3GPP TSG SA4#67 meeting
Tdoc S4 (12)0052
30 January – 3 February, 2012, Edinburgh, Great Britain

Source:
Qualcomm Incorporated, Huawei Technologies Co. Ltd
Title:
Network Simulator for EVS
Document for:
Approval

Agenda Item:
6
1.
Introduction
As discussed in S4-110865, testing the performance of the EVS codec for the TS 26.114 delay loss profiles requires a network simulator module. In this contribution, we describe the functionality of such a network simulator via a pseudo-code.

2.
Network Simulator for JBM Testing
In our earlier contribution on JBM testing (S4-110865), we described a stand alone network simulator that shall be used for testing the JBM solution accompanying the EVS candidates.

The MTSI profiles in TS 26.114 contain one delay value per line, indicating the delay (in msec) that a packet undergoes during transmission over the IP channel. Lost packets are indicated by a “-1” entry in a line. The network simulator shall read the encoded frames generated by the EVS encoder and the delay loss profile, and create packets by bundling (if applicable) the frames and re-ordering the packets based on their simulated arrival times. The simulated arrival time of the packets shall be determined by adding the corresponding packet delay to the packet generation time.

An example network simulator is described in the pseudo-code in Appendix 1. The source can provide a C source code for EVS testing purposes, after an agreement has been reached on using the network simulator framework as described in the pseudo-code.
Appendix 1
Network simulator pseudo-code

/* evs_enc_packet is a memory unit that holds one EVS packet, whose size is determied by its bit rate */

/* num_encoded_packets is the total number of encoded packets */
for (i=0; i< num_encoded_packets)

{

evs_enc_packet = read_one_packet_from_encoder_bitstream(finput);

Packet[num_encoder_packets].size = sizeof(evs_enc_packets);

/* Store the evs encoder packets in a buffer*/

Packet[num_encoder_packets].Buffer = evs_enc_packet;

num_encoder_packets ++;

}
/* Read the delay loss profile and create a structure Delaylossprofile to hold the RTP time stamp, sequence numbers and arrival time */

/* The variable dlvalue has the delay loss value */

Starting_SeqNum = Any_Random_Integer_SeqNumber;

seq_count = Starting_SeqNum;

i=0;

while (dlvalue = read(delay_loss_profile) ~= NULL)

{

/* Add the RTP sequence number */

for(j = 1 to number_of_frames_per_packet)

{

Delaylossprofile[i].sequence_number = seq_count+j;

}

/* Add the creation stamp */

Delaylossprofile[i].RTP_TimeStamp = TimeStampSeed+(samp_freq/8000)*160

/* Add arrival time stamp only if the packet is not lost */

if(j == number_of_frames_per_packet && dlvalue != -1)

{

Delaylossprofile[i].Arrival_TimeStamp =

(8000/samp_freq)*(Delaylossprofile[i].RTP_TimeStamp/8)+dlvalue;

for (k=1 to num_frames_per_packet)

{

Delaylossprofile[i-k].arrival time= Delaylossprofile[i].arrival time

}

}

/* Note that the entry is stored in the Delaylossprofile buffer only if the corresponding packet is not lost */

if(dlvalue ~= -1)

{

i++

}

seq_count = seq_count + number_of_frames_per_packet;

}

/* Note “i” contains the size of the non erased entities in the delay loss profiles */

Delaylossprofilesize = i;

/* Sort the delay loss profile in the of the arrival time (inplace sorting) */
Sort (Delaylossprofile);

/* Create packets for passing on to the VOIP decoder and write them to an output file */

last_RTP_SeqNumber = -1;
for (j=0 to Delaylossprofilesize)

{

if(last_RTP_SeqNumber == Delaylossprofile[j].sequence_number)

Break;

Last_RTP_SeqNumber = Delaylossprofile[j].sequence_number;

Index = Delaylossprofile[j].sequence_number – Starting_SeqNum;

/* Retrieve the packet to be written out to the file so that it can be passed on to the VOIP decoder*/

Packet_for_filewrite = Packet [Index];

/* Do not write the No Data packets that occur between SIDs */

if (Packet_for_filewrite ~= NODATA_PACKET)

{

Write_packet_to_output_file(Packet_for_filewrite);

}

}

Page: 1/3

Page: 3/3

