DRAFT TS 26.XXX V1.0.0(2007-09)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

eCall Data Transfer Inband Modem Solution;

ANSI-C Reference Code
(Release 8)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, GSM, modem
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2008, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

51
Scope

52
References

53
Definitions and Abbreviations

53.1
Definitions

53.2
Abbreviations

54
Overview

65
IVS Call Tree

66
PSAP Call Tree

77
Function Descriptions

98
Contents of Source Files

Foreword

1
Scope

This Technical Specification (TS) concerns the eCall Data Transfer Inband Modem Solution. The eCall Modem allows the fast reliable transfer of an MSD from an IVS to PSAP. The modem consists of two separate but interfacing components, one functioning at the IVS and the other at the PSAP. After transmission of the MSD, the established channel can be used for voice communications.
This document provides an overview of the reference C implementation of both the IVS and PSAP modems. The overall structure is illustrated and the most important functions are documented. Some leaf functions are omitted from the discussion for brevity.

2
References

This TS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

[1]

3GPP TS 22.101 V8.6.0 “Service aspects; Service principles”
3
Definitions and Abbreviations

3.1
Definitions

eCall:
A manually or automatically initiated emergency call,(TS12) from a vehicle, supplemented with a minimum set of emergency related data (MSD), as defined under the EU Commission’s eSafety initiative.

MSD: The Minimum Set of Data forming the data component of an eCall sent from a vehicle to a Public Safety Answering Point or other designated emergency call centre. The MSD has a maximum size of 140 bytes and includes, for example, vehicle identity, location information and time-stamp.

3.2

Abbreviations

For the purposes of this TS, the following abbreviations apply:

 CRC Cyclic Redundancy Check

 DTFT Discrete Time Fourier Transform

IVS
In Vehicle System (eCall terminal and associated sub-systems in vehicle)

PSAP Public Safety Answering Point

4
Overview
As shown in Figure 1, both the IVS and PSAP modems have an RxProcess and a TxProcess. The TxProcess transmits modulated bursts and the RxProcess receives modulated bursts. There is a pair of these processes in each direction, creating a data channel in both directions (UL and DL). In the C implementation, the prefixes “Ul” and “Dl” are used in a number of locations to differentiate components that are used for the respective data link. This naming convention is defined with respect to the this figure.

[image: image3.emf]IVS

TxProcess

RxProcess

PSAP

RxProcess

TxProcess

UL

DL

Figure 1 – IVS and PSAP modem processes

5
IVS Call Tree

The IVS modem has two top-level entry points: IvsReset and IvsProcess.

Figure 2 illustrates the call tree of IvsReset. Both TxProcess and RxProcess are reset. This includes initialization of the modulator, demodulator, burst send and receive logic, and the rateless encoder.

[image: image4.emf]IvsReset

TxProcessInit RxProcessInit

nHotFskModInit

BurstSendUlInit

nHotFskDemodInit

BurstRecvDlInit

RatelessInit

Figure 2 – IvsReset call tree
Figure 3 illustrates the call tree of IvsProcess. RxProcess and TxProcess are executed sequentially.

[image: image5.emf]IvsProcess

RxProcess TxProcess

nHotFskDemod

RxProcessDl

BurstSendUlProcess

BurstEncodeUl

DecodeAttempt

BurstDecodeDl

BurstRecvDlProcess

nHotFskMod

RatelessEncode

Figure 3 – IvsProcess call tree
In RxProcess, nHotFskDemod is used to convert the incoming samples to bits, which are consumed by RxProcessDl. Continuous decoding attempts are made by DecodeAttempt to decode bursts, which are then processed by BurstRecvDlProcess. The bursts received by the IVS correspond to the trigger sequences sent from the PSAP.

In TxProcess, BurstSendUlProcess calls RatelessEncode to produce encoded packets, which are encoded into bursts by BurstEncodeUl, and then modulated using nHotFskMod. The bursts transmitted by the IVS correspond to the MSD for transmission.

6
PSAP Call Tree

The PSAP modem also has two top-level entry points: PsapReset and PsapProcess.

Figure 4 illustrates the call tree of PsapReset. Both TxProcess and RxProcess are reset. This includes initialization of the modulator, demodulator, burst send and receive logic, and the rateless decoder.

[image: image6.emf]PsapReset

TxProcessInit RxProcessInit

nHotFskModInit

BurstSendDlInit

nHotFskDemodInit

BurstRecvUlInit

RatelessInit

Figure 4 – PsapReset call tree
Figure 5 illustrates the call tree of PsapProcess. As before, RxProcess and TxProcess are executed sequentially.

[image: image7.emf]PsapProcess

RxProcess TxProcess

nHotFskDemod

RxProcessUlUnsync

BurstSendDlProcess

BurstEncodeDl

DecodeAttempt

BurstDecodeUl

BurstRecvUlProcess

nHotFskMod

RatelessDecode

RxProcessUlSync

DecodeAttempt

BurstDecodeUl

BurstRecvUlProcess

RatelessDecode

Figure 5 – PsapProcess call tree
In RxProcess, nHotFskDemod is used to convert incoming samples to bits, which are consumed by either RxProcessUlUnsync or RxProcessUlSync, depending upon whether or not the receiver has established timing synchronization with the IVS. The difference between these is that RxProcessUlUnsync searches for burst timing, while RxProcessUlSync tracks small variations in the established timing. For either mode, continuous decoding attempts are made by DecodeAttempt to decode bursts, which are then processed by BurstRecvUlProcess. The encoded packets are extracted from the bursts and are then decoded by RatelessDecode. The bursts received by the PSAP correspond to the MSD sent from the IVS.

In TxProcess, BurstSendDlProcess creates multiple trigger bit sequences, which are encoded into bursts by BurstEncodeDl and then modulated using nHotFskMod. The bursts transmitted by the PSAP correspond to the downlink IVS request trigger.

7
Function Descriptions

Brief descriptions of the functions illustrated in the previous call trees are now given in Table 1. As noted before, this overview does not include every leaf function.

	TxProcessInit
	void TxProcessInit(TxProcessState *s);

Initialize all components of the transmit process. Used by both IVS and PSAP.

	TxProcess
	void TxProcess(TxProcessState *s, Int16 *sam);

Run transmit process to produce a single frame of PCM samples. Used by both IVS and PSAP

	RxProcessInit
	void RxProcessInit(RxProcessState *s);
Initialize all components of the receive process. Used by both IVS and PSAP.

	RxProcess
	void RxProcess(RxProcessState *s, Int16 *sam);
Run the receive process on a single frame of PCM samples. Used by both IVS and PSAP.

	BurstSendUlInit
	void BurstSendUlInit(BurstSendState *state);
Initialize burst send state for UL. Used by IVS only.

	BurstSendUlProcess
	void BurstSendUlProcess(

 BurstSendState *state,

 const BurstFormat *formats,

 Burst *burst);

Run the burst send process to produce a single UL burst ready for encoding and modulation. Used by IVS only.

	BurstRecvUlInit
	void BurstRecvUlInit(BurstRecvState *state);
Initialize burst receive state for UL. Used by PSAP only.

	BurstRecvUlProcess
	void BurstRecvUlProcess(

 BurstRecvState *state,

 BurstFormat *formats,

 const Burst *burst);

Run the burst receive process on a single decoded UL burst. Used by PSAP only.

	BurstSendDlInit
	void BurstSendDlInit(BurstSendState *state);
Initialize burst send state for DL. Used by PSAP only.

	BurstSendDlProcess
	void BurstSendDlProcess(

 BurstSendState *state,

 const BurstFormat *formats,

 Burst *burst);

Run the burst send process to produce a single DL burst ready for encoding and modulation. Used by PSAP only.

	BurstRecvDlInit
	void BurstRecvDlInit(BurstRecvState *state);
Initialize burst receive state for DL. Used by IVS only.

	BurstRecvDlProcess
	void BurstRecvDlProcess(

 BurstRecvState *state,

 BurstFormat *formats,

 const Burst *burst);

Run the burst receive process on a single decoded DL burst. Used by IVS only.

	BurstEncodeUl
	void BurstEncodeUl(const BurstFormat *format, Burst *burst);
Encode an UL burst. Used by IVS only.

	BurstDecodeUl
	void BurstDecodeUl(const BurstFormat *format, Burst *burst);
Decode an UL burst. Used by PSAP only.

	BurstEncodeDl
	void BurstEncodeDl(const BurstFormat *format, Burst *burst);
Encode a DL burst. Used by PSAP only.

	BurstDecodeDl
	void BurstDecodeDl(const BurstFormat *format, Burst *burst);
Decode a DL burst. Used by IVS only.

	RatelessInit
	void RatelessInit(int n, int k, mxLogical *o);
Initialize rateless encoder or decoder. Used by both IVS and PSAP.

	RatelessEncode
	void RatelessEncode(const mxLogical *o,

int p, int idx, const mxLogical *msg, int n,

int m, mxLogical *blk);

Produce an encoded packet using a rateless code. The source message is the MSD including CRC. Used by IVS only.

	RatelessDecode.
	int RatelessDecode(const mxLogical *o, int p, int q,

const mxLogical *blks, int n, int m,

const int *idxs, mxLogical *msg);

Decode an encoded packet using a rateless code. The source message is decoded if the decode matrix is invertible. Used by PSAP only.

	nHotFskModInit
	void nHotFskModInit(NHotFskModState *s);
Initialize n-hot FSK modulator. Used by both IVS and PSAP.

	nHotFskMod
	void nHotFskMod(NHotFskModState *s, uint8_T *bits, int16_T *sam);
Modulate a series of bits to produce one symbol. Used by both IVS and PSAP.

	nHotFskDemodInit
	void nHotFskDemodInit(NHotFskDemodState *s);
Initialize n-hot FSK demodulator. Used by both IVS and PSAP.

	nHotFskDemod
	void nHotFskDemod(NHotFskDemodState *s, int16_T *sam, int n, int8_T *bits);
Demodulate one symbol to produce a series of bits. Used by both IVS and PSAP.

Table 1 – Overview of key transmitter and receiver functions
8
Contents of Source Files

Table 2 lists and briefly describes all source files required to compile both the IVS and PSAP modems.
	rxprocess.h

rxprocess.c

txprocess.h

txprocess.c
	Implementation of RxProcess and TxProcess.

	burst.h

burst_ul.c

burst_dl.c
	Implementation of burst send and receive and encode and decode for UL and DL.

	nHotFskDemod.h

nHotFskDemod.c

nHotFskMod.h

nHotFskMod.c
	Implementation of n-hot FSK demodulator and modulator.

	rateless.h

rateless.c
	Implementation of rateless encoder and decoder.

	crc.c

crc.h
	Functions for calculating various CRCs.

	bit_pack.c

bit_pack.h
	Functions for packing and unpacking bits.

	inst.h

inst_ivs.c

inst_psap.c
	Instance data (constant initialization) for IVS and PSAP modems.

	rim_main.c

rim_main_sim.c

rim_modems.c
	Top-level instantiation of IVS and PSAP.

	rimtypes.h
	Common base types.

	makefile
	GNU makefile for compiling IVS and PSAP.

Table 2 – Source file listing

_953458302.unknown

