3GPP TSG SA4#42 meeting
 Tdoc S4-070137
27th January-2nd February, 2007

Sevilla, Spain

Title:
Liaison Statement to MPEG on LASeR and DIMS
Source:
3GPP TSG SA4

To:
ISO/IEC SC29/WG11 (MPEG)

Cc:

Contact Person:

Name:
Gaëlle MARTIN-COCHER (Streamezzo)

Tel. Number:
+33 6 09 44 02 80

E-mail Address:
gaelle.martin-cocher@streamezzo.com
Attachments:
S4-070205.doc
1 Introduction

The 3GPP SA4 working group would like to thank WG11 for the information provided in your liaison.

2 Comments, questions and proposals

Following your question and the work we have achieved during our meeting, 3GPP SA4 would kindly request the MPEG-LASeR group to consider the following requests answers and information.
2.1 Rectclip

Since our previous meeting in November 2006, our DIMS specification includes the lsr:rectclip element. During our work, we have noticed:

· That the size attribute of the lsr:rectClip cannot be accessed efficiently via the uDOM, which does not provide typed access to points. As such, the definition of a single size attribute of type point rather than two separate attributes of type coordinate might be considered as an incompatibility with the current SVGT1.2 uDOM. Since the uDOM provides typed access to floats, it would be preferable if the size attribute was replaced by two width and height attributes.

· That it would be beneficial to add to lsr:rectClip the ability to place the center of the clipping region at any position rather than just at the center of the local coordinate system, which could be done simply by adding attributes x and y.

3GPP SA4 would request WG11 to consider the proposed changes and inform us on the results of your decision.
2.2 uDOM extensions for scene extension
The current DIMS specification includes uDOM extensions to address scene extensions, some of them being LASeR extensions.
They are described below for your convenience:

The following table adds to the table in A.8.12 of [SVGT1.2]. It contains trait access rules for DIMS extensions.

	Attribute
	Trait Getter
	Trait Setter
	Default Values
	Description

	fullscreen
	getTraitNS[true | false]
	setTraitNS[true | false]
	false
	Available on <video> and <svg> elements

	X
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Origin x of the <rectClip>

	Y
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Origin y of the <rectClip>

	width
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Width of the clipping region defined by <rectClip>

	Height
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Height of the clipping region defined by <rectClip>

Description of getFloatTraitNS and setFloatTraitNS methods

float getFloatTraitNS(in DOMString namespaceURI, in DOMString name) raises(DOMException);
- Same as getFloatTrait, but for namespaced traits. Parameter name must be a non-qualified trait name, i.e. without prefix.

Parameters:

namespaceURI - the namespaceURI of the trait to retrieve.
name - the name of the trait to retrieve.

Return Value:

the trait value as float.

Exceptions:

DOMException - with error code NOT_SUPPORTED_ERR if the requested trait is not supported on this element or null.
DOMException - with error code TYPE_MISMATCH_ERR if requested trait's computed value cannot be converted to a float.

void setFloatTraitNS(in DOMString namespaceURI, in DOMString name, in float value)

raises(DOMException);
Same as setFloatTrait, but for namespaced traits. Parameter name must be a non-qualified trait name, i.e. without prefix.

Parameters:

namespaceURI - the namespaceURI of the trait to be set.
name - the name of the trait to be set.
value - the value of the trait to be set as float.

Exceptions:

DOMException - with error code NOT_SUPPORTED_ERR if the requested trait is not supported on this element or null.
DOMException - with error code TYPE_MISMATCH_ERR if the requested trait's value cannot be specified as a float (for e.g. NaN)

DOMException - with error code INVALID_ACCESS_ERR if the input value is an invalid value for the given trait or null.
The 3GPP SA4 working group is sending a liaison to W3C to get their feedback on the proposed methods described above and would welcome your coordination with W3C for inclusion of these features in your specification if you think this would be necessary.

2.3 Screen orientation

3GPP SA4 has agreed to integrate Screen Orientation features into the DIMS specification. This functionality is not the same as that defined in LASeR. We kindly request MPEG-LASeR group to consider the following and would welcome your comments if any as well as your intent or not to align the two specifications on this feature.
The Screen Orientation events and extension strings and Key Location interfaces are not frozen in the DIMS specification and will be improved in our next meeting.

You will also find enclosed a contribution under consideration for screen orientation and softkeys realignments and related events

Screen Orientation and Key Location

Two events and two feature strings are defined that make it possible for scenes to adapt to the screen layout. The events are:

· screenOrientationPortrait

· screenOrientationLandscape

They are in the <<ed: TBD>> namespace. Whenever the terminal detects a change of orientation, angle, or screen size, one of these two events is dispatched. A portrait event is dispatched if the screen is taller than it is wide, and a landscape event is dispatched if the screen is wider than it is tall. It is the responsibility of the system below the scene to orient the screen buffer to user; the DIMS scene author does not do this.

<<ed: paragraph TBD>>Many systems have two softkeys adjacent to the screen. In this model, when the softkeys are at the bottom, the primary softkey, which generates the event ‘primarySoftKey’ when pressed, is to the left, and the secondary softkey, which generates the event ‘secondarySoftKey’ when pressed, is to the right. Therefore if the softkeys are reported to be on the right, the primary is at the bottom, and the secondary at the top of the right edge.<<ed: the whole issue of relating key physical locations to the screen buffer and to the events they generate is still undecided>>

The angle between the long (primary) axis of the screen and vertical is reported in degrees in screenAngle, to the best of the terminal’s capability. This angle is measured clockwise from vertical (see diagram) and would normally be close to 0 or 180 in portrait events, and close to 90 or 270 in landscape events.

[image: image1.wmf]

scree

n

 pr

im

ar

y

a

x

i

s

v

er

t

i

ca

l

a

Figure 5‑1: Screen Orientation

These events have the following interface.

interface ScreenOrientationEvent : Event
{

const unsigned short SOFTKEYS_NONE
= 0;

const unsigned short SOFTKEYS_LEFT
= 1;

const unsigned short SOFTKEYS_RIGHT
= 2;

const unsigned short SOFTKEYS_TOP
= 3;

const unsigned short SOFTKEYS_BOTTOM
= 4;

readonly attribute unsigned long screenWidth;

readonly attribute unsigned long screenHeight;

readonly attribute unsigned long screenAngle;

readonly attribute unsigned short softKeysLayout;
}
SOFTKEYS_LEFT – indicates that the device soft keys are to the left of the screen in the current screen orientation.

SOFTKEYS_RIGHT - indicates that the device soft keys are to the right of the screen in the current screen orientation.

SOFTKEYS_TOP - indicates that the device soft keys are at the top of the screen in the current screen orientation.

SOFTKEYS_BOTTOM - indicates that the device soft keys are at the bottom of the screen in the current screen orientation.

SOFTKEYS_NONE - indicates that the device has no soft keys or their position cannot be reported in this way

screenWidth - contains the new screen display or viewport width
screenHeight -contains the new screen display or viewport height

screenAngle – documents the angle between the primary axis of the screen, and vertical.

softKeysLocation - indicates the location of the device soft keys in response to the orientation change. The possible values are SOFTKEYS_LEFT, SOFTKEYS_RIGHT, SOFTKEYS_TOP, SOFTKEYS_BOTTOM or SOFTKEYS_NONE.

The screen orientation events SHALL be supported in DIMS. If the terminal has an orientation sensor, or other physical adaptation that causes the available screen drawing area to change (e.g. a partial cover), events shall be generated whenever the terminal detects a change in any of the parameters to these events. These events may be used in the following circumstances:

1) To register event listeners based on the screen orientation events so that the script can be invoked when the event occurs. This can be done either through the application using uDOM APIs or declaratively via the <ev:listener> element with <ev:event> attribute set to one of the screen orientation events and invoking the appropriate <handler> element.

2) Timed Elements that can be defined to begin or end based on screen orientation events.

The following feature strings must also be supported, in order to allow the use of the switch element:

· urn:<tbd>:orientLandscape for typical ‘landscape’ orientation

· urn:<tbd>:orientPortrait for typical ‘portrait’ orientation

If the most recent event generated was a portrait event, then the portrait feature tests as true; if the most recent event was a landscape event, the landscape feature tests as true. At any time, exactly one of these features must test as true.

An example use of these feature strings is as follows:

<switch>

<g requiredExtensions=” urn:<tbd>:orientPortrait”>

… layout for portrait …

</g>

<g requiredExtensions=” urn:<tbd>:orientLandscape”>

… layout for landscape…

</g>
</switch>
2.4 UpdateSource

3GPP SA4 notes the integration of the UpdateSource element in the LASeR specification that according to your liaison is based on some 3GPP input contributions.
The functionality of an element triggering on update stream has been integrated in the DIMS specification and includes some of the UpdateSource functionalities.

The 3GPP SA4 group is investigating the benefits of the LASeR synch Master versus the SMIL time container. At this time it is not clear that the DIMS element would be a proper subset of the lsr:UpdateSource.

2.5 LASeR profile

3GPP SA4 kindly welcomes your proposal to define a profile of LASeR corresponding to DIMS and would be glad to review and comment on such profile.

SA4 would like to inform you that there is an ongoing discussion with OMA to define a shared media type so-call Rich-Media and it might be relevant for your work.
2.6 Usage of DIMS payload for LASeR

It is unclear that our current payload is generic enough to transport MPEG4 part 20 format and we will review it and keep you informed.

In any case if the MPEG-LASeR group intends to define the usage of MPEG4-part20 on the DIMS payload, 3GPP SA4 kindly request to make reference to the DIMS specification.
3 Actions for MPEG

We would be glad to receive information on your work, response on the questions above.
4 Dates of next 3GPP SA4 meetings:
PSM-Adhoc
TBD
TBD
TSG-SA4 Meeting #43
23rd — 27th April 2007
Rennes, France
TSG-SA4 Meeting#44
25th – 29th June 2007
location Helsinki, Finland
_1105635054.doc

vertical

screen primary axis

a

