Page 1

3GPP TSG-SA4 Meeting #73
(
 S4-130510
Qingdao, China, 15 April - 19 April, 2013

	CR-Form-v10

	CHANGE REQUEST

	

	(

	26.132
	CR
	0058
	(

rev
	-
	(

Current version:
	11.2.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/Change-Requests.

	

	Proposed change affects: (

	UICC apps(

	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Update of the reference algorithm for echo control characteristics evaluation in Annex B.

	
	

	Source to WG:
(

	HEAD acoustics GmbH, Telefon AB LM Ericsson, ST-Ericsson SA, Sony Mobile Com. Japan, Inc., Intel UK

	Source to TSG:
(

	S4

	
	

	Work item code:
(

	Ext_ATS
	
	Date: (

	17-04-2013

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-11

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(

	When testing according to the current 3GPP TS 26.132 Annex B (description of echo / double talk characterization) problems with the creation of the histogram were observed. In general the method creates a histogram over level changes (positive or negative) and over durations of these attenuations (double talk) and amplifications (echo).

In the provided reference code, there is an issue in the calculation of the histogram. In some cases, double talk frames directly succeed single talk frames or vice versa. In other cases, there is neither single talk nor double talk activity (e.g. when up- and downlink are inactive), which results in gaps. In the reference code, the gaps are not considered which can result in too high estimates of the durations.

The CR proposes to apply a slight change to the algorithm: calculation of the histogram is performed per double / single talk “block”. Only consecutive level frames are evaluated. Whenever a gap is detected, the histogram counting procedure is restarted.This is done with an additional loop over the blocks in levelTimeStatistics() and a new function findConsecutiveBlocks().

A further change is proposed for calculating the averaged level in each category. The current construction of the reference code does not exclude the case where no frames has been classified in a category, but where there is histogram data belonging to a category with a longer duration. An example of this can be seen in Annex B Table 3b where the DT category ‘E’ has 0 % activity, but an averaged level of 5.2 was produced. The CR proposes to only compute the averaged level when there is an activity in a category.

	
	

	Summary of change:
(

	Updated pseudo code in Annex B section B.3 and updated verification output in Annex B section B.1.

	
	

	Consequences if
(

not approved:
	Measured results may lead to inconsistent characterization (too optimistic or too pessimistic).

	
	

	Clauses affected:
(

	Annex B1, B.3,1, B. 3.5, B 3.7 (new)

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	(show related CRs)
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	.

-------------------------------------START OF MODIFIED CLAUSE--------------------------------
Annex B (informative):
Reference algorithm for echo control characteristics evaluation.

B.1
General

In this annex, a reference algorithm for evaluation of the echo control characteristics is described in pseudo code. The output of an implementation of the test method with the stimuli from the file “echo_control_reference_files.zip” should equal the results presented in Table 3a and Table 3b. To run the verification, the additional file named “p501-downlink_WB.pcm” in the pseudo code shall be created from the concatenated full band speech samples FB_female_conditioning_seq_long.wav and FB_male_female_single-talk_seq.wav from ITU-T Recommendation P.501, and processed with the following set of commands based on ITU-T Recommendation G.191:

filter -down HQ3 far_end_signal_48k.pcm far_end_signal_16k.pcm
filter P341 far_end_signal_16k.pcm p501-downlink_WB.pcm

Table 3a: Characterization of segment 1.

	
	Double talk
	Single talk

	Category
	Activity
	Av. Level [dB]
	Activity
	Av. Level [dB]

	A1
	60.8%
	-1,2
	95,1%
	0,1

	A2
	39.2%
	-5,1
	1,4%
	-4,8

	B
	0,0%
	0
	0,0%
	0

	C
	0,0%
	0
	0,0%
	0

	D
	0,0%
	0
	0,0%
	0

	E
	0,0%
	0
	0,3%
	9,4

	F
	0,0%
	0
	3,2%
	8,7

	G
	0,0%
	0
	0,0%
	0

Table 3b: Characterization of segment 2.

	
	Double talk
	Single talk

	Category
	Activity
	Av. Level [dB]
	Activity
	Av. Level [dB]

	A1
	50.2%
	-1.1
	93,8%
	0,2

	A2
	40.8%
	-7.3
	0,3%
	-5.6

	B
	1.2%
	-16,9
	0,0%
	0

	C
	7.1%
	-17,2
	0,0%
	0

	D
	0,0%
	0
	0,0%
	0

	E
	0,0%
	0
	0,5%
	9,5

	F
	0,7%
	4.0
	5.5%
	6,2

	G
	0,0%
	0
	0,0%
	0

The pseudo-code reference algorithm produces a text file output, and the implementation of the test method may be tested with the test script on the data in the file “echo_control_reference_files.zip” for which the result shall equal

ms01-rec2; segm. 1; Processed signal;

active speech level [dBovl]; -45.8; RMS level [dBovl]; -51.5; speech activity; 0.269

ms01-rec2; segm. 1; Near end signal;

active speech level [dBovl]; -42.6; RMS level [dBovl]; -49.1; speech activity; 0.225

ms01-rec2; segm. 1; Downlink signal;

active speech level [dBovl]; -26.6; RMS level [dBovl]; -27.4; speech activity; 0.823

ms01-rec2; segm. 1; delay 0; DL delay 0;

DT activity 0.100; 0.608; 0.392; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000;
ms01-rec2; segm. 1; delay 0; DL delay 0;

DT level diff; -1.2; -5.1; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;

ms01-rec2; segm. 1; delay 0; DL delay 0;

ST activity 0.664; 0.951; 0.014; 0.000; 0.000; 0.000; 0.003; 0.032; 0.000;
ms01-rec2; segm. 1; delay 0; DL delay 0;

ST level diff; 0.1; -4.8; 0.0; 0.0; 0.0; 9.4; 8.7; 0.0;

ms01-rec2; segm. 2; Processed signal;

active speech level [dBovl]; -42.0; RMS level [dBovl]; -44.4; speech activity; 0.581

ms01-rec2; segm. 2; Near end signal;

active speech level [dBovl]; -40.6; RMS level [dBovl]; -42.7; speech activity; 0.625

ms01-rec2; segm. 2; Downlink signal;

active speech level [dBovl]; -26.5; RMS level [dBovl]; -27.2; speech activity; 0.841

ms01-rec2; segm. 2; delay -1; DL delay 0;

DT activity 0.348; 0.502; 0.408; 0.012; 0.071; 0.000; 0.000; 0.007; 0.000;
ms01-rec2; segm. 2; delay -1; DL delay 0;

DT level diff; -1.1; -7.3; -16.9; -17.2; 0.0; 0.0; 4.0; 0.0;
ms01-rec2; segm. 2; delay -1; DL delay 0;

ST activity 0.362; 0.938; 0.003; 0.000; 0.000; 0.000; 0.005; 0.055; 0.000;
ms01-rec2; segm. 2; delay -1; DL delay 0;

ST level diff; 0.2; -5.6; 0.0; 0.0; 0.0; 9.5; 6.2; 0.0;
-------------------------------------END OF MODIFIED CLAUSE--------------------------------
-------------------------------------START OF MODIFIED CLAUSE-------------------------------
B.3
Reference algorithm

B.3.1
Main algorithm
%%

%

% processedData: processed samples

% originalData: near-end-only samples

% downlinkData: down-link (loudspeaker) samples

% processedSegmentSet: set of indices to processed data segments

% originalSegmentSet: set of indices to original data segments

% PROC_FILE: name shown in diagrams

% downlinkSystemDelayInMs: delay in DL signal from data to acoustic out

% sampleRate: sampling frequency of the data

% resultsFile: output file

%

%%

%%

function ecEvaluation(...

 processedData, ...

 nearendData, ...

 downlinkData, ...

 indexProcessed, ...

 indexNearend, ...

 PROC_FILE, ...

 downlinkSystemDelayInMs, ...

 sampleRate, ...

 resultFile)

fid = fopen(resultFile, 'a');

% Define the categories

global D1 D2 D3 D4 L1 L2 L3;

D1 = 25;

D2 = 150;

D3 = 25;

D4 = 150;

L1 = 4;

L2 = -4;

L3 = -15;

global FRAME_LENGTH_MS ...

 MAX_DURATION_MS ...

 MAX_DURATION_FRAMES ...

 MAX_LEVEL_DIFFERENCE ...

 MIN_LEVEL_DIFFERENCE ...

 HISTOGRAM_RESOLUTION_MS

FRAME_LENGTH_MS = 5;

MAX_DURATION_MS = 200;

MAX_DURATION_FRAMES = MAX_DURATION_MS/FRAME_LENGTH_MS;

MAX_LEVEL_DIFFERENCE = 40;

MIN_LEVEL_DIFFERENCE = -40;

HISTOGRAM_RESOLUTION_MS = FRAME_LENGTH_MS;

% Main processing loop

frameLengthInSamples = FRAME_LENGTH_MS*sampleRate/1000; % 5ms frames

for segment = 1:length(indexProcessed)

 % Get the data samples for the segment

 segmentDataProcessed = cell2mat(indexProcessed(segment));

 segmentDataNearend = cell2mat(indexNearend(segment));

 index = (sampleRate*segmentDataProcessed(1)+1):sampleRate*segmentDataProcessed(2);

 x = processedData(index);

 z = downlinkData(index);

 index = (sampleRate*segmentDataNearend(1)+1):sampleRate*segmentDataNearend(2);

 y = nearendData(index);

 % Estimate and compensate for delay between processed and near end

 [x, y, z, delay] = compensateDelay(x, y, z, 0.5*sampleRate);
 % Compute the signal levels and classify the frames

 [Rx, Ry, Rz, doubleTalkFrames, singleTalkFrames] = ...

 computeSignalLevels(x, y, z, ...

 sampleRate, frameLengthInSamples, ...

 downlinkSystemDelayInMs, ...

 PROC_FILE, segment, fid);

 % Evaluate double-talk performance

 numberOfDoubleTalkFrames =0;
 % Iterate over blocks of consecutive indices

 H_dt = [];

 doubleTalkFramesBlocks = findConsecutiveBlocks(doubleTalkFrames);

 for i = 1:size(doubleTalkFramesBlocks,1)

 IdxFrom = doubleTalkFramesBlocks(i,1);

 IdxTo = doubleTalkFramesBlocks(i,2);

 currentBlockLength = IdxTo - IdxFrom;

 if currentBlockLength > 1

 [H_dt_Tmp, ld_ax_dt, dur_ax_dt] = levelTimeStatistics(Rx(IdxFrom:IdxTo), Ry(IdxFrom:IdxTo));

 if isempty(H_dt)

 H_dt = H_dt_Tmp;

 else

 H_dt = H_dt + H_dt_Tmp;

 end

 numberOfDoubleTalkFrames = numberOfDoubleTalkFrames + currentBlockLength;

 end

 end

 [C_dt, L_dt] = evaluateHistogram(H_dt, ld_ax_dt, dur_ax_dt, ...

 numberOfDoubleTalkFrames);

 activityFactorDoubleTalk = numberOfDoubleTalkFrames/length(Rx);

 % Evaluate single-talk performance

 numberOfSingleTalkFrames = 0;

 % Iterate over blocks of consecutive indices

 H_st = [];

 singleTalkFramesBlocks = findConsecutiveBlocks(singleTalkFrames);

 for i = 1:size(singleTalkFramesBlocks,1)

 IdxFrom = singleTalkFramesBlocks(i,1);

 IdxTo = singleTalkFramesBlocks(i,2);

 currentBlockLength = IdxTo - IdxFrom;

 if currentBlockLength > 1

 [H_st_Tmp, ld_ax_st, dur_ax_st] = levelTimeStatistics(Rx(IdxFrom:IdxTo), Ry(IdxFrom:IdxTo));

 if isempty(H_st)

 H_st = H_st_Tmp;

 else

 H_st = H_st + H_st_Tmp;

 end

 numberOfSingleTalkFrames = numberOfSingleTalkFrames + currentBlockLength;

 end

 end

 [C_st, L_st] = evaluateHistogram(H_st, ld_ax_st, dur_ax_st, ...

 numberOfSingleTalkFrames);

 activityFactorSingleTalk = numberOfSingleTalkFrames/length(Rx);

 % Save to result file

 writeResultsToFile(fid, ...

 PROC_FILE, ...

 segment, ...

 delay, ...

 round(downlinkSystemDelayInMs), ...

 activityFactorDoubleTalk, ...

 activityFactorSingleTalk, ...

 C_dt, ...

 C_st, ...

 L_dt, ...

 L_st);

end

fclose(fid);

B.3.2
Delay compensation

%%

%%

%

% Compensate for delay in processed file

%

%%

%%

function [x, y, z, delay] = ...

compensateDelay(...

 x, ...

 y, ...

 z, ...

 maxLag)

ii = 1:min(1000000, length(x));

r = xcorr(x(ii), y(ii), maxLag);

[~, delay] = max(abs(r));

delay = delay-maxLag-1;

if (delay > 0)

 x = x((delay+1):end);

 z = z((delay+1):end);

 y = y(1:(end-delay));

elseif (delay < 0)

 y = y((-delay+1):end);

 x = x(1:(end+delay));

 z = z(1:(end+delay));

end;

B.3.3
Signal level computation and frame classification

%%

%%

%

% Determine speech activity and signal levels

%

%%

%%

function [Rx, Ry, Rz, doubleTalkFrames, singleTalkFrames] = ...

computeSignalLevels(x, y, z, ...

 sampleRate, frameLengthInSamples, ...

 downlinkSystemDelayInMs, ...

 PROC_FILE, segment, fid)

LEVEL_METER_INIT_TIME_MS = 100;

DOWNLINK_HANGOVER_FRAMES = 40;

NEAREND_HANGOVER_FRAMES = 40;

levelMeterInitTime = LEVEL_METER_INIT_TIME_MS*sampleRate/1000;

% Level according to IEC61672

Rx = IEC61672(x, sampleRate, 12.5);

Ry = IEC61672(y, sampleRate, 12.5);

Rz = IEC61672(z, sampleRate, 12.5);

% Correct for system delay

nRz = length(Rz);

minRz = min(Rz(levelMeterInitTime:end));

Rz = [minRz*ones(floor(downlinkSystemDelayInMs*sampleRate/1000), 1); Rz];

Rz = Rz(1:nRz);

% Sub-sample and avoid initialization period of level meter

Rx = Rx(levelMeterInitTime:frameLengthInSamples:end);

Ry = Ry(levelMeterInitTime:frameLengthInSamples:end);

Rz = Rz(levelMeterInitTime:frameLengthInSamples:end);

% Active speech level according to P.56

[activeSpeechLevelProcessed, ...

 longTermLevelProcessed, ...

 activityFactorProcessed] = ...

speechLevelMeter(x, sampleRate);

[activeSpeechLevelNearend, ...

 longTermLevelNearend, ...

 activityFactorNearend] = ...

speechLevelMeter(y, sampleRate);

[activeSpeechLevelDownlink, ...

 longTermLevelDownlink, ...

 activityFactorDownlink] = ...

speechLevelMeter(z, sampleRate);

% Write active speech levels to file

writeSpeechLevelsToFile(PROC_FILE, segment, fid, ...

 activeSpeechLevelProcessed, ...

 activeSpeechLevelNearend, ...

 activeSpeechLevelDownlink, ...

 longTermLevelProcessed, ...

 longTermLevelNearend, ...

 longTermLevelDownlink, ...

 activityFactorProcessed, ...

 activityFactorNearend, ...

 activityFactorDownlink);

%

% Only evaluate for active downlink/near-end speech including hang-over

%

activeRyFrames = find(Ry > activeSpeechLevelNearend-15.9);

activeRzFrames = find(Rz > activeSpeechLevelDownlink-15.9);

% Downlink with added hangover

activeDownlinkSpeechFrames = zeros(size(Rz));

activeDownlinkSpeechFrames(activeRzFrames) = ones(size(activeRzFrames));

activeDownlinkSpeechFrames = conv(activeDownlinkSpeechFrames, ...

 ones(DOWNLINK_HANGOVER_FRAMES, 1));

activeDownlinkSpeechFrames = activeDownlinkSpeechFrames(1:length(Rz));

% Near-end

activeNearEndSpeechFrames = zeros(size(Ry));

activeNearEndSpeechFrames(activeRyFrames) = ones(size(activeRyFrames));

activeNearEndSpeechHtFrames = conv(activeNearEndSpeechFrames, ...

 ones(NEAREND_HANGOVER_FRAMES, 1));

activeNearEndSpeechHtFrames = activeNearEndSpeechHtFrames(1:length(Rz));

% Only evaluate double talk when both rx+hangover and near-end

doubleTalkSpeechFrames = (activeDownlinkSpeechFrames & ...

 activeNearEndSpeechFrames);

doubleTalkFrames = find(doubleTalkSpeechFrames > 0);

% Single talk defined as rx and no near-end including 200 ms hangover

singleTalkSpeechFrames = (activeDownlinkSpeechFrames & ...

 ~activeNearEndSpeechHtFrames);

singleTalkFrames = find(singleTalkSpeechFrames > 0);

%%

%%

%

% Average speech and noise levels

%

%%

%%

function [...

 activeSpeechLevel, ...

 longTermLevel, ...

 activityFactor ...

] = ...

speechLevelMeter(x, sampleRate)

SPEECH_LEVEL_HANGOVER_TIME_IN_MS = 200;

% Filter data

g = exp(-1/(0.03*sampleRate));

p = filter((1-g), [1, -g], abs(x));

q = filter((1-g), [1, -g], abs(p));

% Add 200ms hangover

hTimeInSamples = SPEECH_LEVEL_HANGOVER_TIME_IN_MS*sampleRate/1000;

qht = q;

for loop = 1:hTimeInSamples

 qht = max(qht, [zeros(loop, 1); q(1:end-loop)]);

end

% Compute cumulative histogram of signal power with hangover

nData = length(x);

cBins = 2.0.^(0:14)';

histogramCsum = zeros(size(cBins));

for loop = 1:length(cBins)

 histogramCsum(loop) = length(find(qht>cBins(loop)));

end

% Get the levels

sumSquare = sum(x.^2);

refdB = 20*log10(32768);

longTermLevel = 10*log10(sumSquare/nData) - refdB;

A = 10*log10(sumSquare./histogramCsum) - refdB;

C = 20*log10(cBins) - refdB;

Diff = A-C;

if ((A(1) == 0) || ((A(1) - C(1)) <= 15.9))

 activeSpeechLevel = -100;

else

 index = find(Diff <= 15.9, 1, 'first');

 if (Diff(index) == 15.9)

 activeSpeechLevel = A(index);

 else

 C_level = C(index) + ...

 (15.9 - Diff(index))* ...

 (C(index)-C(index-1))/(Diff(index)-Diff(index-1));

 activeSpeechLevel = A(index) + ...

 (C_level - C(index))* ...

 (A(index)-A(index-1))/(C(index)-C(index-1));

 end

end

activityFactor = 10.0^((longTermLevel-activeSpeechLevel)/10);

%%

%%

%

% Speech level meter according to IEC61672

%

%%

%%

function Rx = IEC61672(x, sampleRate, tc)

%

%

% This functions computes the power of a sampled signal

% using a discrete filter with time constant equivalent to a first order

% continous time exponential averaging circuit,

%

% 1/tc

% Rx = ---------- x^2

% s + 1/tc

%

% according to IEC 61672 (1993, section 7.2).

%

T = 1/sampleRate;

tc = tc/1000;

%

% Design H by sampling of Hc

%

la = exp(-T/tc);

B = 1-la;

A = [1, -la];

Rx = filter(B, A, x.^2);

%

% Transform Rx to dBov (square wave),

%

% 0 dBov <=> power of maximum square wave signal, 32768

%

% 10^0 = 32768^2/X => X = 32768^2

%

% Avoid log(0) by using log(max(eps, Rx))

%

Rx = 10*log10(max(eps, Rx)/32768/32768);

B.3.4
Level vs time computation

%%

%%

%

% Computation of level and time statistics

%

%%

%%

function [...

 levelVsDurationHistogram, ...

 levelDifferenceAxis, ...

 durationAxis] = ...

levelTimeStatistics(processedLevel, nearEndLevel)

global MAX_DURATION_FRAMES MAX_LEVEL_DIFFERENCE MIN_LEVEL_DIFFERENCE

FIRST_OCCURENCE = 1;

%

% Compute level difference

%

levelDifference = processedLevel - nearEndLevel;

%

% Only evaluate in integers (rounded towards 0) of dB and limit to max/min difference

%

levelDifference = fix(levelDifference);

levelDifference = min(levelDifference, MAX_LEVEL_DIFFERENCE);

levelDifference = max(levelDifference, MIN_LEVEL_DIFFERENCE);

%

% Produce axis

%

levelDifferenceAxis = MIN_LEVEL_DIFFERENCE:MAX_LEVEL_DIFFERENCE;

durationAxis = 1:(MAX_DURATION_FRAMES+1);

%

% Set initial values for computations and loop through all frames

%

numberOfEvaluatedFrames = length(levelDifference);

levelIncludedInEvaluation = (MAX_LEVEL_DIFFERENCE+1)*...

 ones(numberOfEvaluatedFrames, 1);

levelAndRunLength = zeros(numberOfEvaluatedFrames, 4);

levelVsDurationHistogram = zeros(MAX_LEVEL_DIFFERENCE+ ...

 (-MIN_LEVEL_DIFFERENCE)+1, ...

 MAX_DURATION_FRAMES+1);

previousLevelDifference = 0;

for frame = 1:numberOfEvaluatedFrames-1;

 currentLevelDifference = levelDifference(frame);

 %

 % Evaluate all levels from the previous level up to the current level

 %

 if currentLevelDifference <= 0

 firstEvaluatedLevelDifference = max(min(0, previousLevelDifference), ...

 currentLevelDifference);

 step = -1;

 else

 firstEvaluatedLevelDifference = min(max(0, previousLevelDifference), ...

 currentLevelDifference);

 step = 1;

 end

 %

 % Loop the levels to be evaluated

 %

 for evaluatedLevelDifference = ...

 firstEvaluatedLevelDifference:step:currentLevelDifference

 %

 % Check that the current frame is not already included

 % in evaluation for earlier frames

 %

 if (evaluatedLevelDifference ~= levelIncludedInEvaluation(frame))

 if (evaluatedLevelDifference > 0)

 duration = find(levelDifference(frame+1:end) < ...

 evaluatedLevelDifference, FIRST_OCCURENCE);

 else

 duration = find(levelDifference(frame+1:end) > ...

 evaluatedLevelDifference, FIRST_OCCURENCE);

 end

 if (isempty(duration))

 duration = numberOfEvaluatedFrames-frame+1;

 end

 %

 % Set the frames during duration of the level difference

 % as being evaluated

 %

 if (duration > 1)

 levelIncludedInEvaluation(frame:(frame+duration-1)) = ...

 evaluatedLevelDifference*ones(duration, 1);

 end;

 %

 % Add the number of frames in the duration that have

 % absolute level diff greater or equal to evalutedLevel

 %

 durationIndex = min(duration, MAX_DURATION_FRAMES);

 levelIndex = evaluatedLevelDifference+(-MIN_LEVEL_DIFFERENCE)+1;

 levelVsDurationHistogram(levelIndex, durationIndex) = ...

 levelVsDurationHistogram(levelIndex, durationIndex) + duration;

 end

 end

 previousLevelDifference = currentLevelDifference;

end

B.3.5
Categorization

%%

%%

%

% Evaluate the histogram data

%

%%

%%

function [categories, averageLevelsInCategories] = ...

evaluateHistogram(...

 histogramData, ...

 levelDiff_ax, ...

 duration_ax, ...

 numberOfFrames)

global D1 D2 D3 D4 L1 L2 L3 HISTOGRAM_RESOLUTION_MS;

D1_scaled = D1/HISTOGRAM_RESOLUTION_MS;

D2_scaled = D2/HISTOGRAM_RESOLUTION_MS;

D3_scaled = D3/HISTOGRAM_RESOLUTION_MS;

D4_scaled = D4/HISTOGRAM_RESOLUTION_MS;

levelIndex_L1 = find(levelDiff_ax == L1);

levelIndex_L2 = levelDiff_ax == L2;

levelIndex_L3 = find(levelDiff_ax == L3);

duration_A2 = duration_ax;

duration_B = duration_ax<=D1_scaled;

duration_C = (D1_scaled<duration_ax)&(duration_ax<=D2_scaled);

duration_D = duration_ax>D2_scaled;

duration_E = duration_ax<=D3_scaled;

duration_F = (D3_scaled<duration_ax)&(duration_ax<=D4_scaled);

duration_G = duration_ax>D4_scaled;

framesInCategoryB = sum(histogramData(levelIndex_L3, duration_B));

framesInCategoryC = sum(histogramData(levelIndex_L3, duration_C));

framesInCategoryD = sum(histogramData(levelIndex_L3, duration_D));

framesInCategoryE = sum(histogramData(levelIndex_L1, duration_E));

framesInCategoryF = sum(histogramData(levelIndex_L1, duration_F));

framesInCategoryG = sum(histogramData(levelIndex_L1, duration_G));

framesInCategoryA2 = sum(histogramData(levelIndex_L2, duration_A2));

framesInCategoryA2 = framesInCategoryA2 - ...

 framesInCategoryB - ...

 framesInCategoryC - ...

 framesInCategoryD;

framesInCategoryA1 = numberOfFrames - ...

 framesInCategoryA2 - ...

 framesInCategoryB - ...

 framesInCategoryC - ...

 framesInCategoryD - ...

 framesInCategoryE - ...

 framesInCategoryF - ...

 framesInCategoryG;

categories = [framesInCategoryA1;

 framesInCategoryA2;

 framesInCategoryB;

 framesInCategoryC;

 framesInCategoryD;

 framesInCategoryE;

 framesInCategoryF;

 framesInCategoryG]/numberOfFrames;

averageLevelsInCategories = zeros(8, 1);

% Category A1

index = levelDiff_ax < L1;

index = levelDiff_ax(index) > L2;

weight = levelDiff_ax(index);

duration = duration_ax;

levelTimesDuration = (weight*histogramData(index, duration)).*duration;

nData = sum(histogramData(index, duration)*duration');

if (framesInCategoryA1 > 0)

 averageLevelsInCategories(1) = sum(levelTimesDuration)/nData;

end

% Category A2

index = levelDiff_ax <= L2;

index = levelDiff_ax(index) > L3;

weight = levelDiff_ax(index);

duration = duration_ax;

levelTimesDuration = (weight*histogramData(index, duration)).*duration;

nData = sum(histogramData(index, duration)*duration');

if (framesInCategoryA2 > 0)

 averageLevelsInCategories(2) = sum(levelTimesDuration)/nData;

end

% Category B, C, D

index = find(levelDiff_ax <= L3);

weight = levelDiff_ax(index);

duration = duration_ax(duration_B);

levelTimesDuration = (weight*histogramData(index, duration_B)).*duration;

nData = sum(histogramData(index, duration_B)*duration');

if (framesInCategoryB > 0)

 averageLevelsInCategories(3) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_C);

levelTimesDuration = (weight*histogramData(index, duration_C)).*duration;

nData = sum(histogramData(index, duration_C)*duration');

if (framesInCategoryC > 0)

 averageLevelsInCategories(4) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_D);

levelTimesDuration = (weight*histogramData(index, duration_D)).*duration;

nData = sum(histogramData(index, duration_D)*duration');

if (framesInCategoryD > 0)

 averageLevelsInCategories(5) = sum(levelTimesDuration)/nData;

end

% Category E, F, G

index = find(levelDiff_ax >= L1);

weight = levelDiff_ax(index);

duration = duration_ax(duration_E);

levelTimesDuration = (weight*histogramData(index, duration_E)).*duration;

nData = sum(histogramData(index, duration_E)*duration');

if (framesInCategoryE > 0)

 averageLevelsInCategories(6) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_F);

levelTimesDuration = (weight*histogramData(index, duration_F)).*duration;

nData = sum(histogramData(index, duration_F)*duration');

if (framesInCategoryF > 0)

 averageLevelsInCategories(7) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_G);

levelTimesDuration = (weight*histogramData(index, duration_G)).*duration;

nData = sum(histogramData(index, duration_G)*duration');

if (framesInCategoryG > 0)

 averageLevelsInCategories(8) = sum(levelTimesDuration)/nData;

end

B.3.6
Auxiliary functions for reporting data

%%

%%

%

% Write the classification to file

%

%%

%%

function writeResultsToFile(fid, ...

 PROC_FILE, ...

 segment, ...

 delay, ...

 downlinkSystemDelay, ...

 activityFactorDoubleTalk, ...

 activityFactorSingleTalk, ...

 C_dt, ...

 C_st, ...

 L_dt, ...

 L_st)

str = sprintf('%s; segm. %d; delay %d; DL delay %d; DT activity %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, activityFactorDoubleTalk, ...

 C_dt(1), C_dt(2), C_dt(3), C_dt(4), ...

 C_dt(5), C_dt(6), C_dt(7), C_dt(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; delay %d; DL delay %d; DT level diff; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, ...

 L_dt(1), L_dt(2), L_dt(3), L_dt(4), L_dt(5), L_dt(6), L_dt(7), L_dt(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; delay %d; DL delay %d; ST activity %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, activityFactorSingleTalk, ...

 C_st(1), C_st(2), C_st(3), C_st(4), ...

 C_st(5), C_st(6), C_st(7), C_st(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; delay %d; DL delay %d; ST level diff; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, ...

 L_st(1), L_st(2), L_st(3), L_st(4), L_st(5), L_st(6), L_st(7), L_st(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

%%

%%

%

% Write the signal levels to file

%

%%

%%

function writeSpeechLevelsToFile(PROC_FILE, segment, fid, ...

 activeSpeechLevelProcessed, ...

 activeSpeechLevelNearend, ...

 activeSpeechLevelDownlink, ...

 longTermLevelProcessed, ...

 longTermLevelNearend, ...

 longTermLevelDownlink, ...

 activityFactorProcessed, ...

 activityFactorNearend, ...

 activityFactorDownlink)

str = sprintf('%s; segm. %d; Processed signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

 PROC_FILE, segment, activeSpeechLevelProcessed, ...

 longTermLevelProcessed, activityFactorProcessed);

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; Near end signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

 PROC_FILE, segment, activeSpeechLevelNearend, ...

 longTermLevelNearend, activityFactorNearend);

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; Downlink signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

 PROC_FILE, segment, activeSpeechLevelDownlink, ...

 longTermLevelDownlink, activityFactorDownlink);

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

B.3.7
Other helper functions
%%

%%

%

% Find & separate blocks with consecutive indices

%

%%

%%

function [ConsecutiveBlocks] = findConsecutiveBlocks(FrameIndices)

D = diff(FrameIndices);

Changes = find(D > 1);

ConsecutiveBlocks = zeros(length(Changes)+1,2);

ConsecutiveBlocks(1,1) = FrameIndices(1);

for i = 1:length(Changes)

 ConsecutiveBlocks(i,2) = FrameIndices(Changes(i));

 if i <= length(Changes)

 ConsecutiveBlocks(i+1,1) = FrameIndices(Changes(i)+1);

 end

end

if ConsecutiveBlocks(end,2) == 0

 ConsecutiveBlocks(end,2) = FrameIndices(end);

end

-------------------------------------END OF MODIFIED CLAUSE--------------------------------
�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark appropriate boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Office® 2003 applications. Prefered format is ISO standard yyyy-MM-dd.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected and the CRs which are linked. This is particularly important where the affected specs belong to a different working group than that which will agree the present CR.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

