Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #61
S4-100795
Barcelona, Spain, Nov 8-12, 2010

Agenda item:
7
Source:
Qualcomm Incorporated
Title:
On Segment Indexing in DASH
Document for
Discussion and Proposal
1 Introduction
This contribution revisits some recent discussion on the use of the segment index. Specifically it provides some Use Case and Deployment discussions on short and long segments, the status of segments in Rel-9 specification, some problems with the current definition of the sidx. Contribution S4-100405 and S4-100573 described some of the complexity involved in timing recovery when switching using the Segment Index.

The document proposes that by the alignment to MPEG DASH, the problems and use cases are supported. It is proposed to update Rel-9 to address these changes. If this is not agreeable, updating Rel-10 is considered, but the consequences are severe and this should only be used as a last resort. In any case, alignment and clear communication with MPEG is encouraged.
2 Use Case and Deployment Discussion

DASH provides deployment flexibility. One aspect that had been considered from day one in the design of DASH is flexibility on segment duration and fragment arrangement within segments. Different deployment scenarios had been considered in the design.

Let us consider two ‘categories’ of segment duration:

· “Short” segments are those of 1~10s duration

· “Long” segments are those of minutes or hours in duration
The supporters of “long” Segments often require the Segment Index to be available, which enables the client to form HTTP range requests for portions of the Segment. Supporters of “short” segments generally advocate the use of segment alignment to recover timing and simplify switching.

For Live services it is clear that short segments are required to avoid excessive end-to-end delay. Typically at least twice the segment duration is the end-to-end delay in live. Nevertheless, there are some cases where an end-to-end delay of tens of seconds or even minutes is acceptable and so Live does not always imply short Segments.

Still, the remainder focuses on On-Demand services where the above consideration does not apply. The following table summarized the advantages and disadvantages of very short, short and long segments:
	Segment duration
	Advantages
	Disadvantages

	Short
	· Commonality with Live
· High switching granularity on segment level
	· Large number of files

· Large number of URLs

· Fixed request size
· switching granularity on segment level

	Long
	· Small number of files

· Small number of URLs

· High switching granularity

· Multiple request sizes
· Improved cache performance
	· Need for Segment Index

· Difference from Live

In the following we explain the claimed advantages are disadvantages in more detail.

· Number of files and URLs: Short segments result in a large number of files that may be difficult to manage. When considering long-form content with many video bitrates and multiple audio formats and languages the number of files for a single content item can become very large indeed. Multiplied by a large content library this can be a significant problem. Fast startup with small MPD sizes can be achieved by templates or by the particular case of using a single file/segment for the whole Representation.
· Switching Granularity refers to the frequency of opportunities to switch between Representations. When Segment Index is not used this is equal to the Segment duration. In some systems available bandwidth can change quite rapidly. Also it is undesirable to maintain a large amount of buffered data at the client, both because it may impact startup time to build such a buffer and because this buffer represents downloaded data that may not eventually be played. As a result, a high switching granularity (frequent switch points) is an advantage, but should not be tied to the segment size.
· Request Size: When short segments are used the size of each request is at most a single Segment. Being able to adapt the request size to the type of network connection is an advantage, for example different request size for a 3G connection when compared to a FTTH connection.
· CDN performance: Commercial HTTN-CDN infrastructure implement a variety of advanced algorithms to improve cache hit ratios, including various techniques to predict what clients will request and move this data into appropriate caches before it is requested. For example when a client requests a file which is not in cache, the file will generally be brought into cache faster than it is served to the user: once the cache has started to send the response to the user the delivery speed is determined only by the link from cache to user and not by the need to fetch the file from upstream. For short files, the client will experience a delay due to the need to fetch data from upstream more frequently when compared to using long files. In a more advanced case, where HTTP Range requests are used, several large CDNs use the fact of a range request for one part of a file as a trigger to fetch subsequent parts of the file into cache, making subsequent range requests for the same file faster. If many small files are used in place of one large file with Range requests, this cannot be done.
We believe that both the short and the long segment model both represent very important use cases, including the model in which each Representation consists of a single Segment. Both use cases shall be supported in the AHS/DASH specifications without compromising the any user experience such as start-up delay, MPD size, switching performance, etc.
3 Segments in Rel-9 Specification

3.1 Summary of Segment Structure and Definition
Based on the discussions at SA4#60 and the agreements documents in CR26.234-0172rev3 (available in S4-100695), two main different segment types are defined (see clause 12.4.4 in TS26.234):
1. Short multiplexed segments without Segment Index, for which the alignment across Representations is ensured by the use of the segmentAlignmentFlag and the synchronization of tracks is ensured by the tfad.
2. More general segments, that are not necessarily aligned, that may be presented jointly with other Representations, or that enable switching within segments by the use of the sidx. In Rel-9 synchronization is achieved with
We believe that segments in the first category are suitable for live services and together with startWithRAP may be used quite well for live services.
The second category of segments addresses multiple use cases. We strongly encourage to identify each of these use cases, namely joint presentation of Representations, long segments, as well as fast and simple switching and opt for an optimized design that addresses all three use cases.

Issues with the Rel-9 segment index and the combination of sidx and tfad had already been discussed and reported in documents S4-100405 and S4-100573. We will summarize the problems of this design.
3.2 Issues with Rel-9 Segment Index
We believe that one of the core problems is the currently mixed functions of the Segment Index: Indexing and Timing Recovery. We believe that the Segment Index shall be simplified to support only Indexing. Timing Recovery is much more suitably supported by for example the Track Fragment Decode Time (‘tfdt’) box, and definition of overlapping mechanism for Timing Recovery is probably not suitable and confusing.
Note that when the Segment Index Box is not used, Timing Recovery can be supported using, for example, the combination of Segment Alignment and the Track Fragment Adjustment Box. We do not propose to change this and we address this further below by the concrete proposal of defining different segment types.
The Segment Index currently contains two loops. The first loop provides the Decode Time of the first sample of each Track in the Segment. This permits accurate Timing Recovery for the Segment. The second loop provides reference track Decode Time and byte intervals for sub-segments of the Segment, which may be, for example, individual Movie Fragments. This permits fragment-by-fragment download and switching or seeking to a Fragment in the middle of the Segment.

There are several weaknesses with this current design:

· Timing Recovery when switching or seeking to the middle of a Segment may get complex in the multi-track case. Contributions on this subject have been provided to 3GPP, please refer to S4-100405 and S4-100573.

· Use of Decode Time intervals in the second loop Segment Index does not guarantee seamless switching (since seamlessness in Decode Time does not imply seamlessness in Composition Time) unless complex processing of sample tables can be performed in the HTTP streaming client. For details we also refer to S4-100573.

3.3 Possible Resolutions
In summary, the following resolutions are considered:
· Modify the sidx to resolve the above issues

· Separate timing recovery and presentation time issues by using the tfdt + sidx

· Do not modify the content creation rules

· Clearly define different segment types

· Update the content creation/segment rules
4 Possible Solution aligned with MPEG Committee Draft
4.1 Summary
The MPEG Committee draft and the amendment 3 of the ISO base media file format modifies the segment formats and the combination with MPD signalling as follows:

· The sidx is modified to document three things for each sub-segment (see clause 4.2):

1. The latest composition time that the receiver can play to when using this sub-segment

2. The earliest composition time that the receiver can play from, when seeking or switching to this sub-segment (i.e. earliest RAP position)

3. The byte range of the sub-segment
· The Track Fragment Decode Time (‘tfdt’) is used instead of the first loop the original sidx (see clause 4.3)
· Different segment types are defined that address different combinations (see clause 4.4)
· The content creation and segment rules are updated to address the reasonable combinations (see clause 4.5)
4.2 Segment Index
4.2.1 Definition

Box Type:
`sidx’
Container:
File
Mandatory:
No
Quantity:
Zero or more
The Segment Index Box ('sidx') provides a compact index of the movie fragments and other Segment Index Boxes in a segment. Each Segment Index Box documents a subsegment, which is defined as being a self-contained set of one or more consecutive movie fragments, ending either at the end of the containing segment, or at the beginning of a subsegment documented by another Segment Index Box. A self-contained set contains one or more movie fragment boxes with the corresponding media data box(es), and each movie fragment box immediately precedes its corresponding media data box.
The indexing may refer directly to movie fragments, or to segment indexes which (directly or indirectly) refer to movie fragments; the segment index may be specified in a ‘hierarchical’ or ‘daisy-chain’ or other form by documenting time and byte offset information for other Segment Index Boxes within the same segment or subsegment.

In Media Segments not containing a Movie Box (‘moov’) but containing Movie Fragment Boxes (‘moof’), if any Segment Index Boxes are supplied then a Segment Index Box shall be placed before any Movie Fragment (‘moof’) box, and the subsegment documented by that first Segment Index box shall be the entire segment.

One track (normally a track in which not every sample is a random access point, such as video) is selected as a reference track. The earliest composition time of the reference track of each subsegment is documented in the Segment Index.

The reference type defines whether the reference is to a Movie Fragment (‘moof’) Box or Segment Index (‘sidx’) Box. The offset gives the distance, in bytes, from the first byte following the enclosing Segment Index Box, to the first byte of the referenced box. (i.e. if the referenced box immediately follows the ‘sidx’, this byte offset value is 0).

The earliest composition time (for the reference track) of the first subsegment documented in the index is explicitly given. The segment index then provides one entry for each subsegment documented by the index. For each subsegment, a subsegment duration is provided. The earliest composition time of a subsegment is calculated by summing the subsegment durations of the preceding subsegments and the earliest composition time of the first subsegment. The earliest composition time of a subsegment is the earliest composition time on the Representation timescale of any sample in the reference track of the subsegment.

A Segment Index Box contains a random access point (RAP) if any entry in the loop contains a random access point.

4.2.2 Syntax

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {

unsigned int(32) reference_track_ID;

if (version==0)

{

unsigned int(32) earliest_composition_time;

}

else

{

unsigned int(64) earliest_composition_time;

}

unsigned int(16) reference_count;

for(i=1; i <= reference_count; i++)

{

bit (1)

reference_type;

unsigned int(31)
reference_offset;

unsigned int(32)
subsegment_duration;

bit(1)

contains_RAP;

unsigned int(31)
RAP_delta_time;

}
}
4.2.3 Semantics

reference_track_ID provides the track_ID for the reference track

earliest_composition_time is the earliest composition time of any sample in the reference track in the first subsegment, expressed in the timescale of the reference track (as documented in the timescale field of the Media Header Box of the track);

reference_count provides the number of referenced subsegments;

reference_type: when set to 0 indicates that the reference is to a movie fragment (‘moof’) box; when set to 1 indicates that the reference is to a segment index (‘sidx’) box;

reference_offset: the distance in bytes from the first byte following the containing Segment Index Box, to the first byte of the referenced box;

subsegment_duration: when the reference is to Segment Index Box, this field carries the sum of the subsegment_duration fields in that box; when the reference is to a movie fragment, this field carries the difference between the earliest composition time of any sample of the reference track in the next subsegment (or the first subsegment of the next segment, if this is the last subsegment of the segment or the end composition time of the reference track if this is the last subsegment of the representation) and the earliest composition time of any sample of the reference track in the referenced subsegment; the duration is expressed in the timescale of the reference track (as documented in the timescale field of the Media Header Box of the track);

contains_RAP: when the reference is to a movie fragment, then this bit shall be 1 if a track fragment within the subsegment for the track with track_ID equal to reference_track_ID contains at least one random access point, otherwise this bit is set to 0; when the reference is to a segment index, then this bit shall be set to 1 only if any of the references in that segment index have this bit set to 1, and 0 otherwise;

RAP_delta_time: if contains_RAP is 1, provides the composition time of the first random access point (RAP); reserved with the value 0 if contains_RAP is 0. The time is expressed as the difference between the earliest composition time of any sample of the subsegment and the composition time of the first random access point, in the track with track_ID equal to reference_track_ID.
4.3 Track Fragment Decode Time Box
The track fragment decode time box as specified in the amendment 3 of the ISO base media file format is used for global time adjustment of segments.
4.4 Segment Formats

4.4.1 Summary

A set of media segment formats are defined, among others:

· General type

· 3GPP Rel-9 Media Segment referring to section 12.4.2.3 of 3GPP TS 26.234 [TS26234].

· Indexed segment type
4.4.2 Indexed Media Segment

A Media Segment conforming to the Indexed Media Segment Format is branded as ‘msix’ and is defined as follows
· Each Media Segment may contain an ‘styp’ box.
· Each Media Segment shall contain one or more whole self-contained movie fragments. A whole, self-contained movie fragment is a movie fragment (‘moof’) box immediately followed by a media data (‘mdat’) box that contains all the media samples referenced by the track runs in the movie fragment box.
· Each ‘moof’ box shall contain at least one track fragment.
· The ‘moof’ boxes shall use movie-fragment relative addressing. Absolute byte-offsets shall not be used. In a movie fragment, the durations by which each track extends should be as close to equal as practical. In particular, as movie fragments are accumulated, the track durations should remain close to each other and there should be no 'drift'.
· Each ‘traf’ box shall contain a ‘tfdt’ box.

· Each Media Segment shall contain at least one ‘sidx’ box. The first ‘sidx’ box shall be placed before any ‘moof’ box and shall document subsegments that span the composition time of the entire segment.
4.5 Content Authoring Rules
The following content authoring rules are added.
The following applies for Media Segments conforming to the 'indx' type when used in Representations.
If the segmentAlignmentFlag is set to ‘false’ or any Representation within a media presentation is contained in a non-zero group, the following rules shall apply for each Media Segment in each Representation

· at least one ‘sidx’ box shall be present in each Media Segment.

· each movie fragment which is indexed of any ‘sidx’ box shall include the Track Fragment Decode Time (‘tfdt’) box for all tracks present in this Representation.

· At least one of the two following rules shall be true:

· no sample in any fragment of a sub-segment indexed in the ‘sidx’ box, shall have smaller composition time than the earliest composition time of the reference track in this sub-segment.

· the earliest composition time of any sample of a track of a sub-segment indexed in the ‘sidx’ box, shall be no greater than the earliest composition time of any sample in the reference track of the sub-segment.
5 Yet Another Segment Index

5.1 Background

Extensive offline discussions after MPEG meeting revealed yet another weakness with the sidx design of MPEG – the “fence post” issue. For N gaps you need N+1 fence posts, otherwise the boundaries are not sufficiently described. Several companies that are in particular interested in long segments have agreed on a slightly updated sidx syntax that is provided below. Comments on the current sidx design are expected to update accordingly. The proposed updates in terms of syntax and semantics are provided in clause 5.2 and 5.3, respectively.
5.2 Syntax

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {

unsigned int(32) reference_track_ID;

if (version==0)

{

unsigned int(32) earliest_composition_time;

unsigned int(32) first_offset;

}

else

{

unsigned int(64) earliest_composition_time;

unsigned int(64) first_offset;

}

unsigned int(16) reference_count;

for(i=1; i <= reference_count; i++)

{

bit (1)

reference_type;

unsigned int(31)
reference_delta;

unsigned int(32)
subsegment_duration;

bit(1)

contains_RAP;

unsigned int(31)
RAP_delta_time;

}
}
5.3 Semantics

reference_track_ID provides the track_ID for the reference track

earliest_composition_time is the earliest composition time of any sample in the reference track in the first subsegment, expressed in the timescale of the reference track (as documented in the timescale field of the Media Header Box of the track);
first_offset is the distance in bytes from the first byte following the containing Segment Index Box, to the first byte of the first referenced box.
reference_count provides the number of referenced subsegments;

reference_type: when set to 0 indicates that the reference is to a movie fragment (‘moof’) box; when set to 1 indicates that the reference is to a segment index (‘sidx’) box;

reference_delta: the distance in bytes from the first byte of the referenced box to the first byte of the next referenced box, or in the case of the last entry, the first byte not indexed by this Segment Index Box.
subsegment_duration: when the reference is to Segment Index Box, this field carries the sum of the subsegment_duration fields in that box; when the reference is to a movie fragment, this field carries the difference between the earliest composition time of any sample of the reference track in the next subsegment (or the first subsegment of the next segment, if this is the last subsegment of the segment or the end composition time of the reference track if this is the last subsegment of the representation) and the earliest composition time of any sample of the reference track in the referenced subsegment; the duration is expressed in the timescale of the reference track (as documented in the timescale field of the Media Header Box of the track);

contains_RAP: when the reference is to a movie fragment, then this bit shall be 1 if a track fragment within the subsegment for the track with track_ID equal to reference_track_ID contains at least one random access point, otherwise this bit is set to 0; when the reference is to a segment index, then this bit shall be set to 1 only if any of the references in that segment index have this bit set to 1, and 0 otherwise;

RAP_delta_time: if contains_RAP is 1, provides the composition time of the first random access point (RAP); reserved with the value 0 if contains_RAP is 0. The time is expressed as the difference between the earliest composition time of any sample of the subsegment and the composition time of the first random access point, in the track with track_ID equal to reference_track_ID.
6 Options for Alignment

6.1 Change of Rel-9 Specification
6.1.1 Proposed Changes

The following changes are proposed

· Define two different segment types

· Multiplexed tracks with tfad that are combined with segment alignment

· Indexed segment types as defined in clause 4.4.2

· Modify the sidx as proposed in section 5 and adopt the tfdt

· Update/Simplify the segment rules to address the combinations of segmentAlignmentFlag with the different segment types from above in a sense that

· If segmentAlignmentFlag is set to true, then media segments adhere to the first type from above

· If segmentAlignmentFlag is set to false, then media segments adhere to the second type from above
6.1.2 Consequences

If the changes from above are adopted then

· No changes to the combinations of tfad and segmentAlignmentFlag occur

· The design is clean and all use cases referred to in section 2 and problems referred to in section 4 are resolved

· Alignment with MPEG is achieved

· A Rel-9 CR is required that may influence existing implementations. However, this does not seem to essential as no we do not see any sidx usage in tests until now.
6.2 No Change of Rel-9 Segment Index
6.2.1 Proposed Changes in Rel-10
The following changes are proposed

· Define three different segment types

· General 3GP Rel-9 segment type with old sidx

· Multiplexed tracks with tfad that are combined with segment alignment that is compatible with 3GP Rel-9 media segment type

· New Indexed segment types as defined in clause 4.4.2

· Define two sidx versions or a new sidx and adopt the tfdt

· Update/Simplify the segment rules to address the combinations of segmentAlignmentFlag with the different segment types from above in a sense that

· If segmentAlignmentFlag is set to true, then media segments adhere to the first type from above

· If segmentAlignmentFlag is set to false, then media segments adhere to the second type from above

· Or if release 9 is used that that the old segment rules hold
6.2.2 Consequences

If we proceed without updating Rel-9 and only update Rel-10, then

· We have a Rel-9 segment type with an sidx that is incompatible to MPEG. Two different versions of the sidx will exist.
· The problems mentioned in section 4 are not resolved

· We will create a fragmentation in Rel-10.
· It is not expected that Rel-9 with sidx will be used
7 Proposal

In summary, we propose the following:

· Agree on the different use cases and deployment scenarios as introduced in Section 2. If deemed appropriate, these use cases and deployment scenarios can be added to the permanent document, but in general these use cases should already be part of the working assumptions.
· Align with MPEG DASH by updating Rel-9 as proposed in section 5.1. Once agreed in principle, the corresponding CRs will be provided during the meeting.

· Only if not agreeable, update Rel-10 as proposed in section 5.2. If this is the way forward then the text to be added to TS26.247 will be provided during the meeting.

· Inform MPEG on the decision on this matter such that their specifications can be updated along with a note saying: “"We have recognized the value of your change to the Segment Index as initially defined in 3GPP TS 26.244. We believe that this change is very suitable, but we still believe that slight improvements to your design can further enhance the design to address our common needs. Please find attached the finally adopted sidx and we strongly encourage you to update the sidx.”
- 8/10 -

