
3GPP TSG-SA4 #56
S4-090857
November 9-13, 2009

Sophia-Antipolis, France

Source:
Huawei Technologies Co., Ltd.
Title:
Live Content Support in Static HTTP Streaming
Document for:
Discussion and Approval
Agenda Item:
6
1. Introduction
At the previous meeting, it has been agreed that there are two modes for HTTP streaming, static content serving mode and dynamic content serving mode. The main difference between these two modes is how the response to a client request is generated, statically or dynamically. The contributions submitted in previous meetings are referenced, and some inspirations are drawn for the present contribution, in particular, [S4-AHI070], [S4-AHI071], [S4-082], we would like to thank to Nokia, RIM, Ericsson and Qualcomm. In this contribution, different aspects of live content support using the static content serving mode are discussed, and approaches are proposed to enable simple implementations and easy deployment.
2. Background

In traditional streaming, the server is the controlling party which pushes the media data to the client on its own. The client does not need to know about file location of the content. Time range can be used to indicate a part of content. The server maps the content of requested range to specific file location.

Also note that a special time instant “now” is defined in RTSP for live content. It avoids any vagueness and the time synchronization between the server and the client is not required, i.e. it works even if time in the client and the server are inconsistent.
However, in http streaming, the server plays a passive role making response to a client request. To request any part of content, a client has to specify which file and/or which part of a file (using byte range) to request from the server. It is a problem how to indicate the file and/or part of file corresponding to the current time instant in http streaming.
In previous discussions, it was proposed to introduce time range in http streaming, but it is not accepted since it requires intelligence on the server which is not supported by standard http server.

It was proposed to use a metafile updated with live content feeds containing an index table of fragment. This is substantially a two steps seeking approach, the desired fragment can be requested only after the metafile is accessed and relevant parameters are obtained. To access the live part, this process has to be repeated continuously. Frequent access to a metafile, update and reading(in reply to request from a client), certainly put pressure on the server. And request and transmission of the metafile consume bandwidth and take time as well..
In this contribution, we propose an approach to support live content without using an index table from the server.
3. Content Storage and Access
As pointed out in S4-AHI084, “static just refer to a static mapping between a URL and the Entity-Body in HTTP response”. In fact static serving mode can be used to support live content.

For pre-recorded content, content is prepared before streaming service is available, and there are more choices for file organization. For example, different media components and all representation alternatives can be packed in only one file. For live content, it may not be practical since this can introduce too long delay to be accepted by user.
When different representation alternatives are encapsulated in a single file, it takes more time for a client to acquire desired content, and byte range must be used to locate the desire content in the file and additional assist from server (e.g. media presentation description) may be required.

To avoid the problems mentioned above, we propose that each media segment is treated as a movie fragment (to be put in a “mdat” box), which is together with “moof” and optional “mfra” box stored as a uniquely accessed file. The files of the same representation alternative are stored in a location with the same path but with different file names. The name of a file consists of two parts, a base file name and an index number which is assigned to each segment starting from 1 with increment of 1 in time order. The file containing “ftyp” and “moov” boxes but no samples of content is used as media presentation description file. It gives overall information of the presentation and contains information on how to access other files. It is the first one to be accessed before other files. If duration of each segment is 1 second, an index with 5 hexadecimal numbers is enough to express time span over 10 days. Examples of file organizations are shown in Figure 1.

[image: image1]
Figure 1(a)

[image: image2]
Figure 1(b)
All the segments are time interval aligned. GOP structure has to be taken into consideration. A video segment always starts with a key frame, i.e. a random access point (RAP).
This kind of file organization allows flexible combinations of content representation alternatives, e.g. video bit rate + audio language, and it saves storage with no redundancy. It also increase hit rate in cache.
The URL to retrieve a specific segment can be composed based on URL templates provided in “moov” box. The URL template is put in Data Reference Boxes (actually “dref” box in “moov”). An URL template is a null terminated string containing variables to be replaced when converted to actual URL, an example is like this: http://www.huawei.com/v/trak1/a{index}.dat. Please refer to Figure 2, only related boxes in media presentation file are shown in the figure..

[image: image3]
Figure 2

There can be multiple media presentation description containing “ftyp” and “moov” boxes, one for each representation alternative (as shown in 1(a)) or a single media presentation description file for all representation alternatives (as shown in figure 1(b)). In 1(b), a client obtains meta data of different representation alternatives by requesting a single file.
The duration of each segment is proposed to be of constant value and used as granularity for adaptation. Then a client always requests a segment as a whole instead of only a part of it, therefore there is no need to use byte range to locate a part in a segment. The same reason applies also to adaptation when switching among different alternatives of media component(s).
With constant duration for each segment, seeking becomes much easy for client. Knowing the time offset from the start of content, a client can determine which segment is to be requested.
The segment duration determines adaptation rate or how fast to track channel changes (not fast fading). It is desirable that content bit rate can be adapted to the channel throughput. From this point, small segment duration is more flexible and can be used to support a high moving speed. Another reason to use small segment duration is to reduce the end-to-end delay. Since the minimum time the client has to wait is the sum of one segment duration plus the transmission time of the segment.
4. Synchronization with the Live content
For live content, it usually has two meanings: First, the content is created live (as opposed to on demand, or pre-recorded). Second, what is received in a client “tuning” to the content can be synchronized with that is generated in server. In previous discussion, it was proposed that the server keeps updating a metafile with the latest created content, and a client is required to first access the metafile before it requests the most recent content. The drawback of the approach is that the metafile is being updated and growing continuously and a client has to first request the updated metafile each time it wants to access the most recent content.
If a client knows a reference time instant and a reference segment index at that time, it can derive the segment index for most recent content since duration of segment is constant.
A natural choice of a reference time is starting time of the live content. The segment index at the starting time is 0.
There are two ways to obtain starting time of the live content.

In 3GP file format there is a “creation_time” field in “mvhd” box contained in “moov” box[2]. For live content, the creation time of media presentation description is starting time.
“Last-Modified” http header can also be used to carry starting time of the live content. It is required that “Last-Modified” header is included in the response to a client request for media presentation description file.

It is possible that the client is not synchronized with the server, time used in the client can be different from that in the server, to know only starting time of the live content is not enough, current time has to be signaled to the client either. For this purpose, the “Date” http header is suggested to be used in the response to the request for the media description file. The time contained in “Date” header is the current time in the server when the response is originated.

With the two time values, starting time and current time, the client gets synced with the server and can access the live content.
Note that the creation_time is expressed as a relative time i.e. time offset since midnight, Jan. 1, 1904 in UTC time while the time in “Date” or “Last-Modified” http header is expressed as an absolute time in GMT.

Either creation_time or Last-Modified time can be used for starting time, for simplicity and consistency, it is proposed to include “Last-Modified” and “Date” HTTP header in the server response in reply to the client request for media presentation description file .
5. Proposal
We propose the following for live content support in static content serving mode:
1) Each segment is of constant duration for live content support.

2) Each segment is stored in the form of a movie fragment as a uniquely accessed file.

3) To use segment as granularity for adaptation, no switch between segments is allowed, and each segment can only be retrieved as a whole with simple GET request.

4) Only static media presentation description file (metafile) (as opposed to a metafile being changing) is used for access the live content.
5) The starting time of the live content shall be indicated to the client.

6) The current time of the server shall be indicated to the client to avoid any time difference between them.

7) The server shall use the “Last-modified” and “Data” HTTP headers in the response to a client’s request for media presentation description file to inform the client of the “starting time” of the live content and “current time” in the server. The client can then figure out the file index to be accessed and tune to the “live” part of the live content.
8) URL Template shall be used to give information on where the media data is located and how to construct actual URL to access the media data.
6. Reference
[1]
IETF RFC 2616, “Hypertext Transfer Protocol – HTTP/1.1”

[2]
ISO/IEC 14496-12, “Information technology – Coding of audio-visual objects – Part 12: ISO base media file format”
[3]
S4-AHI070, “Dynamic HTTP Streaming”
[4]
S4-AHI071, “Static HTTP Streaming”
[5]
S4-AHI082, “Definition and Baseline Architecture for HTTP Streaming”[image: image4.emf]

#32

[image: image5.emf]

.....

[image: image6.emf]

.....

[image: image7.emf]

#n3

......

......

#n32

Media presentation description file file

Fragment

......

mfra

#1

mdat

moof

#2

#32

Fragment

URL template(s)

placed in “dref” box indicating the location of media files

mfra

mdat

………

#32

ftyp

ftyp/moov

......

#2

#1

fragment

video files bit rate1

…….

file 3

ftyp/moov

fragment

ftyp/moov

dref

file #2

ftyp/moov

fileb

filea

fileb#2

URL-T3 template template

URL-T4 template template

ftyp/moov

URL T-1

fragment1

…….

video files bit rate2

fragment

trak

URL-T2 template template

fragment

…….

video files bit rate3

fragment

dref

fileb#1

fragment

…….

audio files English

fragment

trak

URL-T5 template template

fragment

…….

audio files Chinese

fragment

filea#2

#n32

filea#1

file #1

moof

moov

moov

fragment

…….

video files bit rate3

fragment

fragment

URL-1 template

fragment

tt1

…….

video files bit rate2

fragment

t

fragment

t

URL-4 template template

fragment

t

…….

audio files Chinese

fragment

t

fragment

t

URL-2 template template

fragment

…….

audio files English

fragment

fragment

URL-3 template template

fragment

…….

video files bit rate1

fragment

fragment

ftyp

URL-5 template

Page: 1/6

Page: 2/6

