Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4#69
S4-120827
21 – 25 May, 2012, Erlangen, Germany

Agenda item:
7
Source:
Expway
Title:
Candidate for EMM-EFEC Work Item
Document for
Proposal for a Candidate for EMM-EFEC Work Item
Contributor
Expway, INRIA (Vincent Roca, Jonathan Detchart)
1 Summary
This submission proposes a FEC scheme for the EMM-EFEC work Item.

This FEC scheme is a combination of two widely used FEC algorithms, namely Reed-Solomon (RS) and LDPC staircase.
In this contribution, we demonstrate that these two FEC algorithms, when used properly, provide significantly better results than the current FEC defined in 3GPP (namely Raptor).
In addition to the technical merits shown in the proposal, these FECs have additional industrial benefits:
· They are already widely deployed in the broadcasting and telecom industry,

· They are already standardized by IETF since 2008 and 2009,
· They continue to be the subject of innovations from both academic and corporate world,

· Several implementations exist, in open source or not, in software and with hardware acceleration.
Therefore:

· They are simpler to develop,

· They are less expensive to deploy,
· The compliance of an implementation can be easily verified,
· They are future proof.
2 FEC encoder

In this contribution, we refer to the IETF standard as defined in the following documents:

· The LDPC staircase specification is available at: http://tools.ietf.org/html/rfc5170
· The Reed-Solomon specification is available at: http://tools.ietf.org/html/rfc5510
3 FEC decoder

In this contribution, we refer to the IETF standard as defined in the following documents:
· The LDPC staircase specification is available at: http://tools.ietf.org/html/rfc5170
· The Reed-Solomon specification is available at: http://tools.ietf.org/html/rfc5510
4 Standardization Status
Both FEC algorithms have been standardized by IETF in 2008 and 2009.

Reed-Solomon is standardized as RFC 5510 (http://tools.ietf.org/html/rfc5510). We propose to use Reed-Solomon codes over GF(2^8).

LDPC staircase is standardized as RFC 5170 (http://tools.ietf.org/html/rfc5170). In this contribution, we propose to use only LDPC staircase and not LDPC triangle.
5 Impact on TS26.346

The changes on the original specification are minor (few lines of text must be added in TS26.346). Actually, all Raptor, RS and LDPC have been already integrated into FLUTE by IETF and we propose to re-use the mechanism defined by IETF, as it is proven specifications.
Secondly, the integration of the FEC in the RTP framework is based on the same mechanism as the one used today for the Raptor RTP integration.

The integration of these FECs into the 3GPP environment is straightforward and follows standards defined by IETF. A draft text is attached to the submission.
6 Test Vectors

Expway commits to providing test vectors for the TR on application Layer FEC according to 3GPP procedure.
7 FEC Code Performance for Test Cases
FEC Code Performance
We have enclosed all the results concerning the FEC algorithms proposed.

Moreover, when possible (i.e. when information was made available) we have compared these results to the Ideal Code and to the Raptor Code:

· Ideal Codes are defined in S4-120552,
· Raptor Codes results have been calculated on the basis of public information as available in previous 3GPP contributions such as S4-120440, for instance.

Note: We found few discrepancies between our analysis and the results provided in S4-120440. For these reasons, we have re-calculated a new set of reference values for Ideal Code and Raptor Code. The presentation of these discrepancies is available in Annex A.

Global parameters for the evaluation
This proposition is based on the use of both LDPC and RS.
In this contribution, for the encoding of a file, we use:
· LDPC staircase, if N > 256
· Reed Solomon otherwise
For LDPC staircase, N1 = 7 where N1 denotes the target number of "1s" per column in the left side of the parity check matrix.

Important: note that this very simple configuration is proposed in the course of this evaluation. Further submissions could propose more efficient configurations.
Comparison of RS+LDPC with Raptor
· For the Raptor comparison, we have used the same method as the one publicly proposed by Qualcomm i.e. by weighing the results of the Ideal Code, using the following function:

[image: image12.png].

where P denotes the decoding failure probability of the code with k source symbols if m symbols have been received.

Analysis of the result

LSx

The following graph compares Raptor and RS+LDPC Codes against the Ideal Code:

· X-axis: all the use cases

· Y- axis:
· In blue, the comparison of Raptor vs the Ideal Code i.e.
%Raptor = (supportedMediabiterateraptor - supportedMediaBiterateideal)/ supportedMediaBiterateideal
· In red, the comparison of RS+LDPC vs the Ideal Code i.e.
%RS+LDPC = (supportedMediabiterateLDPC+RS - supportedMediaBiterateideal)/ supportedMediaBiterateideal

[image: image2.png]
As a result, we have:

· %Raptor

average = 2,1%

max = 25%

· %RS+LDPC

average = 0,3%

 max = 2,7%
Conclusion: The RS+LDPC scheme performs extremely well. It is very close to Ideal Code.
USx
The following graph shows the differences in % between Ideal and Raptor and between LDPC+RS and Ideal:

· X-axis: all the use cases

· Y-axis:
· In blue - %Raptor:

performanceideal - performanceraptor / performanceideal
· In red - %RS+LDPC:

performanceideal - performanceLDPC+RS / performanceideal
· In green - %RS+LDPC:
performanceideal - performanceLDPC+RS / performanceideal
(where G is of high value)
[image: image3.png]
As a result, we have:

· %Raptor:

average = 0% max = 1.3%

· %RS+LDPC:

average = 0% max = 1.3%

· %RS+LDPC (High Value for G):
average = 0% max = 0.3%

Conclusions: RS+LDPC and Raptor perform extremely well and are close to Ideal.
UDx
The following graph shows the differences in % between Ideal and Raptor and between RS+LDPC and Ideal:

· X-axis: all the use cases

· Y- axis :
· In blue - %Raptor :

FEC_overheadraptor - FEC_overheadideal

· In red - %LDPC+RS:
FEC_overheadLDPC+RS - FEC_overheadideal.
[image: image4.png]
As a result, we have:

· %Raptor:

average = 0.1%
max = 1%

· %RS+LDPC:
average = -0.2%
max = 0%

Conclusions: RS+LDPC scheme performs extremely well and is close to Ideal Code.
LDx
The following graph shows the differences in % between Ideal and Raptor and between LDPC+RS and Ideal:
· X-axis: all the use cases

· Y- axis :
· In blue - %Raptor:

FEC_overheadraptor - FEC_overheadideal
· In red - %RS+LDPC:
FEC_overheadLDPC+RS - FEC_overheadideal.
[image: image5.png]
As a result, we have:

· Raptor:

average = 0.61% max = 4,27%

· RS+LDPC:

average = 0.59% max = 2.71%

Conclusions: RS+LDPC scheme performs extremely well and is close to Ideal Code.
CPx
We have performed an analysis in 2 parts:

Firstly, we have compared our results to the raptor results for a Probability of failure < 10-4. In that case, we have assumed that raptor needs K+16 symbols to be able to ensure this success rate (this number 16 is calculated thanks to the raptor formula, it will be adjusted with real number).

The following graphs illustrate the overhead K/M in order to reach a probability failure equals to 10-4.

· Where K is the number of source symbol per block,

· and M is the number of symbol in order to reach a probability failure equals to 10-4.
[image: image6.png]
Our proposition gives very good results for most of the cases.

Nevertheless CP3, CP8, CP14, CP15 and CP16 are comparable to Raptor but do not provide a very good overhead (around 5%) K= 256.
In our proposal, we do not recommend to use this configuration. Actually, it is possible to change the G parameter (maximum number of symbols to be transported in a single packet), in order to increase the K value. Thus it is possible to avoid the use of K=256. We have in the following part illustrates what could be a good usage of the G parameter.

CPx interpretation and the impact of G:
Let us take a simple example and consider a file of 180 000 bytes.

· The size of the file, F, in bytes

· The symbol size, T, in bytes

· The number of source symbol, Kt,
· The number of source symbol per block, K
· The number of block Z,
· The maximum number of symbols to be transported in a single packet G,

· The number of symbol, M, in order to reach a probability failure equals to 10-4, which implies, for LS cases with segments of 1 second, around 1 lost every 3 hours.
· Overhead Z*M*T / F
We can take 2 different configurations for sending this file:
· T= 1000 bytes, K= 180, G=1 or

· T= 100 bytes, K=1800, G=10

In such a configuration, with LDPC scheme, the overhead is the following:
	F
	T
	K
	M
	G
	overhead

	180000
	1000
	180
	194
	1
	7,8%

	180000
	100
	1800
	1814
	10
	0,8%

Thus, for a given file size, the G value has an important impact on the reception overhead value.

Let’s consider a larger range of values:

[image: image7.emf]RS+ LDPC

file size (KB)IP packet

size

nb paquetsGKtZKTMoverhe

ad

M

(k+20)

over

head

KtZKToverh

ead

overhead

13 102413162081208642226,7%2289,6%1311310240%0,0%

20 102420163201320643344,4%3406,3%2012010240%0,0%

40 102440166401640646552,3%6603,1%4014010240%0,0%

80 102480161280112806412961,3%13001,6%8018010240%0,0%

160 1024160162560125606425770,7%25800,8%160116010240%0,7%

320 1024320825601256012825770,7%25800,8%320216010240%0,7%

640 1024640425601256025625770,7%25800,8%640321410240%0,7%

1 280 10241280225601256051225770,7%25800,8%1280525610240%0,7%

2 560 102425601256012560102425770,7%25800,8%25601025610240%0,7%

5 120 102451201512015120102451400,4%51400,4%51202025610240%0,4%

10 240 10241024011024025120102451400,4%51400,4%102404025610240%0,4%

20 480 10242048012048045120102451400,4%51400,4%204808025610240%0,4%

40 960 10244096014096085120102451400,4%51400,4%4096016025610240%0,4%

81 920 102481920181920165120102451400,4%51400,4%8192032025610240%0,4%

163 840 10241638401163840325120102451400,4%51400,4%16384064025610240%0,4%

327 680 10243276801327680645120102451400,4%51400,4%327680128025610240%0,4%

655 360 102465536016553601285120102451400,4%51400,4%655360256025610240%0,4%

1 310 720 10241310720113107202565120102451400,4%51400,4%1310720512025610240%0,4%

RaptorLDPCRS

Based on the previous result, we can construct the following graph

[image: image8]
In this case the maximum overhead for Raptor is 7.7% and only 0.7% for our proposed FEC scheme.
Conclusions:
RS+LDPC has remarkable results in comparison with Raptor Code.
RS+LDPC can ensure a very good overhead in all the cases

Implementation-specific Performance Metrics
Reference platform and methodology

The following decoding tests have been carried out on a Samsung Galaxy S2 (GT-I9100P) smartphone running Android 2.3.4. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9. Except for section 4 “Selected Use-Cases”, in all other tests, symbols are 1024 bytes long.
Encoding performance tests have been carried out both on the Samsung Galaxy S2 smartphone and a Xeon 5120/1.87GHz running 64-bit Linux (Fedora Core 10), a desktop bought in October 2006 (5 ½ years ago).

The peak working memory metric corresponds to the internal memory required by the codec during decoding, not taking into account the received symbol storage space nor the decoded source symbol storage space. By contrast, the peak working memory includes in particular the storage space for temporary results (e.g. decoded repair symbols and the constant terms of the equations) and for the linear system to solve. This is a peak value, i.e. the maximum requirement during the whole decoding process.

LDPC-Staircase software codec

Decoding performance (Samsung Galaxy S2)

The measured decoding time, speed, and peak memory requirements are listed in the following table for various LDPC-Staircase codes. For each entry of the table, the results correspond to the minimum overhead for decoding to succeed (the latest column reminds this overhead).
In reasonably good transmission conditions, the decoding algorithm (Iterative Decoding or IT) performances are listed below:
	k
	CR
	(n-k)
	N1
	Decoding

speed (s)
	Decoding

speed (Mbps)
	Peak working

memory (kB)

	1024
	0,9
	113
	7
	0,013056
	642,51
	211

	1024
	 2/3
	512
	5
	0,017350
	483,49
	448

	1024
	 2/3
	512
	7
	0,013676
	613,38
	439

	1024
	 1/2
	1024
	7
	0,015484
	541,76
	598

	8192
	 2/3
	4096
	5
	0,117010
	573,53
	3 586

	8192
	0,273067
	21808
	7
	0,188740
	355,56
	8 709

	4096
	0,273067
	10904
	7
	0,088543
	378,96
	4 416

Table 1: LDPC-Staircase decoding performance under IT decoding on the smartphone.

At the limit (when the error is close to the maximum acceptable error), the Maximum Likelihood (ML) decoding is used and provides the following performances (here again we show the worst decoding speed):
	k
	CR
	(n-k)
	N1
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)

	1024
	0,9
	113
	7
	0,021540
	389,44
	269

	1024
	 2/3
	512
	5
	0,039128
	214,39
	531

	1024
	 2/3
	512
	7
	0,049277
	170,23
	562

	1024
	 1/2
	1024
	7
	0,047421
	176,90
	707

	2048
	2/3
	1024
	5
	0,097177
	172,65
	1 112

	2048
	2/3
	1024
	7
	0,145915
	114,98
	1 190

	4096
	 2/3
	2048
	5
	0,339048
	98,97
	2 416

	4096
	2/3
	2048
	7
	0,535065
	62,71
	2 575

	8192
	 2/3
	4096
	5
	1,433019
	46,83
	5 591

Table 2: LDPC-Staircase decoding performance under ML decoding on the smartphone.

Conclusions: These results show that a regular smartphone easily decodes large LDPC-Staircase source blocks, both from the decoding speed (from 613Mbps to 170Mbps for k=1024, CR=2/3 code) and peak working memory points of view (from 562kB to 439kB, same conditions). Iterative decoding, when a smartphone enjoys good reception quality, features an extremely high speed, no matter the block size.

Encoding performance (Samsung Galaxy S2)
We have measured the encoding time on the smartphone itself. The results are summarized in the following table.
	k
	CR
	(n-k)
	N1
	encoding

time (s)
	encoding

speed (Mbps)

	1024
	0,9
	113
	7
	0,027717
	302,65

	1024
	 2/3
	512
	5
	0,018042
	464,95

	1024
	 2/3
	512
	7
	0,030396
	275,98

	1024
	 1/2
	1024
	7
	0,024326
	344,84

	8192
	 2/3
	4096
	5
	0,122829
	546,36

	8192
	0,273067
	21808
	7
	0,211803
	316,85

	4096
	0,273067
	10904
	7
	0,099948
	335,72

Table 3: LDPC-Staircase encoding performance on the smartphone.
Conclusion: These results show that a regular smartphone can easily perform LDPC-Staircase encoding, even for very large blocks.

Encoding performance (Xeon 5120, 64-bit Linux)

We have measured the encoding time on a Linux desktop. The results are summarized in the following table.

	k
	CR
	(n-k)
	N1
	encoding

time (s)
	encoding

speed (Mbps)
	number of XOR

per symbol

	1024
	0.9
	113
	7
	0,003000
	2 796,20
	7,11

	1024
	2/3
	512
	5
	0,002519
	3 330,13
	5,50

	1024
	2/3
	512
	7
	0,003300
	2 542,00
	7,50

	1024
	1/2
	1024
	7
	0,003800
	2 207,53
	8,00

	8192
	2/3
	4096
	5
	0,034500
	1 945,18
	5,50

Table 4: LDPC-Staircase encoding performance on the desktop.

Conclusions: These results show that LDPC-Staircase encoding is trivial on a 5-year-old desktop, with speeds over 2.5 Gbps for regular block sizes and still around 2 Gbps for very large blocks.
Reed-Solomon over GF(28) software codec

Decoding performance (Samsung Galaxy S2)

The measured decoding time, speed, and peak memory requirements are listed in the following table for various Reed-Solomon codes. Since Reed-Solomon Codes are Ideal Codes, decoding succeeds as soon as k symbols are received (i.e. the overhead is 0).
	k
	CR
	(n-k)
	m
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)

	32
	0,9
	4
	8
	0,004595
	57,05
	107

	32
	 2/3
	16
	8
	0,009896
	26,49
	113

	170
	0,9
	19
	8
	0,029595
	47,06
	322

	170
	 2/3
	85
	8
	0,066616
	20,91
	373

Table 5: Reed-Solomon over GF(28) decoding performance on the smartphone

Conclusion: These results show that a regular smartphone can decode streams encoded with Reed-Solomon flows, at a bandwidth that is much higher than any video stream.
Encoding performance (Samsung Galaxy S2)
We have measured the encoding time on the smartphone itself. The results are summarized in the following table.

	k
	CR
	(n-k)
	m
	encoding

time (s)
	encoding

speed (Mbps)

	32
	0,9
	4
	8
	0,005229
	50,13

	32
	 2/3
	16
	8
	0,015149
	17,30

	170
	0,9
	19
	8
	0,032273
	43,15

	170
	 2/3
	85
	8
	0,140259
	9,93

Table 6: Reed-Solomon over GF(28) encoding performance on the smartphone

Conclusions: These results show that a regular smartphone can cope with Reed-Solomon encoding, even if the results are 22 times slower (k=1024, CR=2/3) than those achieved for LDPC-Staircase codes.
Encoding performance (Xeon 5120/1.87 GHz, 64-bits Linux)

We have measured the encoding time on a Linux desktop. The results are summarized in the following table.

	k
	CR
	(n-k)
	m
	encoding

time (s)
	encoding

speed (Mbps)

	32
	0,9
	4
	8
	0,000291
	900,84

	32
	 2/3
	16
	8
	0,000871
	300,97

	170
	0,9
	19
	8
	0,005900
	236,04

	170
	 2/3
	85
	8
	0,024178
	57,60

Table 7: Reed-Solomon over GF(28) encoding performance on the desktop

Conclusions: These results show that a 5-year-old desktop can cope smoothly with Reed-Solomon encoding.
Selected use cases

Use cases details

The complexity and the memory requirements are provided for the following use cases:

· 1.8 GByte at 20% Markov model error rate:

· k= 8422 symbols, n=12633 symbols (n-k=4211), CR = 2/3, N1=5 and 7, T=1288 bytes,

· 4sec @ 1MBit/s streaming at the 20% Markov model error rate:

· k=851, n=1200 (n-k=349), CR=0.70916, T=428 bytes, N1=7,

· 20sec protection period for RTP based streaming at 384 kbit/s and 10% error rate:

· k=1024, n= 1371 (n-k=347), , N1=7,

Use-case 1 (1.8 GByte at 20% Markov model error rate)

Decoding speed by the IT decoding:
	k
	CR
	(n-k)
	N1
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)
	nb XOR par symb.

	8422
	 2/3
	4211
	5
	0,136094
	637,65
	4 264
	3,6

	8422
	 2/3
	4211
	7
	0,159496
	544,09
	4 116
	4,1

Decoding speed by the ML decoding:
	k
	CR
	(n-k)
	N1
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)
	nb XOR par symb.

	8422
	 2/3
	4211
	5
	1,834612
	47,30
	6 495
	95,7

	8422
	 2/3
	4211
	7
	3,481452
	24,93
	6 959
	173,1

Use-case 2 (4sec@1MBit/s streaming at the 20% Markov model error rate)

Decoding speed by the IT decoding:
	k
	CR
	(n-k)
	N1
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)
	nb XOR par symb.

	851
	 0,70916
	349
	7
	0,010853
	268,48
	216
	4,1

Decoding speed by the ML decoding:
	k
	CR
	(n-k)
	N1
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)
	nb XOR par symb.

	851
	 0,70916
	349
	7
	0,023096
	126,16
	272
	22,8

Use-case 3 (20sec protection period for RTP based streaming at 384 kbit/s and 10% error rate)

Decoding speed by the IT decoding:
	k
	CR
	(n-k)
	N1
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)

	1024
	0,9
	113
	7
	0,013056
	642,51
	211

Decoding speed by the ML decoding:
	k
	CR
	(n-k)
	N1
	decoding

time (s)
	decoding

speed (Mbps)
	peak working

memory (kB)
	corresp.

overhead

	1024
	0,9
	113
	7
	0,02154
	389,44
	269
	2 symb.

Library Footprint

The library footprint of the decoder (RS+LDPC) compiled for Android 2.3.4 is around 120KB.
8 Verification

In order to verify FEC code performance, one uses the openfec test environment. The sources, documentation, publication … are publicly available on the following web site: http://openfec.org/.
9 Additional Information

As we described in the introduction, the proposed solution has the merits of being both efficient and relying on widely known technologies. As a summary:
· RS+LDPC are well known codes, providing close-to-optimal performances
These codes rely on very simple and comprehensible principles: each parity symbol is simply the XOR sum of the previous parity symbol plus a very small number of source symbols. It guarantees that these codes can work very fast on contents of any given size, with linear encoding and decoding times.
Despite its high simplicity, LDPC Staircase guarantees protection against loss for large blocks equivalent to Raptor Codes. It is thus remarkable that the proposed FEC scheme is both extremely simple and highly protective.
By associating LDPC Staircase to the Reed Salomon Ideal Code for the smaller contents, we obtain a generic and proved solution covering all 3GPP use cases.
· RS+LDPC that are gaining popularity in both telecom and broadcast industries
Reed Solomon is a well known and proven ideal FEC code, with a wide range of applications from error correction on CDs, to loss recovery in space data transmissions. One significant application of Reed–Solomon coding was to encode the digital pictures sent back by the Voyager space probe.
In 2008 and 2009, LDPC has been selected by DVB-T2 and DVB-S2 broadcast standard for improving their robustness, bringing them a step closer to the optimal code. Similarly LDPC is being used by the chinese Mobile Broadcast standard, CMMB. LDPC Staircase has also been adopted by the new ISDB-Tmm standard and it enables the first commercial services massively relying on mobile download services upon a broadcast layer.
· Open Implementations are available on the shelves for RS+LDPC
An open source implementation of codecs for LDPC staircase and Reed Salomon is available on openFEC.org, with a performance test environment.
They are open to anyone who wants to perform measurement, interoperability testing, or even support their own internal development.
Conclusion: The joint use of these two technologies is close to optimal. They are used in almost every telecommunication and broadcast standards and they are available for SA4 with a minimum impact on the specification. They are a safe platform for further open innovations and a simple solution to deploy today.
10 Summary on Addressing Work Item Objectives

1. Probability of decoding failure for a given receive overhead, Transmit overhead, Receive overhead and Amount of tolerable loss packets for a given FEC overhead

As it has been showed previously, we have the following graphs

[image: image9]
Therefore, we can see that a significant enhancement is provided, especially for small files. For these small files, in our examples, the reception overhead decreases from 12,5 % to 0%

More precisely, the proposed FEC scheme gives extremely satisfactory results.

· If N < 256, then the receiver overhead is equal to 0, whatever the failure probability requested.

· If N >256, the receiver overhead is less than 1% in most cases to reach a probability failure of 10-4.
This FEC is very close to providing an ideal result: the difference between this FEC and the Ideal Code:

· It is optimal (0%) for all video streaming scenario,

· it is inferior to 1% in most cases.
2. Encoding latency/speed, Encoder SW complexity

These results show that LDPC-Staircase encoding is trivial on a 5-year-old desktop, with speeds over 2.5 Gbps for regular block sizes and still around 2 Gbps for very large blocks.
3. Decoder SW complexity, Decoding latency and Decoding memory requirements

These results show that a regular smartphone easily decodes large LDPC-Staircase source blocks, both from the decoding speed (from 613Mbps to 170Mbps for k=1024, CR=2/3 code) and peak working memory points of view (from 439KB to 562kB, same conditions). Iterative decoding, when a smartphone enjoys good reception quality, features an extremely high speed, no matter the block size.
The decoder SW requires very low number of XOR per symbol.
The decoding memory requirement changes according to the size of the block size.

For small object k=1024, the memory needed is less than 272KB

4. Implementation choices/options

Both Reed-Solomon and LDPC are widely used in the broadcast industry and several open implementations exist for both of them: open source or not, hardware or software.
Appendix A: Analysis of Differences with S4-120440

We have found some differences between our experimental results and S4-120440.

Nevertheless, it seems that these differences do not change the global picture of this assessment.

Use cases: USx

Let’s consider the first use case. In document S4-120440, we find the following value:
	Test Case
	Error rates
	Bearer rate
	Protection Period
	[T; N; G; K]
	Performance
TS26.346
	Performance corrected

	US1
	Low (1% BLER)
	Low (64kbit/s)
	5 sec
	[16; 2400; 30; 2130]
	56.8
	56.8

In the general case, it is not possible to solve simply by mathematical calculations what the exact output should be. However, when considering only an ideal FEC code, with a purely random loss model, without markov states, the theoretical problem becomes simple. The theoretical result for these simple cases should be used to validate the implementation of the simulation procedures and their outputs.

Simple Streaming Case:
· An ideal FEC is used.

· A random loss model, fully determined by its BLER.

· One packet per PDU.
· 17280 blocks are sent in 24H. (1 every 5 seconds).
· Only 24 blocks decoding failures are tolerated within a day.

 The events “block is decoded” are independent, as the loss model is random. We define Ptarget as the required block decoding success probability. Then Ptarget = (17280 – 24)/17280 ≈ 0.9986111

 We are looking for the maximum value of K, given N=2400, G=30, BLER=1% such as Pblock decoding success >= Ptarget.
Z, the number of packets, is N/G=2400/30=80.

The number of received packets per block follows a binomial distribution (80 trials with a failure probability = BLER = 1%).

[image: image10.png]

[image: image11.png]

Given K, as we use an Ideal Code, Pblock decoding failure is directly given by the cumulative distribution function. (the cumulative distribution function gives the probability to receive less than X symbols. With an Ideal Code, the block is decoded in any other case).

max K found such as Pblock decoding success >= Ptarget is 2280.
We found the value 2280 instead of 2130.

We have added in our xls sheet the mathematical function which enables to calculate this theoretical value.
Uses case: LSx

In table 4, the K value does not change according to error rate.
	Test Case
	Error conditions
	Segment
Duration
in seconds
	Bearer
Bitrate

kbit/s
	Supported
Media Bitrate
	[T; N; G; K]

	LS1
	Markov, 3km/h, 1%
	1
	266.4
	223.8
	[1288; 25; 1; 21]

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	LS7
	Markov, 3km/h, 5%
	1
	266.4
	85.2
	[1288; 25; 1; 8]

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	LS13
	Markov, 3km/h, 10%
	1
	266.4
	138.5
	[1288; 25; 1; 13]

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	LS19
	Markov, 3km/h, 20%
	1
	266.4
	85.2
	[1288; 25; 1; 8]

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

We can notice that value G does not decrease when the loss increases – In LS7 and L19, we need the same amount of repair symbols although the error condition is multiplied by four. This behavior does not exist in the Raptor table.

Use-cases: LDx

We have some differences with the experimental environment:

· According to experimental environment, in LD81-LD100, the value T shall be close to 452 in table 6. Actually, LD21-LD40 use cases have a similar environment.

· It seems that the file size for HD(1.8 GB) is not the same as the one requested:

· For instance in LDP5, the Kt value should be equal to

· Ceil(1887436800/1288) = 1465402
- 1/20 -

[image: image1.emf]𝑃=

൜

1,𝑖𝑓 𝑚<𝑘

0.85×0.567

𝑚−𝑘

,𝑖𝑓 𝑚≥𝑘

