3GPP TSG SA4#41 meeting
 Tdoc S4-060694
6-10th November, 2006

Athens, Greece

Source:

Streamezzo, 3, Orange, ETRI, Qualcomm, Alcatel, Telefonica
Title:
Binary format for DIMS, additional information and text for the specification
Document for:
Approval
1 Introduction

This contribution complements contribution S4-060399.

This contribution provide additional information regarding the loss-less capability of the LASeR Binary Format and details the benefits of the binary format versus XML and Gzip by using a reference model.

2 Semantic and syntax

The semantic in XML and Binary are identical. When decoding back to textual data, the exact identical semantic is retrieved.

The syntax in XML and Binary provide the exact same rendering.

However the XML syntax is more costly as it includes more characters (i.e. : space, tabulation) that needs to be parsed and generates lot of callbacks 'caracter data handler'.

The <path> in the XML syntax can be longer to parse whereas in binary the syntax is more strict and precdictable (no implicit or relative command).

The binary syntax brings some improvement on the overall performance on the terminal.
3 Lossless compression

First, the requirement for lossless compression is generally misunderstood. SVG Tiny cannot support “lossless” at the textual level since SVG Tiny defines a maximum numeric precision for any operation. SVG Tiny does not require floating point operations, and all numbers shall be representable on 32 bits with a fixed point representation with 16 bits mantissa.

Within the SVG Tiny definition of lossless, LASeR binary format can be parameterized to respect this criterion
Note: the client side implementation is independent from the choice of compression parameters.
4 Reference model

We take the Nokia 6680 terminal as a reference model.

Based on the principle that as soon as the content arrive to the terminal, the format can have an impact on the performances we have analysed and quantified the benefits and drawbacks of the binary formats at each steps:

· Cost of the signalling (Signalling of the binary format)
· Cost in memory of the decoding context

· Cost of the validation of data

· Cost of the parsing speed

· Cost of storage at runtime

· Cost of the complexity at the rendering level.

4.1 Cost of the signalling

The signalling of the binary format can be achieved either by signalling a new mime type or a different objectType indication.

In DIMS if we have both XML and Gzip, then there will be de facto different MIME types used (SVGT1.2, SVGT1.2 gzip).
Then the signalling of the Binary format does not bring any additional cost.

4.2 Cost of the decoding context

Here are the conditions on the test performed:

· Benchmarks have been done on a desktop PC

· Selected files were big enough to get significant results

· Files are taken from the LASeR test suite and comparisons are done between the equivalent SVG file and LASeR binary file.

The decoding context size maintain in memory is negligible. It depends of the number of colours, fonts available in the scene, bit per index.

Figures in the table below are less than 400 octets which correspond to larger scenes with large elements. Figures would be less than that for simple scenes.

	Content name
	Parsing ratio SVG/LASeR at runtime
	LASeR Decoding context size (bytes)

	1
	8,373755656
	116

	2_cht
	4,739622642
	202

	2_dwnl
	4,538251366
	206

	2_fnc
	4,831889081
	225

	2_fnnf
	4,661082474
	271

	2_gms
	4,482993197
	202

	2_msgs
	4,702156334
	271

	2_mvdf
	4,599662162
	271

	afrique_AR_none
	8,542279412
	48

	anne
	19,57500949
	108

	asf-logo
	7,611794654
	176

	cee
	53,93187469
	52

	desk
	4,383229383
	364

	DX_PPT_BFTI_001
	16,09584665
	121

	europe
	61,52712434
	48

	HalloweenCardAnim
	5,570864414
	192

	lambp
	5,052521008
	144

	meteo
	6,427976686
	120

	portugal
	7,929268293
	48

	santa
	4,748846154
	92

	struct-image-04-t
	8,754807692
	40

	swingAlong
	4,511439466
	80

	tiger
	7,775266792
	192

	VF_Menu
	7,805245056
	116

	vf_pieChart
	4,099585062
	64

	VF_proto1
	6,653719552
	92

	VF_proto2
	6,695536309
	92

	VF_proto3
	6,915502329
	92

	VF_proto4
	6,64182058
	92

	VF_protoindex
	6,133522727
	92

4.3 Cost of validation

The binary format provides a pre-validation of data. No additional validation of data on the terminal is needed.
In XML, the data is not pre-validated and the cost of an XML validation on a terminal can slow down the rendering.

The Gzip compression does not provide a pre-validation of data.

Then if we compare a server side validation cost: The binary format provides validation and compression in a single step. The equivalent process in XML would be to validate data in XML and to gzip it or not, depending on the size of the data packet.
The Binary format is then less costly both on the terminal and on the server side for validation.
4.4 Cost of parsing speed

Depending on the complexity of the scene and on the presence of udpates, the binary document can be processed up to 100 times faster than its equivalent XML file. See contribution S4-060399.
In the table above the figures include the instantiation and scene tree construction on files without updates and without images included within the scene. The average is 8.5 time faster in binary than in XML.

This can be explained by the following elements:

· Parsing in XML is done by parsing strings whereas the parsing in binary is done by parsing integers or bit fields (which are even faster to parse). The XML parser copies string whereas the binary parser copies integers, which is faster and less memory consuming.

· The point above is reinforced when retrieving updates while rendering a scene or animated scene. See point 4.6 on rendering speed.
· When images are included in the scene, in XML images are encoded in base 64. Then the player needs to decode the base64 data before calling the image decoder. In binary, images are in raw binary and are transmitted directly to image decoders

· The XML syntax is longer to parse. See section 2.
4.5 Cost of storage at runtime

In contribution S4-060399 we have detailed the benefits of the compression ratio for storage.

At run-time, the scene tree is indistinguishable whether the source is SVG or LASeR. As a result, runtime footprint of the scene tree is similar.

This does not take into account the parsing or decoding memory footprint described above.
4.6 Cost at the rendering level

The rendering of SVGT1.2 based content is one of the most costly steps.
Binary data transmitted to the application can directly be consumed at the rendering level. There is no string conversion process required. The rendering of DIMS data correspond to the rendering of SVGT1.2 +extensions data. Binary and XML provide the exact same scene and same rendering.
But as binary decoding is faster, the frame rate has better chance to be maintained.

On content with simple interaction (few updates):

To maintain a 25fps, for a scene with video stream/content, the overall delay to load, decode, parse, compose and paint the scene shall not exceed 40ms. Our experience in XML shows that due to the delay in parsing the XML, the 40ms are often reached and induced video and audio jerks.

Even if the parsing takes less than 40ms, binary decoding make the difference with being 8.5 faster on average. If the binary decoding takes 2.5ms when the XML parsing takes 20ms, the rendering itself can take almost twice longer while managing to keep up with the recommended frame rate.

On content with numerous interactions:

The binary format combined with the conditional element can drastically improve the rendering of SVGT1.2 and DIMS data.
The conditional element is a container for updates (cf contribution on conditional). The binary data contained into the conditional is preparsed and updates are executed directly at the rendering level when needed. As the binary format is very efficient and optimised in terms of parsing speed, there are no jerks at the rendering level when additional data (updates) are provided to the renderer.

In XML, the parsing of such data in-between two rendering steps would take too much time and provide jerks.
5 Conclusion

Based on contribution S4-060399 and on this contribution we have addressed all the remaining questions on the binary format and demonstrated that the binary format brings benefits to the DIMS specification and is even more needed along with the conditional to provide the relevant mechanism and quality of experience for DIMS services on DIMS devices.

We request SA4 to mandate the LASeR binary format as part of the DIMS specification.

6 Text for DIMS specification

6.1 Section 7

As the DIMS media type is composed of a SVGT1.2 scene representation with some extensions, an update mechanism and the ability to provide script, formats for DIMS shall be able to deal with these 3 key components. DIMS format shall allow a service to be developed using only one format.

The following formats for DIMS shall be supported:

· The Binary format defined in ISO/IEC 14496-20:2006/AMD1 clause 12, shall be supported.

· XML using the UTF-8 character encoding

· XML using the UTF-8 character encoding compressed with gzip or deflate.

Combinations of these formats are not required but may be possible.
6.2 Section 7.1

When the DIMS content is delivered in binary, the LASeR binary format defined in [XISO/IEC 14496-20:2006/AMD1 section 12,], shall be supported
LASeR binary format can be used for scene and scene update whatever is the size of the data to be transmitted and provide for both scene and scene udpate:

· A high compression ratio

· Prevalidated representation format

· Fast parsing

· Genericity and extensibility (e.g.:which could be necessary for private extension)

· Lightweight footprint implementation

· Script compression with LASeR format:

The script itself will be placed as text content of the <script> element or in a separate file pointed by the xlink:href attribute of the <script>.

A data: url in the xlink:href attribute will be used , which allows to compress the script text with gzip and carry it in that attribute.

The encoding phase will consist in a detection of a script text large enough to justify gzipping, extraction of the script text, gzipping and insertion as a data url in the xlink:href attribute.

On the decoding side, it is not needed to invert the process as the effect is the same whether the script text is placed as text content of the script element or as a data url. The DOM tree difference is irrelevant as any DOM modification of the text of a script is ignored as per the SVG Tiny 1.2 specification [X]
6.3 Section 7.2

If the DIMS content is delivered in XML form the XML using the UTF-8 character encoding will be used

6.4 Section 7.3

If the DIMS content is delivered in Gzip, the Gzip (GNU zip) [X] and Deflate [X] content encoding shall be supported.
6.5 Section 7.4

The content type is signalled using the object type indication (in 3GP file tracks) or using the media type

Four combinations of content type and encoding types are defined:

· LASeR Binary format: content type: application/DIMS + LASeR

· XML document (UTF-8): content type: application/DIMS+xml

· XML document compressed with gzip: content type application/DIMS+xml + encoding type : gzip
· XML document compressed with deflate: content type application/DIMS+xml + encoding type: deflate

6.6 Section 3

Add a reference to LASeR binary format:

[x] ISO/IEC 14496-20:2006/AMD1: "Information technology – Coding of audio-visual objects – Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF) – Amendment 1: SVGT1.2 Support"
