TSG SA4#42

Tdoc S4-070099
January 29 – February 02, 2007, Seville, Spain

Source:
Nokia, Ericsson, Ikivo
Title:
Screen Orientation for DIMS Applications
Document for:
Discussion and Approval

Agenda Item:
6, 13.7
1. Introduction

This contribution motivates the need for DIMS applications or content to adapt to change in screen orientation. The more recent set of mobile devices have greater versatility in terms of screen orientation, and this has led to challenges in application/content UI representation on these mobile devices to conform to orientation change. This document is a follow-up to the document SA4-060640 titled, “Screen orientation management in DIMS.”
2. Background

Although the concept of different screen orientations has been prevalent for various types of UI systems and devices, currently there is no systematic mechanism that defines the handling of screen orientation modes in the context of a rich media environment.
A preliminary contribution was submitted at 3GPP SA4#41 meeting (ref: ftp://ftp.3gpp.org/TSG_SA/WG4_CODEC/TSGS4_41/Docs/S4-060640.zip) to address this problem. The contribution proposed to introduce four events based on angles in the following manner:

	Event Identifier
	Namespace
	Description

	“screenOrientation0”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to typical ‘landscape’ orientation

	“screenOrientation90”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to typical ‘portrait’ orientation

	“screenOrientation180”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to inverted ‘landscape’ orientation

	“screenOrientation270”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to inverted ‘portrait’ orientation

However, there are two main issues with this proposal.

1) The event identifiers are based on angles and therefore introduce ambiguity while mapping the underlying hardware/OS based events to these content based events. For e.g. Symbian UI framework does not support inverted portrait and landscape modes.

2) The proposal is incomplete in the sense that it does not define the mapping of the event identifiers to an event interface. In addition, the contribution lacks the definition of event interface which is crucial for obtaining information related to the screen orientation such as screen width/height, and the location of the soft keys in response to the change in screen orientation.

3. PROPOSAL
3.1 Event Identifiers

For compatibility with existing mobile platforms and simplicity reasons, we propose just two event types, namely, “screenOrientationPortrait,” and “screenOrientationLandscape” corresponding to the screen orientation modes “portrait”, and “landscape” respectively.

	Event Identifier
	Namespace
	Description
	DOM interface

	“screenOrientationPortrait”

	dims:events
	Occurs when the screen orientation is changed to “portrait” mode.
	ScreenOrientationEvent

	“screenOrientationLandscape”
	dims:events
	Occurs when the screen orientation is changed to “landscape” mode.
	ScreenOrientationEvent

3.2 ScreenOrientationEvent Interface
The following is the definition of the ScreenOrientationEvent interface that provides the contextual information related to screen orientation changes. This interface is designed based on DOM Level 3 events specification, and therefore can be easily implemented on existing SVG Tiny 1.2 implementations. Note that this interface extends the `Event’ interface which contains the basic event information such as the event target, and event type information.

interface ScreenOrientationEvent : Event

{

const unsigned short SOFTKEYS_LEFT
= 1;

const unsigned short SOFTKEYS_RIGHT
= 2;
const unsigned short SOFTKEYS_TOP
= 3;

const unsigned short SOFTKEYS_BOTTOM
= 4;

readonly attribute long screenWidth;

readonly attribute long screenHeight;

readonly attribute unsigned short softKeysLayout;

}
SOFTKEYS_LEFT – indicates that the device soft keys are to the left of the screen in the current screen orientation.

SOFTKEYS_RIGHT - indicates that the device soft keys are to the right of the screen in the current screen orientation.

SOFTKEYS_TOP - indicates that the device soft keys are at the top of the screen in the current screen orientation.

SOFTKEYS_BOTTOM - indicates that the device soft keys are at the bottom of the screen in the current screen orientation.
screenWidth - contains the new screen display or viewport width reflecting the new orientation.
screenHeight -contains the new screen display or viewport height reflecting the new orientation.
softKeysLocation - indicates the location of the device soft keys in response to the orientation change. The possible values are SOFTKEYS_LEFT, SOFTKEYS_RIGHT, SOFTKEYS_TOP, and SOFTKEYS_BOTTOM. The illustration of the possible soft key’s layouts can be obtained from Figure 1.

For reference, here is the Event interface as defined in DOM Level 3 events specification
[http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107/events.html]
interface Event

{

readonly attribute EventTarget target;

readonly attribute DOMString type;

readonly attribute currentTarget;

…

…

…

}

With the information provided by the screen orientation interface, the user agent or underlying rich media engine can adapt to the layout or visual representation of the content to current screen orientation.

3.3 Event management and processing of screen orientation events.
The following section describes the proposed event management and processing of screen orientation events which is based on the DOM Level 3 events processing model. This includes event creation, event dispatching, event registration and event handling.

Event Creation: This deals with the creation of ScreenOrientationEvent object which is an implementation of ScreenOrientationEvent interface. This event is directly mapped to the hardware event notification (for e.g. using the Symbian UI framework) or through an event “message” from the server. During the event creation it is important that the relevant event attributes such as event target, event type, screenWidth, screenHeight attributes are set. Optionally, the location of the soft key buttons may also be set on the event object.
Event Dispatching: This deals with dispatching the ScreenOrientation event to the appropriate target based on the event target.

Event Registration: Typically, the content author or application registers for the events if he/she chooses to listen to a particular event. For e.g. to listen to a ScreenOrientationEvent, a listener must be registered with the event target within the rich media engine. This can be done either declaratively using the <ev:listener> element or can be done by the implementation by attaching the “EventListener” object to the “EventTarget” object. This completes the registration process and is usually done prior to the event creation and dispatching phase.

Event Handling: Event handling relates to event processing or realization. Event handlers contain the logic or code that must be executed based on a specific event listener and an event target. For e.g. when the ScreenOrientationEvent is dispatched to a particular event target as described in the previous stages, the event manager of the rich media engine checks the list of event listeners and invokes the appropriate event handler, thereby executing the logic that is present within the handler. And the handler can access all the information relevant to screen orientation as defined by the ScreenOrientationEvent object.

The following example illustrates the concept of screen orientation and the content adoption based on the orientation change. The content is authored in SVG format. When this content is loaded by the rich media client, the content is seen in the portrait mode (default) as depicted in Figure 2. Now, when the screen orientation change event is fired either by the hardware or streamed from the server, this event gets dispatched to the rich media engine where the <listener> elements get the notification. Upon this notification, the listener elements invoke the appropriate <handler> elements that in this examples execute the associated scripts to change the layout of the content from ‘portrait’ mode to ‘landscape’ mode as depicted in Figure 3. In addition to the layout of the content, the soft keys could also be emulated using the location of the soft keys obtained through the ScreenOrientation interface object.
<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny"

 xmlns:ev="http://www.w3.org/2001/xml-events">

 xmlns:dims=”http://www.3ggp.org/dims/events”

<desc>An example of the screen orientation</desc>

<rect xml:id="icon1" x="10" y="10" width="20" height="10" fill="red"/>

<rect xml:id="icon3" x="10" y="30" width="20" height="10" fill="green"/>

<rect xml:id="icon5" x="10" y="50" width="20" height="10" fill="yellow"/>

<rect xml:id="icon2" x="40" y="10" width="20" height="10" fill="blue"/>

<rect xml:id="icon4" x="40" y="30" width="20" height="10" fill="purple"/>

<rect xml:id="icon6" x="40" y="50" width="20" height="10" fill="orange"/>

<ev:listener ev:event="dims: screenOrientationLandscape " observer="icon1" handler="#theOrientationHandler"/>

 <ev:listener ev:event="dims: screenOrientationLandscape " observer="icon2" handler="#theOrientationHandler"/>

 <ev:listener ev:event="dims: screenOrientationLandscape " observer="icon3" handler="#theOrientationHandler"/>

 <ev:listener ev:event="dims: screenOrientationLandscape " observer="icon4" handler="#theOrientationHandler"/>

 <ev:listener ev:event="dims: screenOrientationLandscape " observer="icon5" handler="#theOrientationHandler"/>

 <ev:listener ev:event=" dims: screenOrientationLandscape " observer="icon6" handler="#theOrientationHandler"/>

<handler xml:id="theOrientationHandler" type="application/ecmascript">

var tarIcon = evt.target;

if(tar.id == “icon3” && evt.screenWidth > 60 && evt.screenWidth < 100){

 tarIcon.setFloatTrait("x", 70); tarIcon.setFloatTrait("y", 10); }

 if(tar.id == “icon4”){

 tarIcon.setFloatTrait("x", 10); tarIcon.setFloatTrait("y", 30); }

 if(tar.id == “icon5”){

 tarIcon.setFloatTrait("x", 40); tarIcon.setFloatTrait("y", 30); }

 if(tar.id == “icon6” && evt.screenWidth > 60 && evt.screenWidth < 100){

 tarIcon.setFloatTrait("x", 70); tarIcon.setFloatTrait("y", 30); }

 </handler>

</svg>

4. Summary

In summary, we propose the following solution to address the problem associated with the screen orientation in the context of rich media environment.
1) Definition of Event identifiers “screenOrientationPortrait” and “screenOrientationPortrait” as described in the section 3.1 in this contribution.

2) Definition of ScreenOrientationEvent interface as described in the section 3.2 of this contribution.
3) Mapping of event identifiers to the ScreenOrientationEvent interface and its processing as described in the section 3.3 of this contribution.
5. DIMS proposed text

The following text shall be supported and inserted into section 6.1 of the DIMS specification:

==================
Screen orientation events SHALL be supported by DIMS with the following modes:

	Event Identifier
	Namespace
	Description
	DOM interface

	“screenOrientationPortrait”

	dims:events
	Occurs when the screen orientation is changed to “portrait” mode.
	ScreenOrientationEvent

	“screenOrientationLandscape”
	dims:events
	Occurs when the screen orientation is changed to “landscape” mode.
	ScreenOrientationEvent

The following ScreenOrientationEvent interface SHALL be supported in DIMS:
ScreenOrientationEvent interface provides the contextual information related to screen orientation changes. This interface is designed around and based on DOM Level 3 events specification. Note that this interface extends the `Event’ interface which contains the basic event information such as the event target, and event type information.

interface ScreenOrientationEvent : Event

{

const unsigned short SOFTKEYS_LEFT
= 1;

const unsigned short SOFTKEYS_RIGHT
= 2;
const unsigned short SOFTKEYS_TOP
= 3;

const unsigned short SOFTKEYS_BOTTOM= 4;

readonly attribute long screenWidth;

readonly attribute long screenHeight;

readonly attribute unsigned short softKeysLayout;

}
SOFTKEYS_LEFT – indicates that the device soft keys are to the left of the screen in the current screen orientation.

SOFTKEYS_RIGHT - indicates that the device soft keys are to the right of the screen in the current screen orientation.

SOFTKEYS_TOP - indicates that the device soft keys are at the top of the screen in the current screen orientation.

SOFTKEYS_BOTTOM - indicates that the device soft keys at the bottom of the screen in the current screen orientation.
screenWidth - contains the new screen display or viewport width reflecting the new orientation.
screenHeight -contains the new screen display or viewport height reflecting the new orientation.
softKeysLocation - indicates the location of the device soft keys in response to the orientation change. The possible values are SOFTKEYS_LEFT, SOFTKEYS_RIGHT, SOFTKEYS_TOP, and SOFTKEYS_BOTTOM.
The screen orientations events SHALL be supported in DIMS in the following instances:

1) To register event listeners based on the screen orientation events so that the script can be invoked when the event occurs. This can be done either through the application using uDOM APIs or declaratively via the <ev:listener> element with <ev:event> attribute set to one of the screen orientation events and invoking the appropriate <handler> element.
2) Timed Elements that can be defined to begin or end based on screen orientation events.
Icon6

Icon3

Icon5

Icon4

Icon2

Icon1

Icon6

Icon5

Icon4

Icon3

Icon2

Icon1

Figure 3: Landscape Orientation

Figure 2: Portrait Orientation

Figure 1(d): SOFTKEYS_RIGHTLEFT

 Figure 1(c): SOFTKEYS_LEFT

 Figure 1(b): SOFTKEYS_TOP

Figure 1(a): SOFTKEYS_BOTTOM

Keypad

Display

Display

Keypad

Keypad

Back

Options

Display

Soft keys

Back

Options

Display

Keypad

Figure 1: Soft Key layouts (SOFTKEYS_LEFT, SOFTKEYS_RIGHT, SOFTKEYS_TOP, and SOFTKEYS_BOTTOM)

