© ISO/IEC 2011 – All rights reserved

DRAFT AMENDMENT

 SET DDOrganization "© ISO/IEC 2011 – All rights reserved" © ISO/IEC 2011 – All rights reserved

 SET LibEnteteISO "ISO/IEC 14496-12:2008/FPDAM 3" ISO/IEC 14496-12:2008/FPDAM 3

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 12: ISO base media file format, AMENDMENT 3: DASH support and RTP reception hint track processing" Part 12: ISO base media file format, AMENDMENT 3: DASH support and RTP reception hint track processing

 SET DDTITLE3 "Information technology — Coding of audio-visual objects" Information technology — Coding of audio-visual objects

 SET DDTITLE2 "Élément introductif — Élément central — Partie 12: Titre de la partie" Élément introductif — Élément central — Partie 12: Titre de la partie

 SET DDTITLE1 "Information technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 3: DASH support and RTP reception hint track processing" Information technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 3: DASH support and RTP reception hint track processing

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2011-01-28" 2011-01-28

 SET DDDocStage "(40) Enquiry" (40) Enquiry

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR "2008" 2008

 SET DDAmno "3" 3

 SET DDDocSubType "Amendment" Amendment

 SET DDDocType "International Standard" International Standard

 SET DDWorkDocNo """"

 SET DDpubYear "2011" 2011

 SET DDRefNoPart "ISO/IEC 14496" ISO/IEC 14496

 SET DDRefGen "ISO/IEC 14496‑12" ISO/IEC 14496‑12

 SET DDRefNum "ISO/IEC 14496-12/FPDAM 3" ISO/IEC 14496-12/FPDAM 3

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle "Coding of audio, picture, multimedia and hypermedia information" Coding of audio, picture, multimedia and hypermedia information

 SET DDTCTitle "Information technology" Information technology

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "見出し 2,h2,H2,H21,Œ©_o‚µ 2,?c_o??E 2,Titre 2,?c,Œ©1,Œ©�o‚µ 2,?c�o??E 2,뙥2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Œ©2,DO NOT USE_h2,título 2,2,Header 2,2nd level,节标题" 見出し 2,h2,H2,H21,Œ©_o‚µ 2,?c_o??E 2,Titre 2,?c,Œ©1,Œ©�o‚µ 2,?c�o??E 2,뙥2,?c1,?c�o?ƒÊ 2,?2,Œ1,Œ2,Œ©2,DO NOT USE_h2,título 2,2,Header 2,2nd level,节标题

 SET libH1NAME "見出し 1,h1,Heading U,H1,H11,Œ©_o‚µ 1,?c_o??E 1,Titre 1,Œ,Œ©,Œ©�o‚µ 1,?c�o??E 1,뙥,?c�o?ƒÊ 1,?,Titre Partie,�o‚µ 1,Heading,?c�o?ƒ 1,título 1,DO NOT USE_h1" 見出し 1,h1,Heading U,H1,H11,Œ©_o‚µ 1,?c_o??E 1,Titre 1,Œ,Œ©,Œ©�o‚µ 1,?c�o??E 1,뙥,?c�o?ƒÊ 1,?,Titre Partie,�o‚µ 1,Heading,?c�o?ƒ 1,título 1,DO NOT USE_h1

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "40" 40

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBEnFileName "C:\Users\ogura\AppData\Local\Temp\B2Temp\Attach\w11726_14496-12_3rd_DAM3-r1.doc" C:\Users\ogura\AppData\Local\Temp\B2Temp\Attach\w11726_14496-12_3rd_DAM3-r1.doc

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" ISO/IEC JTC 1/SC 29 REF DDWorkDocNo * CHARFORMAT
Date: 2011-01-28
ISO/IEC 14496-12:2008/FPDAM 3 & ISO/IEC 15444-12:2008/DAM 3
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: REF DDSecr * CHARFORMAT
Information technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 3: DASH support and RTP reception hint track processing
Élément introductif — Élément central — Partie 12: Titre de la partie

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 (CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 3 to ISO/IEC 14496‑12:2008 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

Information technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 3: DASH support and RTP reception hint track processing
Add the following to Table 1:

after the first line documenting the ‘subs’ box, add:
	
	
	
	
	
	saiz
	
	<<ref>>
	sample auxiliary information sizes

	
	
	
	
	
	saio
	
	<<ref>>
	sample auxiliary information offsets

and also, after the line ‘trex’:

	
	
	leva
	
	
	
	
	<<ref>>
	level assignment

and also, before the line ‘mfra’:

	
	
	saiz
	
	
	
	
	<<ref>>
	sample auxiliary information sizes

	
	
	saio
	
	
	
	
	<<ref>>
	sample auxiliary information offsets

	
	
	tfdt
	
	
	
	
	<<ref>>
	track fragment decode time

at the end of the table, add:

	styp
	
	
	
	
	
	
	<<ref>>
	segment type

	sidx
	
	
	
	
	
	
	<<ref>>
	segment index

	ssix
	
	
	
	
	
	
	<<ref>>
	sub-segment index

	prft
	
	
	
	
	
	
	<<ref>>
	producer reference time

In 8.6.4.1 add this paragraph before the paragraph beginning “The size of the table…”

For tracks with a handler_type that is not ‘vide’, ‘soun’, ‘hint’ or ‘auxv’, and unless specified otherwise, a sample tagged with sample_depends_on=2, and sample_has_redundancy=1 can be discarded, and the duration of this sample added to the duration of the preceding one, if another sample with sample_depends_on=2 or another sample tagged as a “Sync Sample” has already been processed.

In 8.6.6.1, insert at the end:

A non-empty edit may insert a portion of the media timeline that is not present in the initial movie, and is present only in subsequent movie fragments.
In 8.7.2.1, add this paragraph:

When a file that has data entries with the flag set indicating that the media data is in the same file, is split into segments for transport, the value of this flag does not change, as the file is (logically) reassembled after the transport operation.

Insert the following Subclauses into 8.7, numbered consecutively from the existing Subclauses:

8.7.12 Sample Auxiliary Information Sizes Box

8 Definition

Box Type:
‘saiz’
Container:
Sample Table Box (‘stbl’) or Track Fragment Box ('traf')
Mandatory:
No
Quantity:
Zero or More
Per-sample sample auxiliary information may be stored anywhere in the same file as the sample data itself, wherever sample data may be found; for self-contained media files, this is typically in a MediaData box or a box from a derived specification. It is stored either (a) in multiple chunks, with the number of samples per chunk, as well as the number of chunks, matching the chunking of the primary sample data or (b) in a single chunk for all the samples in a movie sample table (or a movie fragment). The Sample Auxiliary Information for all samples contained within a single chunk (or track run) is stored contiguously (similarly to sample data).

Whether sample auxiliary information is permitted or required may be specified by the brands or the coding format in use. The format of the sample auxiliary information is determined by aux_info_type. Some values of aux_info_type may be restricted to be used only with particular track types. A track may have multiple streams of sample auxiliary information of different types.

While aux_info_type determines the format of the auxiliary information, several streams of auxiliary information having the same format may be used when their value of aux_info_type_parameter differs. The semantics of aux_info_type_parameter for a particular aux_info_type value must be specified along with specifying the semantics of the particular aux_info_type value and inferred the auxiliary information format.

This box provides the size of the auxiliary information for each sample. For each instance of this box, there must be a matching SampleAuxiliaryInformationOffsetsBox with the same values of aux_info_type and aux_info_type_parameter, providing the offset information for this auxiliary information.
8 Syntax

aligned(8) class SampleAuxiliaryInformationSizesBox

extends FullBox(‘saiz’, version = 0, 0)
{

unsigned int(32) aux_info_type;

unsigned int(32) aux_info_type_parameter;

unsigned int(8) default_sample_info_size;

unsigned int(32) sample_count;

if (default_sample_info_size == 0)

{

unsigned int(8) sample_info_size[sample_count];

}
}

8 Semantics

aux_info_type is an integer that identifies the type of the sample auxiliary information. At most one occurrence of this box with the same values for aux_info_type and aux_info_type_parameter shall exist in the containing box.
aux_info_type_parameter identifies the “stream” of auxiliary information having the same value of aux_info_type and associated to the same track. The semantics of aux_info_type_parameter are determined by the value of aux_info_type.
default_sample_info_size is an integer specifying the sample auxiliary information size for the case where all the indicated samples have the same sample auxiliary information size. If the size varies then this field shall be zero.

sample_count is an integer that gives the number of samples for which a size is defined. For a Sample Auxiliary Information Sizes box appearing in the Sample Table Box this must be the same as the sample_count within the Sample Size Box or Compact Sample Size Box. For a Sample Auxiliary Information Sizes box appearing in a Track Fragment box this must be the same as the sum of the sample_count entries within the Track Fragment Run boxes of the Track Fragment.

sample_info_size gives the size of the sample auxiliary information in bytes.

8 Sample Auxiliary Information Offsets Box

8 Definition

Box Type:
‘saio’
Container:
Sample Table Box (‘stbl’) or Track Fragment Box ('traf')
Mandatory:
No
Quantity:
Zero or More
For an introduction to sample auxiliary information, see the definition of the Sample Auxiliary Information Size Box.

This box provides the position information for the sample auxiliary information, in a way similar to the chunk offsets for sample data.

8 Syntax

aligned(8) class SampleAuxiliaryInformationOffsetsBox

extends FullBox(‘saio’, version, 0)
{

unsigned int(32) aux_info_type;

unsigned int(32) aux_info_type_parameter;

unsigned int(32) entry_count;

if (version == 0)

{

unsigned int(32) offset[entry_count];

}

else

{

unsigned int(64) offset[entry_count];

}
}

8 Semantics

aux_info_type and aux_info_type_parameter are defined as in the SampleAuxiliaryInformationSizesBox
entry_count gives the number of entries in the following table. For a Sample Auxiliary Information Offsets box appearing in a Sample Table Box this must be equal to one or to the value of the entry_count field in the Chunk Offset Box or Chunk Large Offset Box. For a Sample Auxiliary Information Offsets Box appearing in a Track Fragment box, this must be equal to one or to the number of Track Fragment Run boxes in the Track Fragment Box.

offset gives the position in the file of the Sample Auxiliary Information for each Chunk or Track Fragment Run. If entry_count is one, then the Sample Auxiliary Information for all Chunks or Runs is contiguous in the file in chunk or run order. When in the Sample Table Box, the offsets are absolute.

In 8.8.4.1, add this paragraph:

Note: There is no requirement that any particular movie fragment extend all tracks present in the movie header, and there is no restriction on the location of the media data referred to by the movie fragments. However, derived specifications may make such restrictions.

In 8.8.5.1, after:

The movie fragment header contains a sequence number, as a safety check. The sequence number usually starts at 1 and must increase for each movie fragment in the file, in the order in which they occur.

insert:

Note: There is no requirement that the sequence numbers be consecutive, only that the value in a given movie fragment be greater than in any preceding movie fragment.

Insert the following extra sub-clauses in 8.8, numbered consecutively from the existing clauses

8.8.12 Track fragment decode time
8.8.12.1 Definition

Box Type:
`tfdt’
Container:
Track Fragment box (‘traf’)
Mandatory:
No
Quantity:
Zero or one
Track Fragment Base Media Decode Time Box provides the decode time of the first sample in the track fragment. This can be useful, for example, when performing random access in a file; it is not necessary to sum the sample durations of all preceding samples in previous fragments to find this value (where the sample durations are the deltas in the Decoding Time to Sample Box and the sample_durations in the preceding track runs).

The Track Fragment Base Media Decode Time Box, if present, shall be positioned after the Track Fragment Header Box and before the first Track Fragment Run box.
Note: the decode timeline is a media timeline, established before any explicit or implied mapping of media time to presentation time, for example by an edit list or similar structure.
8.8.12.2 Syntax

aligned(8) class TrackFragmentBaseMediaDecodeTimeBox

extends FullBox(‘tfdt’, version, 0) {

if (version==1) {

unsigned int(64) baseMediaDecodeTime;

} else { // version==0

unsigned int(32) baseMediaDecodeTime;

}
}

8.8.12.3 Semantics

version is an integer that specifies the version of this box (0 or 1 in this specification).

baseMediaDecodeTime is an integer equal to the sum of the decode durations of all earlier samples in the media, expressed in the media's timescale. It does not include the samples added in the enclosing track fragment.

8.8.13

8.8.14
8.8.14.1

1)
2)
3)
4)

·
·
·
·
·
·
8.8.14.2

8.8.14.3

8.8.15 Level Assignment Box

8.8.15.1 Definition

Box Type:
`leva’
Container:
Movie Extends Box (`mvex’)
Mandatory:
No
Quantity:
Zero or one
Levels specify subsets of the file. Samples mapped to level n may depend on any samples of levels m, where m <= n, and shall not depend on any samples of levels p, where p > n. For example, levels can be specified according to temporal level (e.g., temporal_id of SVC or MVC).
Levels cannot be specified for the initial movie. When the Level Assignment box is present, it applies to all movie fragments subsequent to the initial movie.

For the context of the Level Assignment box, a fraction is defined to consist of one or more Movie Fragment boxes and the associated Media Data boxes, possibly including only an initial part of the last Media Data Box. Within a fraction, data for each level shall appear contiguously. Data for levels within a fraction shall appear in increasing order of level value. All data in a fraction shall be assigned to levels.

NOTE: In the context of DASH (ISO/IEC 23001-6), each subsegment indexed within a Subsegment Index box is a fraction.

The Level Assignment box provides a mapping from features, such as scalability layers, to levels. A feature can be specified through a track, a sub-track within a track, or a sample grouping of a track.

The following assignment_types are defined; assignment_type values greater than 4 are reserved, while the semantics for the other values are specified as follows.
· 0: sample groups are used to specify levels, i.e., samples mapped to different sample group description indexes of a particular sample grouping lie in different levels within the identified track; other tracks are not affected and must have all their data in precisely one level;

· 1: as for assignment_type 0 except assignment is by a parameterized sample group;

· 2, 3: level assignment is by track (see the Subsegment Index Box for the difference in processing of these levels)

· 4: the respective level contains the samples for a sub-track. The sub-tracks are specified through the Sub Track box; other tracks are not affected and must have all their data in precisely one level;

The sequence of assignment_types is restricted to be a set of zero or more of type 2 or 3, followed by zero or more of exactly one type.
NOTE: for example, padding_flag can be set equal to 1 when the following conditions are true:

· Each fraction contains two or more AVC, SVC, or MVC tracks of the same video bitstream.
· The samples for each track of a fraction are contiguous and in decoding order in a Media Data box.
· The samples of the first AVC, SVC, or MVC level contain extractor NAL units for including the video coding NAL units from the other levels of the same fraction.
8.8.15.2 Syntax
aligned(8) class LevelAssignmentBox extends FullBox(‘leva’, 0, 0) {
unsigned int(8)
level_count;

for (j=1; j <= level_count; j++) {

unsigned int(32)
track_id;

unsigned int(1)
padding_flag;

unsigned int(7)
assignment_type;

if (assignment_type == 0)

unsigned int(32)
grouping_type;

else if (assignment_type == 1) {

unsigned int(32)
grouping_type;

unsigned int(32)
grouping_type_parameter;

}

else if (assignment_type == 2) {} // no further syntax elements needed

else if (assignment_type == 3) {} // no further syntax elements needed

else if (assignment_type == 4)

unsigned int(32) sub_track_id;

// other assignment_type values are reserved

}
}

8.8.15.3 Semantics

level_count specifies the number of levels each fraction is grouped into. level_count shall be greater than or equal to 2.

track_id for loop entry j specifies the track identifier of the track assigned to level j.

padding_flag equal to 1 indicates that a conforming fraction can be formed by concatenating any positive integer number of levels within a fraction and padding the last Media Data box by zero bytes up to the full size that is indicated in the header of the last Media Data box. The semantics of padding_flag equal to 0 are unspecified.

assignment_type indicates the mechanism used to specify the assignment to a level. assignment_type values greater than 4 are reserved, while the semantics for the other values are specified as follows.

grouping_type and grouping_type_parameter, if present, specify the sample grouping used to map sample group description entries in the Sample Group Description box to levels. Level n contains the samples that are mapped to the sample group description entry having index n in the Sample Group Description box having the same values of grouping_type and grouping_type_parameter, if present, as those provided in this box.

sub_track_id specifies that the sub-track identified by sub_track_id within loop entry j is mapped to level j.

8.8.16
8.8.16.1

8.8.16.2

8.8.16.3

8.8.17
8.8.17.1

8.8.17.2

8.8.17.3

8.8.18 Sample Auxiliary Information in Movie Fragments
When sample auxiliary information is present in the Movie Fragment box, the offsets in the Sample Auxiliary Information Offsets Box are treated the same as the data_offset in the Track Fragment Run box, that is, they are relative to any base data offset established for that track fragment. If movie fragment relative addressing is used (no base data offset is provided in the track fragment header) and auxiliary information is present, then the default_base_is_moof flag must also be set in the flags of that track fragment header.

If only one offset is provided, then the Sample Auxiliary Information for all the track runs is stored contiguously, otherwise exactly one offset must be provided for each track run.

If the field default_sample_info_size is non-zero in one of these boxes, then the size of the auxiliary information is constant for the identified samples.

In addition, if:

· this box is present in the movie box,

· and default_sample_info_size is non-zero in the box in the movie box,

· and the sample auxiliary information sizes box is absent in a movie fragment,

then the auxiliary information has this same constant size for every sample in the movie fragment also; it is then not necessary to repeat the box in the movie fragment.

In 8.9.3.1 change header as follows:

Box Type:
‘sgpd’
Container:
Sample Table Box (‘stbl’) or Track Fragment Box (‘traf’)
Mandatory:
No
Quantity:
Zero or more, with one for each Sample to Group Box.
Add to 8.9.4 (group structures in movie fragments)

Zero or more SampleGroupDefinition boxes may also be present in a Track Fragment Box. These definitions are additional to the definitions provided in the Sample Table of the track in the Movie Box. Group definitions within a movie fragment can also be referenced and used from within that same movie fragment.

Within the SampleToGroup box in that movie fragment, the group description indexes for groups defined within the same fragment start at 0x10001, i.e. the index value 1, with the value 1 in the top 16 bits. This means there must be fewer than 65536 group definitions for this track and grouping type in the sample table in the Movie Box.

When changing the size of movie fragments, or removing them, these fragment-local group definitions will need to be merged into the definitions in the movie box, or into the new movie fragments, and the index numbers in the SampleToGroup box(es) adjusted accordingly. It is recommended that, in this process, identical (and hence duplicate) definitions not be made in any SampleGroupDescription box, but that duplicates be merged and the indexes adjusted accordingly.
In 8.12.1.1, change the box header:

Box Types:
‘sinf’
Container:
Protected Sample Entry, or Item Protection Box (‘ipro’)
Mandatory:
Yes
Quantity:
Exactly oneOne or More

And add the following paragraph:

At least one protection scheme information box must occur in a protected sample entry. When more than one occurs, they are equivalent, alternative, descriptions of the same protection structures. Readers should choose one to process.
Add the following sub-clause as 8.16:

8.16 Segments
8.16.1 Introduction
Media presentations may be divided into segments for delivery, for example, it is possible (e.g. in HTTP streaming) to form files that contain a segment – or concatenated segments – which would not necessarily form ISO base media file format compliant files (e.g. they do not contain a movie box).
This subclause defines specific boxes that may be used in such segments.
8.16.2 Segment Type Box

Box Type:
`styp’
Container:
File
Mandatory:
No
Quantity:
Zero or more
If segments are stored in separate files (e.g. on a standard HTTP server) it is recommended that these ‘segment files’ contain a segment-type box, which must be first if present, to enable identification of those files, and declaration of the specifications with which they are compliant.

A segment type has the same format as an 'ftyp' box [<<ed: xref needed, to 4.3>>], except that it takes the box type 'styp'. The brands within it should include the same brands that were included in the 'ftyp' box that preceded the ‘moov’ box, and may also include additional brands to indicate the compatibility of this segment with various specification(s).
Valid segment type boxes shall be the first box in a segment. Segment type boxes may be removed if segments are concatenated (e.g. to form a full file), but this is not required. Segment type boxes that are not first in their files may be ignored.
8.16.3 Segment Index Box

8.16.3.1 Definition

Box Type:
`sidx’
Container:
File
Mandatory:
No
Quantity:
Zero or more
The Segment Index box ('sidx') provides a compact index of the media segment to which it applies. It is designed so that it can be used not only with media formats based on this specification (i.e. files containing sample tables and movie fragments), but also other media formats (for example, MPEG-2 Transport Streams <<ed: reference needed>>). For this reason, the formal description of the box given here is deliberately generic, and then at the end of this Subclause the specific definitions for segments using movie fragments are given.

Each Segment Index box documents a subsegment, which is defined as a time interval of a segment, ending either at the end of the containing segment, or at the beginning of a subsegment documented by another Segment Index box. A Segment Index box defines how a subsegment is divided into one or more subsegments (which may themselves be further subdivided using Segment Index boxes).

The indexing may refer directly to the media bytes of a subsegment, or to segment indexes which (directly or indirectly) refer to the media bytes of subsegments; the segment index may be specified in a ‘hierarchical’ or ‘daisy-chain’ or other form by documenting time and byte offset information for other Segment Index boxes applying to the same segment or subsegment.

In Media Segments containing media (i.e. not a segment containing only initialization information), the first Segment Index box shall document a subsegment that is the entire segment.

Segment Index boxes may be inline in the same file as the indexed media or, in some cases, out-of-line (a index segment, or ‘side file’) containing only indexing information.

A Segment Index box contains a sequence of references to subsegments of the subsegment documented by the box. The referenced subsegments are contiguous in presentation time. Similarly, the bytes referred to by a Segment Index box are always contiguous in both the media file, and the out-of-line index segment, or in the single file if indexes are placed within the media file. The referenced size gives the count of the number of bytes in the material referenced.

In the file containing the Segment Index box, the anchor point for a Segment Index box is the first byte after that box. If there are two files, the anchor point in the media file is the beginning of the top-level segment (i.e. the beginning of the segment file if each segment is stored in a separate file). The material in the file containing media (which may be the integrated file) starts at the indicated offset from the anchor point. If there are two files, the material in the index file starts at the anchor point, i.e. immediately following the Segment Index box.

One track or stream in the segment (normally a track or stream in which not every sample is a random access point, such as video) is selected as a reference track. The earliest presentation time of the reference track of each referenced subsegment is documented in the Segment Index box. Each reference contains a reference type that defines whether the reference refers directly to the media data of the referenced subsegment or to a Segment Index (‘sidx’) Box for the referenced subsegment.

Within the two constraints (a) that, in time, the sub-segments are contiguous, that is, each entry in the loop is consecutive from the immediately preceding one and (b) within a given file (integrated file, media file, or index side file) the referenced bytes are contiguous, there are a number of possibilities, including:

5) a reference to a segment index box may include, in its byte count, immediately following Segment Index boxes that document subsegments;

6) in an integrated file, using the first_offset field, it is possible to separate Segment Index boxes from the media that they refer to;

7) in an integrated file, it is possible to locate Segment Index boxes for subsegments close to the media they index;

8) when a separate out-of-line index segment is used, it is possible for the loop entries to be of ‘mixed type’, some to Segment Index boxes in the index segment, some to media subsegments in the media file.

Note that profiles may be used to restrict the placement of segment indexes, or the overall complexity of the indexing.

The earliest presentation time (for the reference track) of the first subsegment documented in the index is explicitly given. For each subsegment, a subsegment duration is provided. The earliest presentation time of a subsegment is calculated by summing the subsegment durations of the preceding subsegments and the earliest presentation time of the first subsegment. The earliest presentation time of a subsegment is the earliest presentation time on the reference track timescale of any sample in the reference track of the subsegment.

A Segment Index box contains a random access point (RAP) if any entry in the loop contains a random access point. A Random Access Point is defined as follows: it is a time at which presentation of this (sub)segment may be started using information contained in the indicated (sub)segment, combined with any initialization information (if supplied).

For files
based on this specification (i.e. based on movie sample tables and movie fragments):

· a subsegment is a self-contained set of one or more consecutive movie fragments; a self-contained set contains one or more movie fragment boxes with the corresponding media data box(es), and each movie fragment box immediately precedes its corresponding media data box.

· Segment Index boxes must be placed before subsegment material, that is, before any Movie Fragment (‘moof’) box;

· streams are tracks in the file format, and stream IDs are track IDs;

· a subsegment contains a random access point if a track fragment within the subsegment for the track with track_ID equal to reference_ID contains a random access point;

· presentation times are composition times;

· random access points are identified by the sync sample table, the matching indicator in movie fragments, or samples marked by a sample group of type ‘rap ‘
8.16.3.2 Syntax

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {

unsigned int(32) reference_ID;

unsigned int(32) timescale;

if (version==0)

{

unsigned int(32) earliest_presentation_time;

unsigned int(32) first_offset;

}

else

{

unsigned int(64) earliest_presentation_time;

unsigned int(64) first_offset;

}

unsigned int(16) reserved = 0;

unsigned int(16) reference_count;

for(i=1; i <= reference_count; i++)

{

bit (1)

reference_type;

unsigned int(31)
referenced_size;

unsigned int(32)
subsegment_duration;

bit(1)

contains_RAP;

unsigned int(31)
RAP_delta_time;

}
}

8.16.3.3 Semantics

reference_ID provides the stream or track_ID for the reference stream

timescale provides the timescale, in ticks per second, for the time and duration fields within this box; it is recommended that this match the timescale of the reference stream or track; for files based on this specification, that is the timescale field of the Media Header Box of the track;

earliest_presentation_time is the earliest presentation time of any sample in the reference stream in the first subsegment, in the timescale indicated in the timescale field;

first_offset is the distance in bytes, in the file containing media, from the anchor point, to the first byte of the indexed material;

reference_count provides the number of referenced items;

reference_type: when set to 1 indicates that the reference is to a segment index (‘sidx’) box; otherwise the reference is to media content (e.g., in the case of files based on this specification, to a movie fragment box); if a separate index segment is used, then entries with reference type 1 are in the index segment, and entries with reference type 0 are in the media file;

referenced_size: the distance in bytes from the first byte of the referenced item to the first byte of the next referenced item, or in the case of the last entry, the end of the referenced material;

subsegment_duration: when the reference is to Segment Index box, this field carries the sum of the subsegment_duration fields in that box; when the reference is to a subsegment, this field carries the difference between the earliest presentation time of any sample of the reference stream in the next subsegment (or the first subsegment of the next segment, if this is the last subsegment of the segment or the end presentation time of the reference stream if this is the last subsegment of the representation) and the earliest presentation time of any sample of the reference stream in the referenced subsegment; the duration is in the same units as earliest_presentation_time;

contains_RAP: when the reference is to a subsegment, then this bit shall be 1 if the reference stream contains at least one random access point, otherwise this bit is set to 0; when the reference is to a segment index, then this bit shall be set to 1 only if any of the references in that segment index have this bit set to 1, and 0 otherwise;

RAP_delta_time: if contains_RAP is 1, provides the presentation time of the first random access point (RAP), which must be in the reference stream; reserved with the value 0 if contains_RAP is 0. The time is expressed as the difference between the earliest presentation time of the subsegment, and the presentation time of the random access point. The earliest presentation time of a subsegment is calculated by adding the durations of the preceding subsegments to the earliest_presentation_time field;

8.16.4 Subsegment Index Box

8.16.4.1 Definition

Box Type:
`ssix’
Container:
File
Mandatory:
No
Quantity:
Zero or more
The Subsegment Index box ('ssix') provides a mapping from levels (as specified by the Level Assignment box) to byte ranges of the indexed subsegment. In other words, this box provides a compact index for how the data in is ordered according to levels into partial sub-segments. It enables a client to easily access data for partial subsegments by downloading ranges of data in the subsegment.

Each byte in the subsegment shall be assigned to a level. If the range is not associated with any information in the level assignment, then any level that is not included in the level assignment may be used.

There may be 0 or 1 Subsegment Index boxes per each Segment Index box that does not refer to other Segment Index boxes, i.e. that only indexes subsegments but no segment indexes. A Subsegment Index box, if any, shall be the next box after the associated Segment Index box. A Subsegment Index box documents the subsegment that is indicated in the immediately preceding Segment Index box.

In general, the media data constructed from the byte ranges is incomplete, i.e. it does not conform to the media format of the entire sub-segment.

For files/segments
based on this specification (i.e. based on movie sample tables and movie fragments):
· Each level shall be assigned to exactly one partial sub-segment, i.e. byte ranges for one level shall be contiguous.
· Samples of a partial subsegment may depend on any samples of preceding partial subsegments in the same subsegment, but not the other way around. For example, each partial subsegment contains samples having an identical temporal level (e.g., temporal_id of SVC or MVC) and partial subsegments appear in increasing temporal level order within the subsegment.
· When a partial segment is accessed in this way, for any assignment_type other than 3, the final Media Data box may be incomplete, that is, less data is accessed than the length indication of the Media Data Box indicates is present. The length of the Media Data box may need adjusting, or padding used. The padding_flag in the Level Assignment Box indicates whether this missing data can be replaced by zeros. If not, the sample data for samples assigned to levels that are not accessed is not present, and care should be taken not to attempt to process such samples.
NOTE: assignment_type equal to 2 can be used, for example, when each view of a multiview video bitstream is contained in a separate track and the track fragments for all the views are contained in a single movie fragment. assignment_type equal to 3 may be used, for example, when audio and video movie fragments (including the respective Media Data boxes) are interleaved. The first level can be specified to contain the audio movie fragments (including the respective Media Data boxes), whereas the second level can be specified to contain both audio and video movie fragments (including all Media Data boxes).

8.16.4.2 Syntax
aligned(8) class SubsegmentIndexBox extends FullBox(‘ssix’, 0, 0) {

unsigned int(32)
subsegment_count;

for(i=1; i <= subsegment_count; i++)

{

unsigned int(32)
ranges_count;

for (j=1; j <= range_count; j++) {

unsigned int(8) level;

unsigned int(24) range_size;

}

}
}

8.16.4.3 Semantics

subsegment_count is a positive integer specifying the number of subsegments for which partial subsegment information is specified in this box. subsegment_count shall be equal to reference_count (i.e., the number of movie fragment references) in the immediately preceding Segment Index box.

range_count specifies the number of partial subsegment levels into which the media data is grouped. This value shall be greater than or equal to 2.

range_size, for any value of j equal to 1, indicates the size of the partial subsegment.
level specifies the level to which this partial subsegment is assigned.
8.16.5 Producer Reference Time Box
8.16.5.1 Definition

Box Type:
`prft’
Container:
File
Mandatory:
No
Quantity:
Zero or more
The producer reference time box supplies relative wall-clock times at which movie fragments, or files containing movie fragments (such as segments) were produced. When these files are both produced and consumed in real time, this can provide clients with information to enable them to synchronize consumption with the production and thus avoid buffer overflow or underflow.

This box is related to the next movie fragment box that follows it in bitstream order. It must follow any segment type or segment index box (if any) in the segment, and occur before the following movie fragment box (to which it refers). If a segment file contains any producer reference time boxes, then the first of them shall occur before the first movie fragment box in that segment.

The box contains a time value measured on a clock which increments at the same rate as a UTC-synchronized NTP [<<ed: reference needed>>] clock, using NTP format. This is associated with a media time for one of the tracks in the movie fragment. That media time should be in the range of times in that track in the associated movie fragment.

8.16.5.2 Syntax
aligned(8) class ProducerReferenceTimeBox extends FullBox(‘srft’, version, 0) {

unsigned int(32) reference_track_ID;

unsigned int(64) ntp_timestamp;

if (version==0)

{

unsigned int(32)
media_time;

} else

{

unsigned int(64)
media_time;

}
}
8.16.5.3 Semantics
reference_track_ID provides the track_ID for the reference track.

ntp_timestamp indicates a UTC time in NTP format corresponding to decoding_time.

media_time corresponds to the same time as ntp_timestamp, but in the time units used for the reference track, and is measured on this media clock as the media is produced. Note that in most cases this timestamp will not be equal to the timestamp of the first sample of the adjacent segment of the reference track, but it is recommended it be in the range of the segment containing this producer reference time box.
Add the following Subclauses:

8.17 Random Access Point (RAP) Sample Grouping

8.17.1 Definition

For some coding systems a sync sample is specified to be a random access point after which all samples in decoding order can be correctly decoded. However, it may be possible to encode an “open” random access point, after which all samples in output order can be correctly decoded, but some samples following the random access point in decoding order and preceding the random access point in output order need not be correctly decodable. For example, an intra picture starting an open group of pictures can be followed in decoding order by (bi-)predicted pictures that however precede the intra picture in output order; though they possibly cannot be correctly decoded if the decoding starts from the intra picture, they are not needed.

Such “open” random-access samples can be marked by being a member of this group. Samples marked by this group must be random access points, and may also be sync points (i.e. it is not required that samples marked by the sync sample table be excluded).

8.17.2 Syntax

class VisualRandomAccessEntry() extends VisualSampleGroupEntry (’rap ’)
{

unsigned int(1) num_leading_samples_known;

unsigned int(7) num_leading_samples;
}
8.17.3 Semantics

num_leading_samples_known equal to 1 indicates that the number of leading samples is known for each sample in this group, and the number is specified by num_leading_samples. A leading sample is such a sample associated with an “open” random access point (RAP). It precedes the RAP in presentation order and immediate follows the RAP or another leading sample in decoding order, and when decoding starts from the RAP, the sample cannot be correctly decoded.
num_leading_samples specifies the number of leading samples for each sample in this group. When num_leading_samples_known is equal to 0, this field should be ignored.
8.18 Temporal level sample grouping

8.18.1 Definition

Many video codecs support temporal scalability where it is possible to extract one or more subsets of frames that can be independently decoded. A simple case is the extraction of I frames for a bitstream with a regular I-frame interval, e.g,, IPPPIPPP…, where every 4th picture is an I frame. Also subsets of these I frames can be extracted for even lower frame rates. More elaborate situations with several temporal levels can be constructed using hierarchical B or P frames.

The Temporal Level sample grouping ('tele') provides a codec-independent sample grouping that can be used to group samples (access units) in a track (and potential track fragments) according to temporal level, where samples of one temporal level have no coding dependencies on samples of higher temporal levels. The temporal level equals the sample group description index (taking values 1, 2, 3, etc). The bitstream containing only the access units of from the first temporal level to a higher temporal level remains conforming to the coding standard.

A grouping according to temporal level facilitates easy extraction of temporal subsequences, for instance using the Subsegment Indexing box in <<ref needed>>.

8.18.2 Syntax

class TemporalLevelEntry() extends SampleGroupDescriptionEntry('tele')
{

bit(1)
level_independently_decodable;

bit(7)
reserved=0;
}
8.18.3 Semantics

The temporal level of samples in a sample group equals to the sample group description index.
level_independently_decodable is a flag. 1 indicates that all samples of this level have no coding dependencies on samples of other levels. 0 indicates that no information is provided.
In Annex C, add the following section C.8:

C.8
Guidelines on the use of sample groups, timed metadata tracks, and sample auxiliary information

The ISO Base Media File Format contains three mechanisms for timed metadata that can be associated with particular samples: sample groups, timed metadata tracks, and sample auxiliary information. Derived specification may provide similar functionality with one or more of these three mechanisms. This clause provides guidelines for derived specifications to choose between the three mechanisms.
Sample groups and timed metadata are less tightly coupled to the media data and are typically ‘descriptive’, whereas sample auxiliary information might be required for decoding.
Sample groups may be useful in the following occasions.

· When several samples share the same metadata values, it is space-efficient to specify the metadata in a Sample Group Description box and the association of samples to metadata in Sample to Group box(es).

· As the sample group information is stored in Movie box and Movie Fragment box(es), they provide an index to the data in the Media Data boxes. No data from the Media Data boxes need to be fetched, which may therefore reduce disk accesses when compared to timed metadata tracks and sample auxiliary information.

Timed metadata tracks may be useful in the following occasions.

· The same timed metadata track may be associated to more than one track. In other words, a timed metadata track may be more independent of the content of the associated tracks than sample groups and sample auxiliary information.

· It may be easier to append a file with a timed metadata track than with sample auxiliary information or sample groups, because sample auxiliary information and Sample to Group boxes have to reside in the same Track Fragment box as the associated samples, whereas timed metadata may reside in its own Movie Fragment box(es). For example, it may be easier to provide an additional subtitle track as timed metadata than use sample auxiliary information.

· The duration of timed metadata samples need not match the duration of associated media or hint samples. In cases where the duration of timed metadata samples spans over multiple associated media or hint samples, timed metadata tracks may be more space-efficient than sample auxiliary information.

Sample auxiliary information may be useful in the following occasions.

· The data associated with samples is changing such frequently that specifying sample groups may not be justified from storage space point of view.

· The amount of data associated with samples is such large that its carriage within the Movie box or Movie Fragment box (as required by sample grouping) would cause disadvantages. For example, in progressive downloading, it may be beneficial to make the size of Movie box small in order to keep the initial buffering time small.

· When each sample is associated with metadata, sample auxiliary information provides a more straightforward association of the auxiliary information to samples when compared to the same functionality with timed metadata tracks, which typically requires resolving sample decoding time to establish the association between timed metadata samples and media/hint samples.
In Annex E, add E.9:

The brand ‘iso6’ requires support for all features of the ‘iso5’ brand.

Support for the following is required under this brand:

· sample auxiliary information
· SampleGroupDescription boxes in movie fragments

· <<to be completed before amendment is final; what aspects of level assignment and subsegment indexing are required?>>

In addition, support for the following is required:

	
	
	
	
	
	
	
	

Editor’s note: At least the following definitions should be introduced and/or specified: recording unit, player, re-sending unit.
Replace the content of 9.4.6 and 9.4.7 with ‘see Annex H’, and add the following informative Annex. <<ed: clause numbering, figure numbering, and cross-referencing need checking, and the informative references needed inserted; references to DVB specifications etc. may need removing. NB comment is requested>>

Annex H
(Informative)
Processing of RTP streams and reception hint tracks

H.1 Introduction

This Annex provides recommendations for recording of RTP streams and the use of recorded RTP streams for playback and re-sending.
This Annex is organized as follows:

· H.2 introduces the potential sources why the playback of RTP streams might become unsynchronized and provides an overview how proper synchronization is facilitated in recording and playback. It precedes the other clauses, because both the recording unit and the player have to take actions to achieve proper synchronization.

· H.3 provides recommendations for storing RTP streams.

· H.4 provides recommendations how to play files containing recorded RTP streams.

· H.5 provides recommendations for re-sending received RTP streams stored in files as described in clause H.3.

H.2 Synchronization of RTP streams

There are several potential sources of unsynchronized playback for received RTP streams. When RTP streams are recorded as RTP reception hint tracks, the necessary information for guaranteeing synchronized playback is also recorded. When RTP streams are recorded as media tracks, the synchronization of the playback of the media tracks has to be guaranteed by creating the composition times of the media samples appropriately. The following list describes the sources of unsynchronized playback for received RTP streams, summarizes the recommended synchronization means, and points to the relevant clauses for further information.

1.
The RTP timestamp of the first packet of the stream has a random offset. Hence, the RTP timestamps of two streams are shifted by the difference of their initial random offsets even if the potentially different clock rate of the RTP timestamps of the different streams were compensated. The random offset should be reflected in the value of the offset field of the 'tsro' box of the referred reception hint sample entry as described in H.3.5.

2.
The first received and recorded packet of the different streams may not have an identical playback time as discussed in H.3.2. The unequal start time of the different recorded streams is compensated by parsing one or more RTCP Sender Reports to derive the playback time as the wallclock time of the sender and creating an initial offset of the playback using the Edit List box as described in H.3.2. The Edit List box is interpreted by the player as described in H.4.4.

3.
There is no guarantee that the clock for producing the RTP timestamps of a certain RTP stream runs at the same pace as the wallclock time of the sender, which is used to create the RTCP Sender Reports. For example, the RTP timestamps may be generated on the basis of a constant sampling frequency, e.g. 44.1 kHz for audio, and hence governed by the clock rate of the audio capturing hardware. However, the RTP Sender Reports may be generated according to the system clock running at a different pace than the clock of the audio capturing hardware. Moreover, the clock used to generate RTP timestamps for audio might run at a different pace than the clock used to generate RTP timestamps for video (when both a normalized to the same clock tick frequency).

A similar problem in the player arises if the clock pacing the output of a decoded stream runs at a different pace than the wallclock of the player or the clocks pacing the rendering of different decoded streams are not synchronized.

The recommended approach for all these potential problems of clocks running at a different pace is to use RTCP Sender Reports to align the RTP timestamps of different streams onto the same wallclock timeline, which is used for inter-stream synchronization. This alignment can be done while recording the streams by modifying the representation of the recorded RTP timestamps or while playing the recorded streams by using the recorded RTCP Sender Reports as described in H.3.6. Moreover, it is recommended to pace the playback according to the audio playout rate as described in H.4.4.

4.
The wallclock of the sender may run at a different pace than the wallclock of the player.

It is recommended to play a recorded program at the pace of the wallclock of the player and to use the audio playout clock as the wallclock of the player. Consequently, the audio timescale does not typically have to be modified. Even if the wallclock of the player ran at a different pace than the wallclock of the sender, it is typically unnoticeable.

Pacing of the output of decoded media samples is described in H.4.4.

H.3 Recording of RTP streams

H.3.1 Introduction

Recording of RTP streams can result into three basic file structures.

A file containing only RTP reception hint tracks. No media tracks are included. This file structure enables efficient processing of packet losses, but only players capable of parsing RTP reception hint tracks can play the file.
Annex ZA A file containing only media tracks. No RTP reception hint tracks are included. This file structure allows existing players compliant with the earlier versions of the ISO base media file format process recorded files as long as the media formats are also supported. However, sophisticated processing of transmission errors is not possible due to reasons explained in subsequent clauses.

Annex ZB A file containing both RTP reception hint tracks and media tracks. This file structure has both the benefits mentioned above and should be used when for as good interoperability as possible with other file formats derived from the ISO base media file format.

If an RTP stream being recorded is protected, a protected RTP reception hint track is used instead of an RTP reception hint track, while the operation of the recording unit remains unchanged otherwise. At the time of playback, the data included in the protected RTP reception hint track is unprotected first and then processed similarly to a conventional unprotected RTP stream. Alternatively, the RTP stream may be unprotected before storing it as a RTP reception hint track, but then care has to be taken that the rights to use the content in the protected RTP stream are obeyed.

Some of the recording operations are common for all the three file structures, while others differ. Table H.1 indicates which recording operations are required for the basic file structures.
Table H.1
	
	File containing only RTP reception hint tracks
	File containing only media tracks
	File containing both RTP reception hint tracks and media tracks

	Compensation for unequal starting position of received RTP streams
(clause X.3.2)
	no, when RTCP reception hint tracks are stored;
yes, otherwise
	yes
	no, when RTCP reception hint tracks are stored;
yes, otherwise

	Recording of SDP
(clause X.3.3)
	yes
	no
	yes, for RTP reception hint tracks only

	Creation of a sample within an RTP reception hint track (clause X.3.4)
	yes
	no
	yes, for RTP reception hint tracks only

	Representation of RTP timestamps
(clause X.3.5)
	yes
	no
	yes, for RTP reception hint tracks only

	Recording operations to facilitate inter-stream synchronization in playback
(clause X.3.6)
	yes
	yes, the composition times of media tracks should be compensated as described in H.3.6.3
	yes

	Representation of reception times
(clause X.3.7)
	yes
	no
	yes, for RTP reception hint tracks only

	Creation of media samples
(clause X.3.8)
	no
	yes
	yes, for media tracks only

	Creation of hint samples referring to media samples
	no
	no
	yes

Some implementations may record first to RTP reception hint tracks only and create a file with a combination of media tracks and RTP reception hint tracks off-line.

Finally, H.3.10 includes some recommendations how to record the streams of a DVB-H service item.

H.3.2 Compensation for unequal starting for position of received RTP streams

When the recording of RTP streams is started, it can happen that the presentation time of the first media sample in one RTP stream is not equal to the presentation time of the first media sample in another RTP stream at least due to the following reasons:

· The sampling frequency of audio and video typically differ.

· Audio and video streams may not be perfectly interleaved in terms of presentation times in transmission order.

If RTCP reception hint tracks are stored, the compensation for unequal starting position of received RTP streams should be done at playback time and no Edit List box concerning RTP reception hint tracks should be created. If RTCP reception hint tracks are not stored or if media tracks are stored it is essential that the recording unit indicates the relative initial delay of the streams in order to synchronize audio and video correctly at the beginning of the playback of the streams as described subsequently in this clause. The recording unit should perform the following operations.

1. An RTCP Sender Report indicates which RTP timestamp corresponds to the wallclock time of the time instant the report was sent. At least the first RTCP Sender Report for each RTP stream should be parsed in order to establish an equivalence of an RTP timestamp of each RTP stream and a wallclock time of the sender. The wallclock timestamp of the earliest received RTP packet, in presentation order, is derived for each RTP stream by simple linear extrapolation.

2. The smallest wallclock timestamp derived above among all the received RTP streams is mapped to presentation timestamp zero in the movie timeline, i.e., is presented immediately at the beginning of the playback of the recorded file. The movie timeline is the master timeline for the playback of the file.

3. The media timeline for each track starts from 0. In order to shift the media timeline to a correct starting position in the movie timeline, an Edit box and an Edit List box are created for each of the other RTP tracks (which do not contain a packet having the earliest wallclock timestamp) as follows:

The Edit List box contains two entries:

a) The first entry is an empty edit (indicated by media_time equal to -1), and its duration (segment_duration) is equal to the difference of the presentation times of the earliest media sample among all the RTP streams and the earliest media sample of the track. Figure H.1 presents an example of how the segment_duration of the first entry in an Edit List box is derived.

b) The value of media_time of the second entry is equal to the composition time of the earliest sample in presentation order, and the value of segment_duration of the second entry spans over the entire track. As the actual duration of the track might not be known at the time of creating the Edit List box, it is recommended to set the segment_duration equal to the maximum possible value (either the maximum 32-bit unsigned integer or the maximum 64-bit unsigned integer, depending on which version of the box is used).

The value of media_rate_integer is equal to 1 in both the entries of the Edit List box.

[image: image1.emf]RTP reception hint track

for audio stream

RTP reception hint track

for video stream

Movie timeline

1

s

t

a

u

d

i

o

s

a

m

p

l

e

1

s

t

v

i

d

e

o

s

a

m

p

l

e

segment_duration

Edit List box

Figure H.1 — An example of an Edit List box to compensate the unequal starting of the received RTP streams, segment_duration is copied to the first entry of the Edit List box

Some recording units may detect packets from which decoding can be started, such as IDR pictures of H.264/AVC streams, which are here referred to as random access points. If a stream contains a packet having the earliest wallclock timestamp among all the received streams and the same stream contains packets preceding, in decoding order, the first random access point of the stream, it is recommended not to store the packets preceding the first random access point of the stream and not to consider them when determining the earliest wallclock timestamp among all the received streams.
H.3.3 Recording of SDP

It is required that there is one movie-level index track containing SDP indexes when a file contains one or more RTP reception hint tracks. The format and the use of the SDP index payloads is specified in clause 5.3.5.7 of the DVB file format [ref].

If the initial SDP description is valid for the entire file, the SDP should be additionally stored as follows in order to obtain as good interoperability as possible with other file formats derived from the ISO base media format. Session-level SDP, i.e., all lines before the first media-specific line (“m=” line), should be stored as Movie SDP information within the User Data box, as specified in <<xref needed to>> 9.1.4.1. Each media-level section within the SDP description starts with an 'm=' line and continues to the next media-level section or the end of the whole session description. Each media-level section should be stored as Track SDP information within the User Data box of the corresponding RTP reception hint track.

H.3.4 Creation of a sample within an RTP reception hint track

It is recommended that each sample represents all received RTP packets that have the same RTP timestamp, i.e., consecutive packets in RTP sequence number order with a common RTP timestamp. The RTPsample structure is set to contain one RTPpacket structure per each received RTP packet having the same RTP timestamp. Each RTPpacket is recommended to contain one packet constructor of type 2 (RTPsampleconstructor). An RTPsampleconstructor copies a particular byte range, indicated by the sampleoffset and length fields of the constructor, of a particular sample, indicated by the samplenumber field of the constructor, by reference into the packet payload being constructed. The payload of each received RTP packet having the same RTP timestamp is copied to the extradata section of the sample. The track reference of each constructor is set to point to the hint track itself, i.e., is set equal to -1, and sampleoffset and length are set to match to the location and size of the packet payload within the sample.

Figure H.3 presents a pseudo-code example of an RTP reception hint sample, which contains two RTP packets.

 [image: image2.emf]aligned(8) class RTPsample {

unsigned int(16) packetcount = 2;

unsigned int(16) reserved;

RTPpacket packets[packetcount]

{

RTPpacket {

int(32) relative_time;

...

unsigned int(16) entrycount = 1;

RTPconstructor(2)

{

signed int(8) trackrefindex = -1;

unsigned int(16) length; // number of bytes in the payload

unsigned int(32) samplenumber; // samplenumber of this sample

unsigned int(32) sampleoffset;

unsigned int(16) bytesperblock = 1;

unsigned int(16) samplesperblock = 1;

}

}

RTPpacket {

int(32) relative_time;

...

unsigned int(16) entrycount = 1;

RTPconstructor(2)

{

signed int(8) trackrefindex = -1;

unsigned int(16) length; // number of bytes in the payload

unsigned int(32) samplenumber; // samplenumber of this sample

unsigned int(32) sampleoffset;

unsigned int(16) bytesperblock = 1;

unsigned int(16) samplesperblock = 1;

}

}

}

byte extradata

{

byte rtppayload1[];

byte rtppayload2[];

}

}

Figure H.3 — An example of a RTP reception hint sample containing two packets (their header and payload).

The use of an error occurrence indexing event to indicate an RTP packet loss is not recommended, because the RTPsequenceseed field can be used for detecting packet losses without any increase in the storage space. Furthermore, the minimum unit the error occurrence event can refer to is a sample (in an RTP reception hint track). Since a sample can contain many packets, it is ambiguous which ones of these packets the error occurrence indexing event concerns.
H.3.5 Representation of RTP timestamps

RTP timestamps are represented in a RTP reception hint track by a sum of three values, one of which is the decoding time DT in the media timeline of the track. The decoding time is run-length coded into the Decoding Time to Sample box and additionally to one or more Track Fragment Run boxes, if a sample resides in a movie fragment. The Decoding Time to Sample box includes a number of sample_count and sample_delta pairs, where sample_delta is the decoding time increment (i.e., the sample duration in terms of decoding time) for each sample in a set of consecutive samples, the number of which equals to sample_count. The Track Fragment Run box indicates one pair of sample_count and sample_duration, where sample_duration is the decoding time increment (i.e., the sample duration) for each sample in a set of consecutive samples, the number of which equals to sample_count. Each Track Fragment box can contain a number of Track Fragment Run boxes. The decoding time DT(i) for sample number i is derived by summing up the sample durations of all the samples preceding sample i from the Decoding Time to Sample box and, if needed, the Track Fragment Run boxes referring to any sample preceding sample i.

The RTP timestamp for sample i, RTPTS(i), is represented by a sum of three values specified as follows:

RTPTS(i) = (DT(i) + tsro.offset + offset) mod 232
(1)

where tsro.offset is the value of offset in the 'tsro' box of the referred reception hint sample entry and offset is the value included in the rtpoffsetTLV box in the RTPpacket structure, and mod is the modulo operation.

A 'tsro' box should be present in RTP reception hint sample entries. The value of offset in any 'tsro' box of a track should be equal to the RTP timestamp of the first packet of the respective stream in RTP sequence number order.

Provided that no wrap-around of the RTP timestamp values over the maximum 32-bit unsigned integer happened between sample i-1 and i, the difference between consecutive unequal RTP timestamps, in RTP sequence number order, is

RTPTS_DIFF(i) = RTPTS(i) – RTPTS(i – 1) for any i > 1
(2)

RTPTS_DIFF(i) remains unchanged, when the frame rate is constant, the number of frames in any packet is constant, and the transmission order is the same as the presentation order. These constraints are typically met by audio streams and temporally non-scalable video streams. If RTPTS_DIFF(i) is a constant denoted as RTPTS_DIFF, the following is recommended. The value of sample_delta in the Decoding Time to Sample box and, if movie fragments are used, the value of sample_duration in the Track Fragment Run box or boxes are set to RTPTS_DIFF, which results into compact Decoding Time to Sample and Track Fragment Run boxes. The rtpoffsetTLV box should not be used within the RTP reception hint samples, if RTCP reception hint tracks are used (see H.3.6. Otherwise (if RTCP reception hint tracks are not used), offset in the rtpoffsetTLV box should be set to 0.

When temporal scalability is used in a video stream, the transmission order and the playback order of packets are not identical, RTP timestamps do not increase as a function of RTP sequence number, and RTPTS_DIFF(i) is not constant. However, RTP timestamps typically have a constant behaviour in periods determined by the GOP_size, which is one plus the number of pictures between two consecutive pictures in the lowest temporal level in RTP sequence number order. For example, if two non-reference pictures are coded for each pair of reference pictures as illustrated in Figure H.5, GOP_size is equal to 3. Figure H.7 presents an example of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

[image: image3.emf]IDR

B B

P

B B

P

B B

P

...

... 0

1

Temporal

level

0 1 2 3 4 5 6 7 8 9 RTP SN ...

RTP TS 0 3 1 2 6 4 5 9 7 8 ...

(x clock tick of one

frame interval)

Figure H.5 — An example of a temporally scalable bitstream with GOP_size equal to 3.

 (RTP sequence numbers (SN) are normalized to start from 0, and one packet per frame is assumed.
RTP timestamps (TS) are normalized to start from 0 and indicated as clock ticks lasting one frame interval. Inter prediction arrows are indicated for the first GOP only, while pictures in other GOPs are predicted similarly.)

[image: image4.emf]IDR

B

B

P

B B

B

B

P

...

... 0

1

Temporal

level

0 4 3 2 6 1 7 8 5 RTP SN ...

RTP TS 0 3 1 2 6 4 5 7 8 ...

(x clock tick of one

frame interval)

2 ...

Figure H.7 — An example of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

 (RTP sequence numbers (SN) are normalized to start from 0, and one packet per frame is assumed.
RTP timestamps (TS) are normalized to start from 0 and indicated as clock ticks lasting one frame interval.)
The RTP timestamp increment caused by one GOP is derived as follows, when no wrap-around of the RTP timestamp values over the maximum 32-bit unsigned integer happened between sample i and i + GOP_size, inclusive:

RTPTS_GOP_DIFF(i) = RTPTS(i + GOP_size) – RTPTS(i)
(3)

If RTPTS_GOP_DIFF(i) is a constant equal to RTPTS_GOP_DIFF, when no sample i, i + 1, …, i + GOP_size is a picture starting a so-called closed group of pictures, such as an IDR picture of H.264/AVC streams, the following is recommended. The value of sample_delta in the Decoding Time to Sample Box and, if movie fragments are used, the value of sample_duration in the Track Fragment Run box or boxes are set to RTPTS_GOP_DIFF / GOP_size. The rtpoffsetTLV box should not be used for pictures in the lowest temporal level, if RTCP reception hint tracks are used (see H.3.6). Otherwise (if RTCP reception hint tracks are not used), offset in the rtpoffsetTLV box should be set to 0. The value of offset in the rtpoffsetTLV box should be set for pictures in other temporal levels to such that Equation (1) is fulfilled. Figure H.9 indicates how the decoding time and offset are set for a hierarchically temporally scalable video bitstream presented in Figure H.7.

[image: image5.emf]IDR

B

B

P

B B

B

B

P

...

... 0

1

Temporal

level

0 4 3 2 6 1 7 8 5 DT ...

RTP TS 0 3 1 2 6 4 5 7 8 ...

(x clock tick of one frame interval)

2 ...

offset

0 -1 -2 0 0 3 -2 -1 3 ...

Figure H.9 — An example of setting the decoding time (DT) and the value of offset in the rtpoffsetTLV box of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

 (In this example, the decoding time increment between samples is set equal to RTPTS_GOP_DIFF / GOP_size to have a compact encoding decoding times. The value of offset in the rtpoffsetTLV box is adjusted for each sample to store a representation of the RTP timestamp. For this illustration, RTP timestamps and decoding times are normalized to start from 0 and indicated as clock ticks lasting one frame interval.)
If no linear and periodical behaviour of RTP timestamps is detected from the received packets, and no two received packets of different samples have the same reception time, it is recommended to set the value of sample_delta in the Decoding Time to Sample Box and, if movie fragments are used, the value of sample_duration in the Track Fragment Run box or boxes to represent the reception time of the first packet of the sample. That is, the derived decoding time DT(i) should be equal to the reception time of the first packet of the sample subtracted by the reception time of the first packet of the first received sample of the stream.

It is noted that composition timestamps are not explicitly indicated in the file for samples in any hint tracks. Consequently, for RTP reception hint tracks, the composition timestamps are inferred from the information related the RTP timestamps indicated in the stored packet stream. For an RTP reception hint track that is not associated with an RTCP reception hint track, the composition time of a received RTP packet is inferred to be the sum of the sample time DT(i) and the value of the offset field in the rtpoffsetTLV box including the sample. For an RTP reception hint track that is associated with an RTCP reception hint track, the composition time is inferred as follows. Let the received RTP packet having the earliest RTP timestamp within the same track have composition time equal to 0. Any remaining RTP packet has a composition time equal to the RTP timestamp difference of the present RTP packet and the earliest RTP packet in presentation order with clock drift correction similar to H.3.6.3. The composition time refers to the media timeline of the track.

H.3.6 Recording operations to facilitate inter-stream synchronization in playback

H.3.6.1 General
Lip synchronization, i.e., correct synchronization between recorded RTP streams, during playback can be facilitated at least with the following two means:

1.
An RTCP reception hint track is generated for each RTP reception hint track. The potential clock drift between the RTP timestamp clocks of different streams is corrected at the time when the file is parsed and the media streams included in the file are decoded and played. The clock drift correction is done similarly to as would be done for RTP streams that are received and played simultaneously. This mode of operation is straightforward for the recording units. However, accessing a file from an exact playback position might be more cumbersome, because it requires compensation of the clock drift of all the recorded streams at the time of the access.

2.
The potential clock drift between recorded RTP streams is corrected by modifying the RTP timestamps of one or more recorded streams. This mode of operation is requires processing of RTCP Sender Reports at the time of recording and is hence more tedious for the recording units than creation of RTCP reception hint tracks. However, the operation of the player is straightforward.

Recording units should use the timestamp synchrony box (<<xref needed to 9.4.1.2>>) to indicate which lip synchronization approach has been used. The timestamp synchrony box includes the timestamp_sync field. timestamp_sync equal to 1 indicates that players should use RTCP reception hint tracks for lip synchronization. timestamp_sync equal to 2 indicates that players should use composition timestamps for lip synchronization.

Some implementations may create RTCP reception hint tracks first during the real-time recording operation and then compensate the clock drift by modifying RTP timestamps as an off-line post-processing step.

The following clauses provide more details about both approaches.

H.3.6.2 Facilitating lip synchronization based on RTCP Sender Reports

A recording unit stores all RTCP Sender Reports for a particular RTP stream as samples in the respective RTCP reception hint track.

H.3.6.3 Compensating clock drift in timestamps

It is not recommended to modify the RTP timestamps of the recorded audio streams. Such a modification would cause an audio timescale modification in the player, which is a non-trivial operation.

The recorded representation of the RTP timestamps of the video and other non-audio streams should be modified using the following procedure.

1. First, the wallclock timestamp a of a video frame is derived from the RTP timestamp corresponding to the video frame as a sum of the wallclock timestamp of the previous video frame and the difference of the RTP timestamps of the current and previous video frames in the units of the wallclock timeline.

2. Second, the playback time b for the video frame on the wallclock time is derived based on the RTCP Sender Reports. If no RTCP Sender Report that exactly indicates the wallclock time for the video frame is available, the wallclock time can be extrapolated assuming that the rate at which the RTP timestamp clock and the sender wallclock in RTCP Sender Reports deviates stays unchanged.

3. Third, based on the RTCP Sender Reports for audio, the audio RTP timestamp that is played simultaneously with the video frame at time b of the wallclock timeline is derived. There need not be an audio frame having exactly the derived audio RTP timestamp. The wallclock timestamp c of an audio sample is calculated from the derived audio RTP timestamp as a sum of the wallclock timestamp of the preceding audio frame and the difference of the RTP timestamps of the derived audio RTP timestamp and the RTP timestamp of the preceding audio frame.

The difference between a and c, if any, should be compensated in the fields that represent the video RTP timestamp in the file. In practice, the easiest way might be to add the difference to the offset field in the rtpoffsetTLV box, which is illustrated in Figure H.11. The other option, rewriting the Decoding Time to Sample box and the Track Fragment Run boxes (if any), might be more cumbersome to implement, because of particular way of coding the sample times by a combination of sample counts and durations, and might require more storage space too.

[image: image6.emf]1. Wallclock timestamp

derived from a video RTP

timestamp only

2. Wallclock timestamp

derived from RTCP

Sender Report(s) of video

Sender’s wallclock

timeline

4. Difference to be

added to offset in the

rtpoffsetTLV box

of the video RTP

reception hint track

3. Wallclock timestamp

derived from an audio RTP

timestamp only for an

audio frame that is played

at time b according to

RTCP Sender Report(s)

of audio

a b

c

Figure H.11 — An example of correcting the lip synchronization in the RTP timestamp representation.

H.3.7 Representation of reception times

As specified in [DVB FF],
 the reception time of a packet is indicated by the sum of the decoding time of the sample containing the packet and the value of relative_time of the RTPpacket structure of the packet.
The reception time of the earliest received RTP packet should be zero, and the reception times of all subsequent packets should be relative to the reception time of the earliest received RTP packet.

The clock source for the reception time is undefined and may be, for instance, the wallclock of the receiver. If the range of reception times of a reception hint track overlaps entirely or partly with the range of reception times of another reception hint track, the clock sources for these hint tracks shall be the same.
The reception time of a packet should correspond to the time instant when the protocol stack layer underneath RTP, typically UDP, outputs the packet.
H.3.8 Creation of media samples
Media samples are created from the received RTP packets as instructed by the relevant RTP payload specification and RTP itself. However, most media coding standards only specify the decoding of error-free streams and consequently it should be ensured that the content in media tracks can be correctly decoded by any standard-compliant media decoder. Handling of transmission errors therefore requires two steps: detection of transmission errors and inference of samples that can be decoded correctly. These steps are described in the subsequent paragraphs.

Lost RTP packets can be detected from a gap in RTP sequence number values. RTP packets containing bit errors are usually not forwarded to the application as their UDP checksum fails and packets are discarded in the protocol stack of the receiver. Consequently, bit-erroneous packets are usually treated as packet losses in the receiver.

The inference of media samples that can be correctly decoded depends on the media coding format and is therefore not described here in details. Generally, inter-sample prediction is weak or non-existing in audio coding formats, whereas most video coding formats utilize inter prediction heavily. Consequently, a lost sample in many audio formats can often be replaced by a silent or error-concealed audio sample. It should be analyzed whether a loss of a video packet concerned a non-reference picture or a reference picture, or, more generally, in which level of the temporal scalability hierarchy the loss occurred. It should then be concluded which pictures may not be correctly decodable. For example, a loss of a non-reference picture does not affect the decoding of any other pictures, whereas a loss of a reference picture in the base temporal level typically affects all pictures until the next picture for random access, such as an IDR picture in H.264/AVC. Video tracks must not contain any samples dependent on any lost video sample.

H.3.9 Creation of hint samples referring to media samples

Media samples are created from the received RTP packets as explained in H.3.8. RTP reception hint tracks are created as explained in H.3.4, but the contents of the RTPpacket structure depend on the existence of the corresponding media sample as follows.

· If the packet payload of the received RTP packet is represented in a media track, the track reference of the relevant packet constructors are set to point to the media track and include the packet payload by reference. It is not recommended to have a copy of the packet payload in the extradata section of the received RTP sample in order to save storage space and make file editing operations easier to implement.

· If the packet payload of the received RTP packet is not represented in a media track, the instance of the RTPpacket structure is created as explained in clause H.3.4.

H.3.10 Recording of a DVB-H service item

It is recommended to store the RTP streams of a recorded DVB-H service as RTP reception hint tracks or media tracks or a combination thereof. Hence, it is recommended to run the protocol stack of the receiver up to, but excluding, RTP. For example, MPE-FEC decoding [REF], if applicable
, should be performed at the time of recording, before storing the respective data streams into the file. The stored reception time for all RTP packets of the same MPE-FEC frame should be identical and match the moment when the MPE-FEC decoding has been completed. If movie fragments are created in the file being recorded, it is recommended to generate one movie fragment per each MPE-FEC frame.

H.4 Playing of recorded RTP streams

H.4.1 Introduction

This clause describes operations required for playback of a DVB file containing recorded RTP streams. It is organized as follows:

· Before RTP streams can be played, the contents of the files should be analyzed. Particularly, alternative tracks representing the same media stream should be identified and one of these tracks should be selected for decoding and playback. The coding format should be detected in order to conclude up front that it can be decoded by the player. These preparation operations are described in more details in H.4.2.

· If an RTP reception hint track is being processed, there are a few things to be taken into account as described in H.4.3. For example, packet losses should be detected and handled appropriately.

· The synchronization of the decoded media samples should be handled properly as described in H.4.4.

· If the RTP streams stored in a file are accessed from a position other than the beginning of the streams, proper inter-stream synchronization and decoder initialization are needed as described in H.4.5.
H.4.2 Preparation for the playback

In the preparation phase for playback, the player selects which tracks are played. The basic track structure of the file is parsed first. The tracks are grouped according to which alternate group they belong to. Tracks that belong to the same alternate group are indicated by the same value of alternate_group in the track header box. One track from each alternate group is selected for playback as follows.

If there is an RTP reception hint track in the alternate group, it is preferred for playback, because it contains an entire representation of the received RTP stream, unlike media tracks derived from the received RTP streams, which might use such subset of the received RTP packets that can be decoded by any standard-compliant decoder without capability for handling packet losses.

The compatibility of the player with the selected track should be ensured. For example, it should be examined whether the codec, the profile, and the level used in the track are such that the player is able to support.

The codec, profile, and level used for the coded bitstream in an RTP reception hint track can be concluded from the SDP description of the RTP stream. The SDP descriptions are stored in the movie-level index track. If SDP is unchanged throughout the file, it may be additionally stored as Movie SDP information and Track SDP information within User Data boxes. If Track SDP information is present, it may be parsed to find out the codec, profile, and level used for the bitstream contained in the RTP reception hint track. If Movie SDP information or Track SDP information is not present, the move-level index track is traversed to find and parse each SDP index and, consequently, the codec, profile, and level used for the bitstream contained in the RTP reception hint track.

If no RTP reception hint track exists in an alternate group, the sample entry or sample entries of the media tracks in the alternate group should be examined to find out which ones of them the player is able to support.

H.4.3 Decoding of a sample within an RTP reception hint track

The original RTP packets may be reconstructed from an RTP reception hint sample by creating the RTP packet header from the RTPpacket structures and by resolving the constructors of the RTPpacket structures. Hence, one approach for file players to process RTP reception hint tracks is to re-create the packet stream that was received and process the re-created packet stream as if it was newly received.

The relative_time field included in the RTPpacket structure may be used to schedule the insertion of the packet into the buffer for the RTP receiver. However, it may be more advisable to modify the decoding process of recorded RTP streams such a manner that the decoder output buffers are kept as full as possible in order to avoid interruptions or jerky playback caused by late packets or occasional problems in real-time decoding in systems running other processes in addition to the player.

Packet losses should be detected from gaps in the RTP sequence number. The reaction to packet losses depends on the particular media decoder implementation and may also depend on user preferences.

H.4.4 Lip synchronization

The following steps are required for achieving correct synchronization between streams:

1.
Inter-track synchronization at the start of the playback.

The starting position of the media timeline of a track may be shifted in the movie timeline of the file as described in the following two paragraphs.

For a media track and an RTP reception hint track that is not associated with an RTCP reception hint track, an Edit List box is used to shift the starting position of the media timeline within the move timeline as described in H.3.2. The media timelines of the tracks selected for playback are mapped to the movie timeline by parsing the Edit List boxes of the tracks, if present. In DVB files, the Edit List box of a track can only be used for selecting the starting position of the media timeline within the movie timeline. The playback of each media track and each RTP reception hint track that is not associated with an RTCP reception hint track starts at the movie timeline position indicated in the Edit List box of the track or from the beginning of the movie timeline, if no Edit List box exists for the track.

For RTP reception hint tracks that are associated with respective RTCP reception hint tracks, the shifting of the starting position of the media timeline within the movie timeline is inferred as follows. The media timeline of the RTP reception hint track containing the earliest RTP packet (in presentation time on the sender wallclock timeline) among all RTP reception hint tracks is not shifted within the movie timeline (i.e., starts at time 0 on the movie timeline). The starting time of the media timeline of the any other RTP reception hint track is equal to the timestamp difference of the earliest RTP packets of the present track and the track containing the earliest RTP packet among all RTP reception hint tracks.

2.
Reconstruction of RTP timestamps and composition times on the media timeline (H.3.5).

3.
Correction of RTP timestamps and composition times based on RTCP Sender Reports, if RTCP reception hint tracks are used.

The correction is done similarly to what is described in H.3.6.3. However, instead of adding the difference between times a and c into the representation of the RTP timestamps in the file, the difference is added during the playback to the presentation times of the video frames on the movie timeline.

4.
Pacing the output of the decoded media samples.

It is recommended to play a recorded program at the pace of the wallclock of the player and to use the audio playout clock as the wallclock of the player. The audio playback is arranged to be continuous at the native sampling frequency of the audio signal. A presentation clock of the player runs at the pace of the audio playback, i.e., its value is always equal to the (the number of the most frequent uncompressed audio sample that was played out) × (sampling frequency of the audio signal). The playback of the video track (and potential other continuous media tracks) is synchronized to the presentation clock of the player. In other words, when the presentation clock of the player meets the composition time of a video sample on the movie timeline, the video sample is played out.

Only if a file being simultaneously recorded and played back and if the receiver wallclocks runs faster than the sender wallclock, pacing the playback according to the rate of the receiver wallclock might not be recommended and synchronizing the rate of the receiver wallclock to the rate of the sender wallclock may be done as follows.

The pace of the sender clock is recovered by creating a relationship between the reception times (according to the receiver clock) and the respective wallclock timestamps of the sender, which are reconstructed from RTCP Sender Reports. It is recommended to use the audio playout clock as the receiver clock. As the delay in the network and in the receiver may be varying, the relation between the reception times and the respective timestamps of the sender should be averaged over a large number of received packets. A timescale multiplication factor is concluded as a result of the averaging of the relation between the reception times and the respective timestamps of the sender.

A presentation time on a timeline of the receiver clock is derived for each sample. If RTCP reception hint tracks are in use, the presentation time is the composition time of the sample on the movie timeline, also including clock drift correction as described in step 3 above. If RTCP reception hint tracks are not in use, the presentation time is directly the composition time of the sample on the movie timeline. Then, for playback purposes only, the presentation times of the samples in all tracks being played should be multiplied by the timescale multiplication factor.

Time stretching of the signal should be done accordingly. Samples are played out at their presentation times.

In practice, the timescale multiplication factor and the mapping from the RTP timeline to the wallclock of the sender (step 3 above) may be implemented as a single operation.

H.4.5 Random access

Random access refers to a non-linear access to the media streams represented in the file. In other words, in a random access operation the file is accessed from another sample than that which was previously played or the file is initially accessed from a position that is not the beginning of the movie timeline.

It is recommended to provide the random access functionality to the user relative to the movie timeline of the file rather than any other timelines, such as the sender wallclock timeline. By using the movie timeline as the basis, the number of steps for a random access operation is kept low.

First, it is derived which media frames are at a desired random access position (or closest to it, if there are none exactly at the desired random access position). In the case of media tracks, RTP reception hint tracks for audio, and any RTP reception hint tracks having the timestamp_sync field equal to 2 (indicating pre-compensated lip synchronization), the media frame closest to the desired random access position can be directly derived based on the composition timestamps (on the media timeline) shifted by the initial starting position indicated in the Edit List box, if any. In the case of non-audio RTP reception hint tracks having the timestamp_sync field equal to 1 (indicating the use of RTCP reception hint tracks), the presentation times of samples should be derived as described in H.4.4, until the closest presentation time to the desired random access position is found.

Second, decoding of many media bitstreams can be started only from frames of a particular type, such an IDR picture of H.264/AVC. Player implementations may therefore have different approaches, including the following:

1.
Discover the closest frame at or preceding the desired random access position from which decoding can be started, start decoding from that frame, and start rendering only from the desired random access point. This approach may imply some processing delay before the rendering is started.

2.
Start decoding and rendering at or after the desired random access point using the earliest frame from which decoding can be started. Typically, audio playback would start earlier than video playback, but the processing delay before the rendering is started is smaller than in the previous option.

H.5 Re-sending recorded RTP streams

H.5.1 Introduction

It may be a desirable operation to re-send the RTP streams that have been recorded earlier to a DVB file. For example, if RTP streams are received through a DVB service and recorded into a DVB file, it may be desirable to re-send them from one device to another device in a home environment using a WLAN connection. This clause provides recommendations for re-sending of recorded RTP streams.

A communication system based on RTP includes a source endpoint (a.k.a., a sender) and a destination endpoint (a.k.a., a receiver) and may contain one or more mixers and translators. The sender and the receiver are the endpoints of the RTP and RTCP sessions. The behaviour of RTP translators and mixers is specified in [RFC3550] and clarified in [RFC5117]. In general, the recording unit receiving RTP streams and storing them into a file acts as a destination endpoint, and a re-sending unit reading stored RTP streams from a file and sending them acts as a source. Typically, the payloads of the re-sent RTP stream are not modified, which makes a combination of a recording unit and a re-sending unit acting similarly to a transport translator as described in [RFC5117]. However, the essential characteristic of a translator is that receivers cannot detect its presence. Consequently, a combination of a recording unit and a re-sending unit cannot act as a transport translator, unless re-sending happens simultaneously with the recording of the original streams. As this case is considered rare, the discussion in this clause regards a recording unit as a destination terminating the original RTP and RTCP sessions and a re-sending unit as a source of new RTP and RTCP sessions.

This clause is organized as follows:

· H.5.2 includes recommendations how to compose RTP packets from RTP reception hint tracks and how to schedule the transmission of the RTP packets.

· H.5.3 discusses how RTCP packets should be generated and how received RTCP packets should be processed.

H.5.2 Re-sending RTP packets

The packets are recommended to be constructed and transmitted as follows.

The packet payloads are recommended to be constructed according to the constructors stored in the reception hint track, i.e., the packet payloads are recommended to be identical to those received, unless a different packet size is crucial for the network to which the packets are re-sent.

The values of the header fields for the RTP packets created as suggested by an RTP reception hint track should be kept the same as in the respective RTPpacket structure except for the following cases:

· The initial RTP timestamp offset and the RTP sequence number offset should be selected randomly regardless of the values stored in the offset field of the 'tsro' box of the referred reception hint sample entry or the values of the RTPsequenceseed field of the RTPpacket structure of any for any of the packets of the respective RTP reception hint track.

· The value of the RTP timestamp field should be a sum of the random initial offset, the value of offset in the RTPpacket structure, and the decoding time of the respective RTP sample. If the sum exceeds the maximum unsigned 32-bit integer, it should be wrapped over.

· The relative increments of the RTP sequence number should be the same as those recorded in the values of the RTPsequenceseed fields. Consequently, if there was a packet loss in the stream that was recorded, the stream that is re-sent also has a respective gap in the RTP sequence number, and the receiver is able to deduce a packet loss.

· The value of the CSRC count field should always be zero, because no contributing sources of the previous RTP session that was recorded are actively modifying the streams for the RTP session for the stream being re-sent. The source identifier space (for both SSRC and CSRC) is session specific. Consequently, the CSRC list of the RTP header should be empty regardless of the potentially stored CSRC values for the received streams, which are included in the receivedCSRC TLV box in the RTPpacket structure.

· The value of the payload type field may be dynamically selected depending on the signalling scheme in use.

· The value of the SSRC field should be randomly selected and potential collisions should be handled as specified in [RFC3550]. The SSRC value of a received stream may be stored in the ReceivedSsrcBox of the referred reception hint sample entry but it should be ignored when the stream is re-sent.

· The recorded RTP header extensions, stored in rtphdrextTLV in the RTPpacket structure, if any, should be re-sent only if the re-sending unit can verify that they are valid for the re-sent stream. If the re-sending unit is not able to parse the semantics of the recorded RTP header extensions, they should not be re-sent.

The reception time of a packet, represented by the sum of the decoding time of the RTP reception hint sample containing the packet and the value of the relative_time of the RTPpacket structure, equals to the transmission time of the packet with a skew caused by the transmission delay and the processing delay in the protocol stack of the receiver. The skew of adjacent packets might not be equal due to transmission delay jitter and varying processing delay. Moreover, the protocol stack used when receiving the stream might differ from the protocol stack used for re-sending the stream. For example, the stream might have been received from a DVB-H service, where time-slicing is used and reception times have therefore a bursty nature, but it may be re-sent over a connection of a steady throughput. Due to these reasons, the reception times are often not applicable as such to pace the transmission of the re-sent packets. In all cases, the re-sending unit should verify that the re-sent packet stream complies with the buffering model in use, if any. If the re-sending unit can conclude that the network environments and protocol stacks used when receiving the stream and when re-sending the recorded stream are similar, reception times may be used as a basis for scheduling the packet transmission. The re-sending unit should make an effort to remove or conceal the transmission delay jitter in the recorded stream. If the re-sending unit is unable to conclude that the network environments and protocol stacks used when receiving the stream and when re-sending the recorded stream are similar or is uncertain which kind of packet scheduling is appropriate, it may use the decoding time as the basis for scheduling.

H.5.3 RTCP Processing

RTCP Sender Reports and other RTCP messages are regenerated following the constraints specified in [RFC3550] rather than directly using the RTCP messages recorded in RTCP reception hint tracks, if any.

An RTCP Sender Report contains the wallclock time when the report was sent and the RTP timestamp corresponding to the same time as the indicated wallclock time. The RTP timestamp for an RTCP Sender Report is generated as follows. A presentation time on a timeline of a reference clock is derived for the sample corresponding the indicated wallclock time in the RTCP Sender Report. The reference clock may be the wallclock of the re-sending unit initialized to 0 at the beginning of the session. The sample corresponding to the indicated wallclock time might not exist in the corresponding RTP reception hint track, because the sampling instants of the samples in the RTP reception hint tracks might not match with the transmission instants of the RTCP Sender Reports. However, as instructed by [RFC3550], the RTP timestamp is derived as if there was a sample in the RTP stream corresponding to the indicated wallclock time. The RTP timestamp for an RTCP Sender Report should be linearly interpolated from the RTP timestamps of the samples immediately preceding and following the wallclock time indicated in the RTCP Sender Report. In order to conclude the samples immediately preceding and following the wallclock time indicated in the RTCP Sender Report, presentation times on the timeline of the reference clock should be derived until the closest samples are discovered. If RTCP reception hint tracks are present for the RTP reception hint track being re-sent, the presentation time is the composition time of the sample on the movie timeline, also including clock drift correction as described in step 3 of H.4.4. If RTCP reception hint tracks are not present, the presentation time is directly the composition time of the sample on the movie timeline.

When handling the received RTCP Receiver Reports, it should be noticed that the reported cumulative number of packets lost includes also the unsent packets that were never originally received and correspond to the gaps in the RTP sequence number in the RTP reception hint tracks. Any congestion management, retransmission, or other packet loss resilience method should take this into account.

Add the following Annex:

Annex I
(Normative)
Common Encryption

I.1 Introduction
I.2 <<Ed: Note that this Annex is planned to move into its own sub-part before publication>>
The ‘cenc’ Common Encryption protection scheme specifies standard encryption and key mapping methods that may be utilized by one or more digital rights and key management systems (DRM systems) to enable decryption of the same file using different DRM systems. The scheme operates by defining a common format for the encryption related metadata necessary to decrypt the protected streams, yet leaves the details of rights mappings, key acquisition and storage, DRM compliance rules, etc up the DRM system or systems supporting the ‘cenc’ scheme. For instance, DRM systems supporting the ‘cenc’ protection scheme must support identifying the decryption key via ‘cenc’ KID (key identifier) but how the DRM system locates the identified decryption key is left to a DRM-specific method. DRM specific information such as licenses or rights and license/rights acquisition information may be stored in an ISO Base Media file using a Protection System Specific Header box (‘pssh’), using one for each DRM system applied. DRM licenses/rights need not be stored in the file in order to look up a key using KID values stored in the file and decrypt media samples using the encryption parameters stored in each track.
I.3 Scheme Signalling
As defined in 8.12 <<ed; make into xref>>, the sample entry is transformed and a Protection Scheme Information Box (‘sinf’) is added to the standard sample entry in the Sample Description Box to denote that a stream is encrypted. The Protection Scheme Information Box must contain a Scheme Type Box (‘schm’) so that the scheme is identifiable. The Scheme Type Box conform to 8.12.5 <<ed: make into xref>> with the following additional constraints:

· The scheme_type field is set to a value of ‘cenc’ (Common Encryption).

· The scheme_version field is set to 0x00010000 (Major version 1, Minor version 0).

The Protection Scheme Information Box must also contain a Scheme Information Box (‘schi’). The Scheme Information Box conforms to 8.12.6 <<ed: make into xref>> with the following additional constraint:

· The Scheme Information Box must contain a Track Encryption Box (’tenc’), describing the default encryption parameters for the track.
I.4 Overview of Encryption Metadata

The encryption metadata defined by the ‘cenc’ Common Encryption Scheme can be categorized as follows:

· Protection System Specific Data – this data is opaque to the ‘cenc’ Common Encryption Scheme. This gives protection schemes a place to store their own data using a common mechanism. This data is contained in the ProtectionSystemSpecificHeaderBox described in I.6.1.

· Common encryption information for a media track – this includes default values for the key identifier (KID), initialization vector size, and encryption algorithm. This data is contained in the TrackEncryptionBox described in I.6.2.

· Common encryption information for groups of media samples – this includes overrides to the track level defaults for key identifier (KID), initialization vector size, and encryption algorithm. This allows groups of samples within the track to use different keys, a mix of clear and encrypted content, etc. This data is contained in a SampleGroupDescriptionBox ('sgpd') that is referenced by a SampleToGroupBox (‘sbgp’). See I.4 for further details.

· Encryption information for individual media samples – this includes initialization vectors and, if required, sub sample encryption data. This data is sample auxiliary information, referenced by using a SampleAuxiliaryInformationSizesBox (‘saiz’) and a SampleAuxiliaryInformationOffsetsBox ('saio'). See I.5 for further details.

I.5 Encryption Parameters shared by groups of samples

Each sample in a protected track must have an AlgorithmID, IV_Size, and KID associated with it. This can be accomplished by (a) relying on the default values in the TrackEncryptionBox (see I.6.2), or (b) specifying the parameters by sample group, or (c) using a combination of these two techniques.

When specifying the parameters by sample group, the SampleToGroupBox in the sample table or track fragment specifies which samples use which sample group description from the SampleGroupDescriptionBox. The format of the sample group description is based on the handler type for the track.

Tracks with a handler type of ‘vide’ must use one of the sample groups defined here, depending upon the use case—streaming from a stored file; live streaming--possibly enhanced by sample groups or other information specific to a certain content protection system. The CencSampleEncryptionInformationVideoGroupEntry, has the following syntax:
aligned(8) class CencSampleEncryptionInformationVideoGroupEntry

extends VisualSampleGroupDescriptionEntry(‘seig’)
{

unsigned int(24)

AlgorithmID;

unsigned int(8)

IV_size;

unsigned int(8)[16]
KID;
}

The CencKeyRotSampleEncryptionInformationVideoGroupEntry has the following syntax:

aligned(8) class CencKeyRotSampleEncryptionInformationVideoGroupEntry

extends VisualSampleGroupDescriptionEntry(‘serg’)
{

unsigned int(24)

AlgorithmID;

unsigned int(8)

IV_size;

unsigned int(8)[16]
KID;
//Identifies the Long-term or Master key

//delivered using protection system specific

//key management protocol.

unsigned int(32) KeySize;

unsigned int(8)[KeySize] encryptedKey;

//short-term key encrypted using Long-term or Master Key.
}

Similarly, tracks with a handler type of ‘soun’ must use one of the following .The CencSampleEncryptionInformationAudioGroupEntry, has the following syntax:

aligned(8) class CencSampleEncryptionInformationAudioGroupEntry

extends AudioSampleGroupDescriptionEntry(‘seig’)
{

unsigned int(24)

AlgorithmID;

unsigned int(8)

IV_size;

unsigned int(8)[16]
KID;
}
The CencKeyRotSampleEncryptionInformationAudioGroupEntry has the following syntax:

aligned(8) class CencKeyRotSampleEncryptionInformationAudioGroupEntry

extends AudioSampleGroupDescriptionEntry(‘serg’)
{

unsigned int(24)

AlgorithmID;

unsigned int(8)

IV_size;

unsigned int(8)[16]
KID;
//Identifies the Long-term or Master key

//delivered using protection system specific

//key management protocol.

unsigned int(32) KeySize;

unsigned int(8)[KeySize] encryptedKey;

//short-term key encrypted using Long-term or Master Key.
}
(Groups with identical structure should be defined if protection of other media types is needed.)

These structures use a common semantic for their fields as follows:
AlgorithmID is the encryption algorithm identifier used to encrypt samples in the sample group. See the AlgorithmID field in the I.7.2 for further details.

IV_size is the Initialization Vector size in bytes for samples in the sample group. See the IV_size field in I.7.2 for further details.
KID is the default key identifier used for samples in the sample group. See the KID field in I.7.2 for further details.
In order to facilitate the addition of future optional fields, clients shall ignore additional bytes after the fields defined in the CencSampleEncryption group entry structures.

I.6 Common Encryption Sample Auxiliary Information

Each sample in a protected track must have an InitializationVector associated with it. Each sample in protected AVC video tracks must use the encryption scheme outlined in I.7.5, which requires subsample encryption data. This is provided as Sample Auxiliary Information with aux_info_type equal to ‘cenc’ and aux_info_type_parameter equal to 0.
The format of the sample auxiliary information for samples with this type is:

aligned(8) class CencSampleAuxiliaryDataFormat
{

unsigned int(IV_size*8) InitializationVector;

if (sample_info_size > IV_size)

{

unsigned int(16) subsample_count;

{

unsigned int(16) BytesOfClearData;

unsigned int(32) BytesOfEncryptedData;

} [subsample_count]

}
}

Where:

InitializationVector is the initialization vector for the sample. See the InitializationVector field in I.7.2 for further details.

subsample_count is the count of subsamples for this sample. See the subsample_count field in I.7.2 for further details.
BytesOfClearData is the number of bytes of clear data in this subsample. See the BytesofClearData field in I.7.2 for further details.
BytesOfEncryptedData is the number of bytes of encrypted data in this subsample. See the BytesofEncryptedData field in I.7.2 for further details.
If sub-sample encryption is not used then all auxiliary information will have the same size and hence the default_sample_info_size will be equal to the IV_Size of the initialization vectors. Even if subsample encryption is used the size of the sample info may be the same for all of the samples (if all of the samples have the same number of subsamples).

I.7 Box Definitions
I.7.1 Protection System Specific Header Box

I.7.1.1 Introduction
Box Type:
`pssh’
Container:
Movie (‘moov’) or Movie Fragment (‘moof’)
Mandatory:
No
Quantity:
Zero or more

<<Discussion may be needed on what pssh stored in movie fragments mean, their handling, and so on.>>

This box contains information needed by a Content Protection System to play back the content. The data format is specified by the system identified by the ‘pssh’ parameter SystemID, and is considered opaque for the purposes of this specification.

The data encapsulated in the Data field may be read by the identified Content Protection System to enable decryption key acquisition and decryption of media data. For license/rights-based systems, the header information may include data such as the URL of license server(s) or rights issuer(s) used, embedded licenses/rights, and/or other protection system specific metadata.

A single file may be constructed to be playable by multiple key and digital rights management (DRM) systems, by including one Protection System-Specific Header box for each system supported. Readers that process such presentations must match the SystemID field in this box to the SystemID(s) of the DRM System(s) they support, and select or create the matching Protection System-Specific Header box(es) for storage and retrieval of Protection-Specific information interpreted or created by that DRM system.

A ProtectionSystemSpecificHeaderBox must be considered relevant to all protected tracks within a movie since only the data inside is opaque except to the protection system identified by the SystemID.

I.7.1.2 Syntax

aligned(8) class ProtectionSystemSpecificHeaderBox extends FullBox(‘pssh’, version=0, flags=0)
{

unsigned int(8)[16]

SystemID;

unsigned int(32)

DataSize;

unsigned int(8)[DataSize]
Data;
}

I.7.1.3 Semantics

SystemID specifies a UUID that uniquely identifies the content protection system that this header belongs to.

DataSize specifies the size in bytes of the Data member.

Data holds the content protection system specific data.

I.7.2 Track Encryption Box

I.7.2.1 Introduction
Box Type:
`tenc’
Container:
Scheme Information Box (‘schi’)
Mandatory:
No (Yes, for encrypted tracks)
Quantity:
Zero or one

The TrackEncryptionBox contains default values for the AlgorithmID and KID for the entire track or track fragment. These values are used as the encryption parameters for the samples in this track or track fragment unless over-ridden by the sample being associated with a sample group. For files with only one key per track, this box allows the basic encryption parameters to be specified once per track instead of being repeated per sample.

I.7.2.2 Syntax

aligned(8) class TrackEncryptionBox extends FullBox(‘tenc’, version=0, flags=0)
{

unsigned int(24)

default_AlgorithmID;

unsigned int(8)

default_IV_size;

unsigned int(8)[16]
default_KID;
}

I.7.2.3 Semantics

default_AlgorithmID is the default encryption algorithm identifier used to encrypt samples in the track. See the AlgorithmID field in I.7.2 for further details.

default_IV_size is the default Initialization Vector size in bytes. See the IV_size field in I.7.2 for further details.
default_KID is the default key identifier used for samples in this track. See the KID field in I.7.2 for further details.

I.8 Encryption of Media Data

I.8.1 Introduction

Media data using ‘cenc’ Protection Scheme uses the Advanced Encryption Standard specified by AES [FIPS-197] using 128-bit keys in Counter mode (AES-CTR), as specified in Block Cipher Modes [NIST 800-38A]. Encrypted AVC Video Tracks must follow the scheme outlined in ‎I.7.5, which defines a NAL unit based encryption scheme to allow access to NAL units and unencrypted NAL unit headers in an encrypted AVC stream. All other types of tracks must follow the scheme outlined in ‎I.7.6, which defines a simple sample-based encryption scheme.

I.8.2 Field semantics

Within the sample groups and sample auxiliary information used by the common encryption method, the fields have the following semantics:

AlgorithmID is the identifier of the encryption algorithm used to encrypt the samples in the track or track fragment. The currently supported algorithms are:

0x0: Not encrypted

0x1: AES 128-bit in CTR mode
0x000002 – 0x0FFFFF: Reserved

0x100000 – 0x7FFFFF: Managed by the MPEG-4?) Registration Authority

0x800000-0xFFFFFF: Private use

IV_size is the size in bytes of the InitializationVector field. Supported values:

8
– Specifies 64-bit initialization vectors.

16
– Specifies 128-bit initialization vectors.

KID is a key identifier that uniquely identifies the key needed to decrypt the associated samples. This allows the identification of multiple encryption keys per file or track, Unencrypted samples in an encrypted track must be identified by having an AlgorithmID of 0x0 and a KID value of 0x0. If the AlgorithmID is 0x0 (Not Encrypted) then the key identifier shall be ignored and be set to all zeros
InitializationVector specifies the initialization vector (IV) needed for decryption of a sample. For an AlgorithmID of Not Encrypted, no initialization vectors are needed and the auxiliary information should have a size of 0, i.e. not be present.

For an AlgorithmID of AES-CTR, if the IV_size field is 16 then InitializationVector specifies the entire 128-bit IV value used as the counter value. If the IV_size field is 8, then its value is copied to bytes 0 to 7 of the counter value and bytes 8 to 15 of the counter value are set to zero.

For an AlgorithmID of AES-CTR, counter values must be unique per KID. If an IV_size of 8 is used, then the InitializationVector values for a given KID must be unique for each sample in all tracks and samples must be less than 264 blocks in length. If an IV_size of 16 is used, then initialization vectors must have large enough numeric differences to prevent duplicate counter values for any encrypted block using the same KID.
subsample_count specifies the number of subsample encryption entries present for this sample.
BytesOfClearData specifies the number of bytes of clear data at the beginning of this subsample encryption entry. (Note: this value may be zero if no clear bytes exist for this entry.)
BytesOfEncryptedData specifies the number of bytes of encrypted data following the clear data. (Note: this value may be zero if no encrypted bytes exist for this entry.) The subsample encryption entries must not include an entry with a zero value in both the BytesOfClearData field and in the BytesOfEncryptedData field unless the sample is zero bytes in length. The total length of all BytesOfClearData and BytesOfEncryptedData for a sample must equal the length of the sample. Further, it is recommended that the subsample encryption entries be as compactly represented as possible. For example, instead of two entries with {15 clear, 0 encrypted}, {17 clear, 500 encrypted} use one entry of {32 clear, 500 encrypted}
I.8.3 Initialization Vectors

The initialization vector (IV) values for each sample are located in the Sample Auxiliary Information associated with the encrypted samples. See I.7.2 for details on how initialization vectors are formed and stored.
I.8.4 Creating Initialization Vector values (Informative)

It is recommended that applications applying encryption randomly generate the initialization vector for the first sample in the track using a cryptographically sound random number generator.
· For 64-bit (8-byte) IV_Sizes, initialization vectors for subsequent samples can be created by incrementing the initialization vector of the previous sample. Using a random starting value introduces entropy into the initialization vector values and incrementing for each sample processed ensures that each IV value is unique. The 64-bit initialization vector should be allowed to roll over from the maximum value (0xFFFFFFFFFFFFFFFF) to the minimum value (0x0) if the random starting position is close to the maximum value.

· For 128-bit (16-byte) IV_Sizes, initialization vectors for subsequent samples should be created by adding the block count of the previous sample to the initialization vector of the previous sample. Using a random starting value introduces entropy into the initialization vector values and incrementing by the block count of the previous sample ensures that each IV value is unique. Even though the block counter portion of the counter (bytes 8 to 15) is treated as an unsigned 64-bit number by the client (meaning that if the number reaches the maximum value of 0xFFFFFFFFFFFFFFFF then incrementing it resets the number to zero without affecting bytes 0 to 7), it is recommended that the initialization vector is treated as a 128-bit number when calculating the next initialization vector from the previous one.

I.8.5 Encryption of AVC Video Tracks
I.8.5.1 Overview
[AVC] specifies the building blocks of the AVC elementary stream to be Network Abstraction Layer (NAL) units. These units can be used to build AVC elementary streams for various different applications. [ISOAVC] specifies how the AVC elementary stream data is to be laid out in an [ISO] base media file format container. In the [ISOAVC] layout, the container level samples are composed of multiple NAL units, each separated by a Length field stating the length of the NAL. Figure I.1 shows an AVC video sample distributed over several NAL units.

[image: image7.png]Length

NAL Unit

Length

NAL Unit

Sample

Figure I.1 — AVC Video sample distributed over several NAL units

Not all decoders are designed to deal with [H264] or AVC formatted streams. Some decoders are designed to handle a different AVC elementary stream format: for example, [H264], Annex B. Further, it may be necessary to reformat the elementary stream in order to transmit the data using a network protocol like RTP that packetizes NAL Units. Full sample encryption prevents stream reformatting without first decrypting the samples to access NAL Units or their headers.

The stored bit-stream can be converted to Annex B byte stream format by adding start codes and PPS/SPS NAL units as sequence headers. To facilitate stream reformatting before decryption, it is necessary to leave the NAL length fields in the clear as well as the nal_unit_type field (the first byte after the length). In addition:

The length field is a variable length field. It can be 1, 2, or 4 bytes long and is specified in the Sample Entry for the track as the lengthSizeMinusOne field in the AVCDecoderConfigurationRecord
There are multiple NAL units per sample, requiring multiple pieces of clear and encrypted data per sample.
I.8.5.2 AES-CTR Mode
AES‐CTR mode is a block cipher that can encrypt arbitrary length data without need for padding. The cipher block used is constructed as described in I.7.2. Of the 16‐byte cipher block, bytes 8 to 15 (i.e. the least significant bytes) are used as a simple 64‐bit unsigned integer that is incremented by one for each subsequent block of sample data processed and is kept in network byte order. If this integer reaches the maximum value (0xFFFFFFFFFFFFFFFF), then incrementing it resets the number to zero without affecting the other 64‐bits of the cipher block (i.e. bytes 0 to 7).

The encrypted regions of a sample are treated as a logically contiguous block, even though they are broken up by areas of clear data. In other words, the block counter is not arbitrarily incremented between NAL units. Figure I.3 shows NAL Unit based encryption scheme for AES-CTR with IVs shown.

[image: image8.emf]L

e

n

g

t

h

L

e

n

g

t

h

Sample 2

Block 0

Sample #2

L

e

n

g

t

h

T

y

p

e

L

e

n

g

t

h

Sample Auxiliary

Information

IV#1

IV #2

T

y

p

e

T

y

p

e

T

y

p

e

Sample 2

Block 6

I

V

#

2

Sample 2

Block 1

Sample 2

Block 2

Sample 2

Block 3

Sample 2

Block 4

Sample 2

Block 5

Encrypted NAL data Encrypted NAL data

Sample 1

Block 0

Sample 1

Block 6

Sample 1

Block 1

S1 partial

Block 2

Sample 1

Block 3

Sample 1

Block 4

Sample 1

Block 5

Encrypted NAL data Encrypted NAL data

Sample #1

I

V

 #

1

rest of

S1 B2

Figure I.3 — Unit-based encryption scheme for AES-CTR with IVs shown

Note: AES-CTR mode is a block cipher mode that acts like a stream cipher. Blocks are shown to illustrate the underlying blocks used in generating the stream cipher. This is why Block 6 in both Sample #1 and Sample #2 are not shown as full 16 byte blocks, the unused bytes of the stream cipher are discarded during the encryption process. Also note that Block 2 of Sample #1 is used to encrypt the end of the first NAL and the beginning of the second NAL.
I.8.6 Full Encryption
I.8.6.1 General
For elementary streams other than those specified to use partial encryption, such as AVC video, the entire sample shall be encrypted as a single encryption unit.
<<Discussion needed: should the scheme permit partial encryption of other formats?>>
I.8.6.2 AES-CTR Mode

AES-CTR handles arbitrary sized data without padding or special handling. Figure I.5 shows sample-based encryption for AES-CTR mode.

[image: image9.emf]Sample Auxiliary

Information

IV#1

IV #2

I

V

#

2

Sample 1

Block 0

Sample 1

Block 7

Sample 1

Block 1

Sample 1

Block 2

Sample 1

Block 3

Sample 1

Block 4

Sample 1

Block 6

Sample #1

IV

 #

1

Sample 1

Block 5

Encrypted Sample data

Sample 2

Block 0

Sample 2

Block 7

Sample 2

Block 1

Sample 2

Block 2

Sample 2

Block 3

Sample 2

Block 4

Sample 2

Block 6

Sample #1

Sample 2

Block 5

Encrypted Sample data

Figure I.5 — Sample-based Encryption for AES-CTR

Note: AES-CTR mode is a block cipher mode that acts like a stream cipher. Blocks are shown to illustrate the underlying cipher blocks used in generating the stream cipher (this is why Block 3 is shown as only partially used, as the unused bytes of the stream cipher are discarded during the encryption process).
Annex J
(Normative)
MIME Type Registration of Segments
J.1 Introduction
This Annex provides the formal MIME registration of media segments formatted according to <<ref: clause 8.16>>.

J.2 Registration

MIME media type name: video

MIME subtype name: iso.segment
Required parameters: none

Optional parameters: as specified by RFC 4281 and its successors
Encoding considerations: as for video/mp4
Security considerations: See section 5 of RFC 4337.
Interoperability considerations: A number of interoperating implementations exist within the ISO/IEC 14496 community, and that community has reference software for reading and writing the file format.
Published specification: ISO/IEC 14496-12:2011 (expected)
Applications: Multimedia
Additional information:

Magic number(s): none

File extension(s): m4s

Macintosh File Type Code(s): None
Person to contact for info: David Singer, singer@apple.com
Intended usage: Common
Author/Change controller: David Singer, ISO/IEC 14496 file format

chair
In Bibliography, add the following
:
Advanced Encryption Standard, Federal Information Processing Standards Publication 197, FIPS-197, http://www.nist.gov/
Recommendation of Block Cipher Modes of Operation, NIST, NIST Special Publication 800-38A, http://www.nist.gov/
�Miska asks if we should use new terminology here (presentations, called files in the rest of this specification?)

�Miska asks if we should use new terminology here (presentations, called files in the rest of this specification?)

�Miska asks if we should use new terminology here (presentations, called files in the rest of this specification?)

�Paragraph numbers strange?

�DVB specific??

�needed? if so, reference needed

�DVB reference

�what is this??

�do they need to be normative? If so, an RER is needed. but perhaps the annex can be understood without them?

Document type: International Standard
Document subtype: Amendment
Document stage: (40) Enquiry
Document language: E
 STD Version 2.1c2

_1328876161.vsd
IDR

B

B

P

B

B

2

B

B

P

...

...

0

1

Temporal level

0

4

3

2

6

1

7

...

8

5

RTP SN

...

RTP TS

0

3

1

2

6

4

5

7

8

...

(x clock tick of one frame interval)

_1328878444.vsd
IDR

B

B

P

B

B

2

B

B

P

...

...

0

1

Temporal level

0

4

3

2

6

1

7

...

8

5

DT

...

RTP TS

0

3

1

2

6

4

5

7

8

...

(x clock tick of one frame interval)

0

offset

-1

-2

0

0

3

-2

-1

3

...

_1356782889.vsd
Sample 1
Block 5

Sample 2
Block 0

Sample 2
Block 7

Sample 2
Block 1

Sample 2
Block 2

Sample 2
Block 3

Sample Auxiliary Information

IV#1
IV #2

Sample 2
Block 4

Sample 2
Block 6

Sample #1

Sample 2
Block 5

Encrypted Sample data

IV #2

Sample 1
Block 0

Sample 1
Block 7

Sample 1
Block 1

Sample 1
Block 2

Sample 1
Block 3

Sample 1
Block 4

Sample 1
Block 6

Encrypted Sample data

Sample #1

IV #1

_1356849240.vsd
Length

Length

Sample 2
Block 0

Sample #2

Length

Type

Length

Sample Auxiliary Information

IV#1
IV #2

Type

Type

Type

Sample 2
Block 6

IV #2

Sample 2
Block 1

Sample 2
Block 2

Sample 2
Block 3

Sample 2
Block 4

Sample 2
Block 5

Encrypted NAL data

Encrypted NAL data

Sample 1
Block 0

Sample 1
Block 6

Sample 1
Block 1

S1 partial
Block 2

Sample 1
Block 3

Sample 1
Block 4

Sample 1
Block 5

Encrypted NAL data

Encrypted NAL data

Sample #1

IV #1

rest of
S1 B2

_1329216408.vsd
1. Wallclock timestamp derived from a video RTP timestamp only

2. Wallclock timestamp derived from RTCP Sender Report(s) of video

Sender’s wallclock  timeline

4. Difference to be  added to offset in the rtpoffsetTLV box of the video RTP  reception hint track

3. Wallclock timestamp derived from an audio RTP timestamp only for an audio frame that is played at time b according to RTCP Sender Report(s) of audio

a

b

c

_1328876200.vsd
IDR

B

B

P

B

B

P

B

B

P

...

...

0

1

Temporal level

0

1

2

3

4

5

6

7

8

9

RTP SN

...

RTP TS

0

3

1

2

6

4

5

9

7

8

...

(x clock tick of one frame interval)

_1327128536.vsd
RTP reception hint track for audio stream

RTP reception hint track for video stream

Movie timeline

1st audio sample

1st video sample

segment_duration

Edit List box

