3GPP TSG-SA4#41 meeting
Tdoc S4-060740
06 – 10 November, 2006, Athens, Greece

Source:
Nokia

Title:
TS text proposal for the example JBM solution for MTSI
Document for:
Discussion & decision

Agenda Item:
9 [, 13.8.1]
1 Introduction

The MTSI session of the SA4#41 has already had some discussion on the example JBM solution that may be included in the draft specification TS 26.114 [1]. A proposal for an example JBM algorithm in pseudo code format is provided in [2]. Furthermore, a revised version of [2] can be found in [3], including also a performance analysis comparing the proposed example JBM against the functional and minimum performance requirements given in [1], as was requested by the MTSI group.

2 References

[1]
Tdoc S4-AHM054, “MMtel Draft TS 26.114”

[2]
Tdoc S4-060643, “An Example JBM solution for MTSI”

[3]
Tdoc S4-060712, “An Example JBM solution for MTSI”

3 Proposal

We propose to include the following text into the draft TS 26.114.

--- Start change 1 ---

8.2.3

Example solution for jitter-buffer management

Annex C provides an informational example jitter buffer management algorithm fulfilling both the functional requirements specified in section 8.2.1 and the minimum performance requirements specified in section 8.2.2.
--- End change 1 ---

--- Start change 2 ---

Annex C (informative):
Example jitter buffer management algorithm
This annex describes an informational example jitter buffer management (JBM) algorithm. The pseudo code specifying the example algorithm is given in section C.1, and section C.2 provides a performance analysis of the described algorithm.
C.1
Pseudo code

The pseudo code consists of two main parts:

1. Reception functionality, including the decapsulation of received RTP payload and storing the received speech frames into a buffer.

2. Decoding functionality, taking care of reading the frames from the buffer and providing a frame of decoded speech (or error concealment data) upon request.

To illustrate the relationship between these two functional parts in a simple way, the pseudo code is structured in a form of a simulation model in which a main loop handles the reception and decoding functionalities:

· The main loop models the time line – at each execution of this loop the simulated “wall clock time” is increased by one clock tick. Furthermore, the other two loops – reception loop and the decoding loop – are implemented inside the main loop.

· The reception loop is executed as many times as needed to process the new packets available at the packet input at/before current time.

· The decoding loop is executed as many times as needed to process all frames in the buffer scheduled for decoding at/before current time.

It is straightforward to implement the contents of the reception loop in function that is called each time a new RTP payload is received to provide the reception functionality. Similarly, the operations in the decoding loop can be implemented in a function that is called each time the audio device requests a new frame of speech to provide the decoding functionality.

Table C.1 describes the variables used in the pseudo code. Note that in addition to variables introduced in the table, the pseudo code also uses the constant FRAME_DURATION to indicate a frame duration as number of RTP clock ticks (FRAME_DURATION = 160 for AMR, FRAME_DURATION = 320 for AMR-WB).

Table C.1: Variables used in the pseudo code.

	Variable
	Purpose
	Description / usage

	current_time
	Current simulation time as clock ticks at RTP time stamp clock rate
	The current time is initialised to random value – indicated by “NOW” in the pseudo code. The value is increased by one at the each execution of the main loop to simulate the passing of time.

	rx_time
	Reception time of the current/next RTP packet (as clock ticks at RTP time stamp clock rate)
	The reception time is initialised to the same value as current_time. The value is updated each time a new packet is available in the packet input.

	dec_time
	Decoding time of the next frame (as clock ticks at RTP time stamp clock rate)
	The value is initialised by adding the value of desired buffering delay JBM_BUFFER_DELAY for the initial value of the current_time. This variable is updated after each decoded frame by increasing the value by number of RTP clock ticks corresponding to one frame (160 ticks for 8 kHz clock rate used for AMR, 320 ticks for 16 kHz clock rate used for AMR-WB).

	rtp_ts
	RTP timestamp of the current/next RTP packet (as clock ticks at RTP time stamp clock rate)
	The value is updated each time a new input packet is captured

	frame_ts
	RTP timestamp of the current (received) frame (as clock ticks at RTP time stamp clock rate)
	The frame timestamp value is set/updated when parsing a packet (containing several frames)

	Next_ts
	RTP timestamp of the frame to be decoded next (as clock ticks at RTP time stamp clock rate)
	The variable is used both to request the next frame in decoding order from the buffer and to detect the frames that arrive late

	end_of_input
	Indication of input speech data status
	A status variable that is initialised to value FALSE – the value is set to TRUE when the end of the input packet file is encountered.

	buffer_occupancy
	Buffer fill level in number of frames
	A variable that is used to indicate buffering status – needed for detecting the end of the simulation and to detect buffer overflows.

	Loss_burst_len
	Number of consecutive frames replaced by error concealment
	The value of this variable is increased each time the decoder needs to invoke the error concealment operation. In case the value exceeds a predetermined threshold JBF_LOSS_PERIOD_THR, the re-synchronisation operation is initiated by setting resync_flag to value 1. In case of normal decoding the value of loss_burst_len is set to zero.

	resync_flag
	Flag to indicate that a re-synchronisation is needed.
	See the description for the variable loss_burst_len above.

/* INITIALISATION */

Read the first input frame, initialise variables based in received packet

/* NOTE that time is measured in speech samples at RTP clock rate – 8 kHz for AMR, 16 kHz for AMR-WB */

rx_time = current_time = NOW

next_ts = rtp_ts

/* Set the desired initial buffering delay */

dec_time = current_time + JBF_INITIAL_DELAY

end_of_input = FALSE

buffer_occupancy = 0

loss_burst_len = 0

resync_flag = 0

/* MAIN LOOP */

WHILE end_of_input == FALSE OR buffer_occupancy > 0

{

/* RECEPTION LOOP */

WHILE end_of_input == FALSE AND rx_time <= current_time

{

/* Set RTP timestamp for the frame */

frame_ts = rtp_ts

/* Loop over all frames in the packet */

WHILE more frames in this packet

{

IF speech onset detected
{

Find bt_min and bt_max, i.e. the minimum and maximum predicted buffering times over the period of JBF_HISTORY_LEN most recent frames

/* Set new buffering time */

buffer_delay = bt_max – bt_min

/* Set this as the next frame to be decoded */

next_ts = frame_ts

/* Set decoding time */

dec_time = current_time + buffer_delay

}

/* Check if the docder has set the re-synchronisation flag */

ELSE IF resync_flag == 1

{

/* Continue decoding from the first frame arriving after a loss period */

next_ts = frame_ts

/* Clear the re-synchronisation flag */

resync_flag = 0

}

/* Check if received frame is late by less than one frame slot */

ELSE IF frame_ts + FRAME_DURATION == next_ts AND TS >= next_ts NOT in the buffer
{

/* Re-schedule this frame to be the next frame to be decoded */

next_ts = frame_ts

}

Compute predicted buffering time for the received frame and update buffering time history

/* Check frame arrival time */

IF frame_ts < next_ts

{

Discard the frame because it arrived late
Update RX log: TIME = rx_time; RTP_TS = frame_ts; RX_STATUS = late_loss
}

ELSE

{

/* Check buffer occupancy */

IF buffer_occupancy == MAX_BUFFER_OCCUPANCY

{

Discard the frame because the buffer is full
Update RX log: TIME = rx_time; RTP_TS = frame_ts; RX_STATUS = overflow

}

ELSE

{

Store the frame into the buffer
Update RX log: TIME = rx_time; RTP_TS = frame_ts; RX_STATUS = ok
buffer_occupancy++

}

}

/* Update RTP timestamp for the next frame */

frame_ts += 160

}

Read the next input packet

IF new packet available

{

Update variables

 rx_time

 rtp_ts

}

ELSE

{

end_of_input = TRUE

}

} /* end of RECEPTION LOOP */

/* DECODING LOOP */

WHILE dec_time <= current_time

{

Request frame having the RTP timestamp value next_ts from the buffer

IF requested frame found
{

Decode speech or generate comfort noise (SID or SID_FIRST frame) normally
Update DEC log: TIME = dec_time; RX_TIME = rcv_time; RTP_TS = next_ts; DEC_STATUS = ok
buffer_occupancy--

/* Clear lost burst counter */

loss_burst_len = 0

}

ELSE

{

IF in speech state
{

/* Increase lost burst counter */

loss_burst_len++

/* Check the loss period length */

IF loss_burst_len > JBF_LOSS_PERIOD_THR

{

Find the oldest frame in the buffer

IF a frame having a time stamp value new_ts found
{

Decode the frame found in the buffer (i.e. reset the decoding to continue from the oldest frame found in the buffer)

Update DEC log: TIME = dec_time; RX_TIME = rcv_time; RTP_TS = new_ts; DEC_STATUS = ok
buffer_occupancy--

/* Set the time stamp */

next_ts = new_ts

/* Clear lost burst counter */

loss_burst_len = 0

}

ELSE

{

Invoke error concealment
Update DEC log: TIME = dec_time; RX_TIME = N/A; RTP_TS = next_ts; DEC_STATUS = error_concealment
/* Set the re-synchronisation flag to trigger the decoding to continue from the next arriving frame */

resync_flag = 1

}

}

ELSE

{

Invoke error concealment
Update DEC log: TIME = dec_time; RX_TIME = N/A; RTP_TS = next_ts; DEC_STATUS = error_concealment
}

}

ELSE

{

/* DTX */

Continue comfort noise generation

Update DEC log: TIME = dec_time; RX_TIME = N/A; RTP_TS = next_ts; DEC_STATUS = comfort_noise

}

}

/* Update variables for decoding the next frame */

dec_time += FRAME_DURATION

next_ts += FRAME_DURATION

} /* end of DECODING LOOP */

/* CLOCK/TIMER UPDATE */

current_time++

}
C.2
Verification against the minimum performance requirements

This section provides a verification of the example JBM against the minimum performance requirements given in section 8.2.2. The verification was performed by using the example JBM algorithm with the AMR codec. The input speech sequence used for verification was a subset of the AMR-WB test sequences, down sampled to 8 kHz before AMR encoding using the 12.2 kbit/s mode. The subset was formed by taking only the test items consisting of speech signal to provide an input test sequence corresponding to the full duration of the test channels, i.e. 7500 frames, corresponding to 2 minutes 30 seconds of input speech. The performance evaluation was made using all six error-delay profiles (i.e. channels) specified in section 8.2.2.4

The constants used in the pseudo code are set to the values given in Table C.2 for the verification.

Table C.2: Constant values in pseudo code used in performance analysis.

	Constant
	Value

	JBF_INITIAL_DELAY
	160 [ticks at 8 kHz clock rate]

	JBF_HISTORY_LEN
	100 [frames]

	JBF_LOSS_PERIOD_THR
	5 [frames]

C.3.1
Delay performance

Figures from C.1 to C.6 below indicate the delay performance and comparison against the minimum performance requirement given in section 8.2.2.2.2. The blue curve denotes the delay CDF for the example JBM, and the black dash-dotted curve indicates the delay requirement CDF.

[image: image1.emf]0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

100

ms

%

JBM delay CDF

Figure C.1: Delay performance of the example JBM on channel 1.

[image: image2.emf]0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

ms

%

JBM delay CDF

Figure C.2: Delay performance of the example JBM on channel 2.

[image: image3.emf]0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

70

80

90

100

ms

%

JBM delay CDF

Figure C.3: Delay performance of the example JBM on channel 3.

[image: image4.emf]0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

80

90

100

ms

%

JBM delay CDF

Figure C.4: Delay performance of the example JBM on channel 4.

[image: image5.emf]0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

80

90

100

ms

%

JBM delay CDF

Figure C.5: Delay performance of the example JBM on channel 5.

[image: image6.emf]0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

80

90

100

ms

%

JBM delay CDF

Figure C.6: Delay performance of the example JBM on channel 6.
C.3.2
JBM induced error concealment operations

Table C.3 summarizes the jitter loss rates of the example JBM for all test channels, computed as specified in section 8.2.2.2.3.

Table C.3: The jitter loss for the tested JBM on test channels.

	Channel
	1
	2
	3
	4
	5
	6

	JBM loss rate
	0.03 %
	0.50 %
	0.35 %
	0.55 %
	0.92 %
	0.63%

--- End change 2 ---

