Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA WG4 #42
S4-070055
January 29 th -February 2nd, 2007
Sevilla, Spain

Agenda item:
9
Source:
QUALCOMM
Title:
Illustrative JBM scheme for MTSI
Document for:

Discussion and Decision
1 Introduction

This contribution proposes an illustrative JBM scheme to be included as an informative annex in TS 26.114 [1].
2 Illustrative jitter buffer management scheme
The jitter buffer algorithm illustrated in this section targets a particular “underflow rate” of speech frames, while attempting to minimize the buffering delay (or jitter delay) in doing so. It controls the buffer size to adapt to the jitter observed over the channel. At the end of each silence period (or the beginning of the talkspurt), the jitter delay is updated. Specifically, the jitter delay is increased if the filtered underflow rate exceeds the target underflow rate and the jitter delay is decreased if the filtered underflow rate is lower than the target underflow rate. The filtered underflow rate is updated at the end of each silence period based on the underflow rate for the last talkspurt and the previous value of the underflow rate. The underflow rate is defined as:

[image: image1.wmf]update

last

after

packets

received

of

Number

update

last

after

underflows

delayed

of

Number

rate

u

=

_

This above defines the basic behaviour of the jitter buffer algorithm. The jitter delay typically represents the amount of speech data that should be present in the de-jitter buffer at any point of time during the talkspurt. Due to variation in packet delays, however, this data in the de-jitter buffer may be less or greater than the calculated value, i.e., if packets arrive slower than the generation rate at the encoder, the de-jitter buffer will start getting depleted and if packets arrive faster than the generation rate at the encoder, the de-jitter buffer will start increasing in size.

To alleviate this problem, the implemented jitter buffer contains an optional time scaling functionality. The jitter buffer algorithm uses time scaling to expand speech packets when the de-jitter buffer starts to deplete and compresses speech packets when the de-jitter buffer becomes larger than the calculated value.

 It is worth pointing out the jitter buffer adaptation control is independent of the time scaling capability. This is illustrated in Section 4 where the objective performance of the jitter buffer with time scaling disabled is illustrated. Comparing the objective performance with and without time scaling (Section 3 and 4 respectively), it can be observed that time scaling is capable of enabling improvements in objective performance of the jitter buffer algorithm.
2.1 Pseudo code of jitter buffer management scheme

The pseudo code consists of two main parts:

1. Reception loop: extracts speech frames from received RTP payload and stores them in a buffer.

2. Decoding loop: upon request reads speech frames from the buffer and provides a frame of decoded speech (or error concealment data).

The time scaling functionality in the implemented jitter buffer can be turned on by setting the variable time_scaling_enabled to ‘1’.

// INITIALISATION

Read the first input frame, initialise variables

time_scaling_enabled = 0; // set this to ‘1’ to enable time scaling
while (more packets in buffer or more input frames)

{

//Reception Loop

while (next_rx_time <= play_time)

{

//packet reception

increment num_received_packets;

if (received frame found in underflow buffer)

increment num_underflows;

if (received frame > next_to_play)

add received frame to buffer;

if (filtered value of (num_underflows/num_received_packets) > TARGET_UNDERFLOW_RATE)

increment jitter_delay;

else

decrement jitter_delay;

}

//Play-out Loop

while (play_time < next_rx_time)

{

if (first frame in buffer > next_to_play)

{

if (first frame in buffer < next_to_play + consec_underflows)

{

increment next_to_play to first frame in buffer;

}

}

if (InSilence state)

{

if SID frame

{

remove SID frame from buffer and pass SID frame to decoder; generate comfort noise

}

else if speech frame

{

if speech frame is delayed by jitter_delay

{

remove speech frame from buffer; change state to InSpeech

if(time_scaling_enabled)

{

determine_time_scaling ();

if (expand_packet == 1)

{

decode the frame and try to expand;

}

else if (compress_packet == 1)

{

decode the frame and try to compress;

}

else

{

decode the frame;

}

}

else // No time scaling. Just decode the frame

{

decode the frame;

}

}

else

{

generate comfort noise

}

}

}

else if (InSpeech state)

{

if (first frame in buffer == next_to_play)

{

if (first frame in buffer is a SID frame)

{

remove SID frame from buffer and pass SID frame to decoder; generate comfort noise

change state to InSilence;

}

else if (first frame in buffer is a speech frame)

{

remove speech frame from buffer and send speech frame to decoder

}

increment next_to_play by 1;

}

else if (first frame in buffer != next_to_play)

{

add next_to_play to underflow buffer;

play erasure;

increment consec_underflows by 1;

}

}

increment play_time by length of decoded packet;

}

}

determine_time_scaling ()

{

if (current depth of buffer is less than jitter_delay * EXPAND_THRESH)

{

expand_packet = 1;

}

else if (current depth of buffer is larger than jitter_delay * COMPRESS_THRESH)

{

compress_packet = 1;

}

}

3 Results with time scaling enabled

This section provides a verification of a JBM implementation complying to the pseudo code in Section 3 with time scaling option turned on against the minimum performance requirements specified in section 8.2.2 of TS 26.114. The verification was performed by using the implemented JBM algorithm with the AMR codec.
3.1 Delay CDF metric
The delay CDF achieved by the implemented JBM for the six test channels is shown below. The CDF requirement is shown in purple and CDF achieved by the implemented JBM is shown in yellow. For ease of understanding the 90% requirement is also indicated as a horizontal line.
[image: image2.emf]Channel 1

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 1: Delay-CDF of the implemented JBM for Channel 1

[image: image3.emf]Channel 2

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

Figure 2: Delay-CDF of the implemented JBM for Channel 2

[image: image4.emf]Channel 3

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 3: Delay-CDF of the implemented JBM for Channel 3

[image: image5.emf]Channel 4

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 4: Delay-CDF of the implemented JBM for Channel 4

[image: image6.emf]Channel 5

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 5: Delay-CDF of the implemented JBM for Channel 5

[image: image7.emf]Channel 6

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350 400

delay (ms)

percentage

CDF requirement

Implemented JBM

Figure 6: Delay-CDF of the implemented JBM for Channel 6
3.2 JBM induced error concealment metric
The jitter loss rate achieved by the implemented JBM for the six test channels is shown in Table 1. It can be observed that for all test cases the achieved jitter loss rate is lower than the 1% requirement.
Table 1: The jitter loss rate for the implemented JBM on test channels
	Channel
	1
	2
	3
	4
	5
	6

	jitter loss rate
	0.16%
	0.64%
	0.27%
	0.64%
	0.59%
	0.16%

4 Results with time scaling disabled

This section provides a verification of a JBM implementation complying to the pseudo code in Section 3 with time scaling option turned off against the minimum performance requirements specified in section 8.2.2 of TS 26.114. The verification was performed by using the implemented JBM algorithm with the AMR codec.
4.1 Delay CDF metric

The delay CDF achieved by the implemented JBM for the six test channels is shown below. The CDF requirement is shown in purple and CDF achieved by the implemented JBM is shown in yellow. For ease of understanding the 90% requirement is also indicated as an horizontal line.
[image: image8.emf]Channel 1

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 7: Delay-CDF of the implemented JBM for Channel 1
[image: image9.emf]Channel 2

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 8: Delay-CDF of the implemented JBM for Channel 2

[image: image10.emf]Channel 3

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 9: Delay-CDF of the implemented JBM for Channel 3

[image: image11.emf]Channel 4

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 10: Delay-CDF of the implemented JBM for Channel 4

[image: image12.emf]Channel 5

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 11: Delay-CDF of the implemented JBM for Channel 5

[image: image13.emf]Channel 6

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 50 100 150 200 250 300 350 400

delay (ms)

percentage

CDF requirement

Implemented JBM

 Figure 12: Delay-CDF of the implemented JBM for Channel 6

4.2 JBM induced error concealment metric

The jitter loss rate achieved by the implemented JBM for the six test channels is shown in Table 2. It can be observed that for all test cases the achieved jitter loss rate is lower than the 1% requirement.
Table 2: The jitter loss rate for the implemented JBM on test channels
	Channel
	1
	2
	3
	4
	5
	6

	jitter loss rate
	0.42%
	0.64%
	0.45%
	0.83%
	0.67%
	0.35%

5 Proposal

It is proposed that the jitter buffer management scheme be included as an illustrative JBM scheme in TS 26.114 [1].
6 References
[1] S4-AHM088, TS 26.114 V1.2.0
- 11/11 -

_1230901422.unknown

