION_MS;

D4_scaled = D4/HISTOGRAM_RESOLUTION_MS;

levelIndex_L1 = find(levelDiff_ax == L1);

levelIndex_L2 = levelDiff_ax == L2;

levelIndex_L3 = find(levelDiff_ax == L3);

duration_A2 = duration_ax;

duration_B = duration_ax<=D1_scaled;

duration_C = (D1_scaled<duration_ax)&(duration_ax<=D2_scaled);

duration_D = duration_ax>D2_scaled;

duration_E = duration_ax<=D3_scaled;

duration_F = (D3_scaled<duration_ax)&(duration_ax<=D4_scaled);

duration_G = duration_ax>D4_scaled;

framesInCategoryB = sum(histogramData(levelIndex_L3,  duration_B));

framesInCategoryC = sum(histogramData(levelIndex_L3,  duration_C));

framesInCategoryD = sum(histogramData(levelIndex_L3,  duration_D));

framesInCategoryE = sum(histogramData(levelIndex_L1,  duration_E));

framesInCategoryF = sum(histogramData(levelIndex_L1,  duration_F));

framesInCategoryG = sum(histogramData(levelIndex_L1,  duration_G));

framesInCategoryA2 = sum(histogramData(levelIndex_L2, duration_A2));

framesInCategoryA2 = framesInCategoryA2 - ...

                     framesInCategoryB - ...

                     framesInCategoryC - ...

                     framesInCategoryD;

framesInCategoryA1 = numberOfFrames - ...

                     framesInCategoryA2 - ...

                     framesInCategoryB - ...

                     framesInCategoryC - ...

                     framesInCategoryD - ...

                     framesInCategoryE - ...

                     framesInCategoryF - ...

                     framesInCategoryG;

categories = [framesInCategoryA1;

              framesInCategoryA2;

              framesInCategoryB;

              framesInCategoryC;

              framesInCategoryD;

              framesInCategoryE;

              framesInCategoryF;

              framesInCategoryG]/numberOfFrames;

averageLevelsInCategories = zeros(8, 1);

% Category A1

index = levelDiff_ax < L1;

index = levelDiff_ax(index) > L2;

weight = levelDiff_ax(index);

duration = duration_ax;

levelTimesDuration = (weight*histogramData(index, duration)).*duration;

nData = sum(histogramData(index, duration)*duration');

if (framesInCategoryA1 > 0)

  averageLevelsInCategories(1) = sum(levelTimesDuration)/nData;

end

% Category A2

index = levelDiff_ax <= L2;

index = levelDiff_ax(index) > L3;

weight = levelDiff_ax(index);

duration = duration_ax;

levelTimesDuration = (weight*histogramData(index, duration)).*duration;

nData = sum(histogramData(index, duration)*duration');

if (framesInCategoryA2 > 0)

  averageLevelsInCategories(2) = sum(levelTimesDuration)/nData;

end

% Category B, C, D

index = find(levelDiff_ax <= L3);

weight = levelDiff_ax(index);

duration = duration_ax(duration_B);

levelTimesDuration = (weight*histogramData(index, duration_B)).*duration;

nData = sum(histogramData(index, duration_B)*duration');

if (framesInCategoryB > 0)

  averageLevelsInCategories(3) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_C);

levelTimesDuration = (weight*histogramData(index, duration_C)).*duration;

nData = sum(histogramData(index, duration_C)*duration');

if (framesInCategoryC > 0)

  averageLevelsInCategories(4) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_D);

levelTimesDuration = (weight*histogramData(index, duration_D)).*duration;

nData = sum(histogramData(index, duration_D)*duration');

if (framesInCategoryD > 0)

  averageLevelsInCategories(5) = sum(levelTimesDuration)/nData;

end

% Category E, F, G

index = find(levelDiff_ax >= L1);

weight = levelDiff_ax(index);

duration = duration_ax(duration_E);

levelTimesDuration = (weight*histogramData(index, duration_E)).*duration;

nData = sum(histogramData(index, duration_E)*duration');

if (framesInCategoryE > 0)

  averageLevelsInCategories(6) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_F);

levelTimesDuration = (weight*histogramData(index, duration_F)).*duration;

nData = sum(histogramData(index, duration_F)*duration');

if (framesInCategoryF > 0)

  averageLevelsInCategories(7) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_G);

levelTimesDuration = (weight*histogramData(index, duration_G)).*duration;

nData = sum(histogramData(index, duration_G)*duration');

if (framesInCategoryG > 0)

  averageLevelsInCategories(8) = sum(levelTimesDuration)/nData;

end

B.3.6
Auxiliary functions for reporting data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%

% Write the classification to file

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function writeResultsToFile(fid, ...

                     PROC_FILE, ...

                     segment, ...

                     delay, ...

                     downlinkSystemDelay, ...

                     activityFactorDoubleTalk, ...

                     activityFactorSingleTalk, ...

                     C_dt, ...

                     C_st, ...

                     L_dt, ...

                     L_st)

str = sprintf('%s; segm. %d; delay %d; DL delay %d; DT activity %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f;', ...

       PROC_FILE, segment, delay, downlinkSystemDelay, activityFactorDoubleTalk, ...

       C_dt(1), C_dt(2), C_dt(3), C_dt(4), ...

       C_dt(5), C_dt(6), C_dt(7), C_dt(8));

disp(str);        

if (fid > -1)

  fprintf(fid, [str, '\n']);

end;        

str = sprintf('%s; segm. %d; delay %d; DL delay %d; DT level diff; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f;', ...

        PROC_FILE, segment, delay, downlinkSystemDelay, ...

        L_dt(1), L_dt(2), L_dt(3), L_dt(4), L_dt(5), L_dt(6), L_dt(7), L_dt(8));

disp(str);        

if (fid > -1)

  fprintf(fid, [str, '\n']);

end;        

str = sprintf('%s; segm. %d; delay %d; DL delay %d; ST activity %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f;', ...

        PROC_FILE, segment, delay, downlinkSystemDelay, activityFactorSingleTalk, ...

        C_st(1), C_st(2), C_st(3), C_st(4), ...

        C_st(5), C_st(6), C_st(7), C_st(8));

disp(str);        

if (fid > -1)

  fprintf(fid, [str, '\n']);

end;        

str = sprintf('%s; segm. %d; delay %d; DL delay %d; ST level diff; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f;', ...

        PROC_FILE, segment, delay, downlinkSystemDelay, ...

        L_st(1), L_st(2), L_st(3), L_st(4), L_st(5), L_st(6), L_st(7), L_st(8));

disp(str);        

if (fid > -1)

  fprintf(fid, [str, '\n']);

end;        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%

% Write the signal levels to file

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function writeSpeechLevelsToFile(PROC_FILE, segment, fid, ...

  activeSpeechLevelProcessed, ...

  activeSpeechLevelNearend, ...

  activeSpeechLevelDownlink, ...

  longTermLevelProcessed, ...

  longTermLevelNearend, ...

  longTermLevelDownlink, ...

  activityFactorProcessed, ...

  activityFactorNearend, ...

  activityFactorDownlink)

str = sprintf('%s; segm. %d; Processed signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

   PROC_FILE, segment, activeSpeechLevelProcessed, ...

   longTermLevelProcessed, activityFactorProcessed);

disp(str);

if (fid > -1)

  fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; Near end signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

   PROC_FILE, segment, activeSpeechLevelNearend, ...

   longTermLevelNearend, activityFactorNearend);

disp(str);

if (fid > -1)

  fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; Downlink signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

   PROC_FILE, segment, activeSpeechLevelDownlink, ...

   longTermLevelDownlink, activityFactorDownlink);

disp(str);

if (fid > -1)

  fprintf(fid, [str, '\n']);

end;

B.3.7
Other helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%

% Find & separate blocks with consecutive indices  

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ConsecutiveBlocks] = findConsecutiveBlocks(FrameIndices)

D = diff(FrameIndices);

Changes = find(D > 1);

ConsecutiveBlocks = zeros(length(Changes)+1,2);

ConsecutiveBlocks(1,1) = FrameIndices(1);

for i = 1:length(Changes)

    ConsecutiveBlocks(i,2) = FrameIndices(Changes(i));

    if i <= length(Changes)

        ConsecutiveBlocks(i+1,1) = FrameIndices(Changes(i)+1);    

    end

end

if ConsecutiveBlocks(end,2) == 0

    ConsecutiveBlocks(end,2) = FrameIndices(end);

end

-------------------------------------END OF MODIFIED CLAUSE--------------------------------
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