3GPP TSG SA WG4 #41

Tdoc S4-060675
6 – 10 November 2006, Athens, Greece

Source:
Ericsson, Nokia, Ikivo
Title:
Tune-in and resynchronization in DIMS

Document for:
Discussion and Approval

Agenda Item:
6.5
Introduction

This document proposes changes of and additions to section 8.2, Tune-in and resynchronization.
The DRAP mechanism is proposed for redundant tune-in points. It has been slightly modified since the last proposal based upon feedback in the SA#40 meeting. For example, the scene extension has been removed making the skeleton in the DRAP fully DIMS compliant. The functionality has however not changed.
Proposed text

The following text is proposed for section 8.2, Tune-in and resynchronization.
8.2 Tune-in and resynchronization

During a rich media service, it is important for the clients to be able to connect and access the current streamed content with minimal latency and data inaccuracy.
In a primary stream a tune-in point is a complete scene (or a mechanism to build a complete scene) and in a secondary stream a tune-in point is an update (or a mechanism to build a complete update). This is defined in sections 5.4.1.1 and 5.4.2.1.

Tune-in points may be either essential or redundant and this is signalled by the R bit of the RTP payload header. Essential tune-in points are even used by decoders not tuning in. Redundant tune-in points can and should be ignored by clients not needing to tune in.
Redundant tune-in points are defined using the DRAP mechanism. See section ‎8.2.1

Packets of data received by the client are associated with timestamps relative to the overall presentation time container. Further, the sequence numbers associated with the packets determine their ordering, and can be used to detect the occurrence of data loss and the potential need for re-synchronization.
8.2.1 Distributed Random Access Points (DRAP)

A Distributed Random Access Point (DRAP) is a redundant DIMS tune-in point that can, instead of explicitly defining all elements itself, reference elements in scene updates. These references can be used to reduce redundancy (i.e. not defining an element both in a RAP and a SU) or to simply spread the size of the RAP over a period of time.

[image: image1]
Figure xx: Illustration of the DRAP concept.

8.2.1.1 DRAP syntax
The rootmost element in a DRAP document shall be a <drap> element.

Attribute definitions:

updatesrequired="updates-required"
Indicates the number of coming scene updates required. Note: These scene updates are NOT to be applied when tuning in using the DRAP.
SVGTime=”SVG-Time”

Indicates the SVG time the scene created by the random access point should have. Only used when the DRAP is a scene.

The namespace for DRAP is the DIMS namespace http://www.3gpp.org/dims
The drap element may contain one or more getfromupdate child elements. The drap element shall have an SVG child element or an Update child element. No other child elements shall be present.

The getfromupdate element references an element in a scene update and an element in the current document. The element referred to in the update shall replace the element in the DRAP in its entirety.

Attribute definitions:

source="elementid"
Specifies an xml id appearing in a scene update. If the same xml id appears in different scene updates, it shall not make a difference which one the client chooses.

target="elementid"
Specifies an xml id appearing in the DRAP.
8.2.1.2 DRAP Example

An example DRAP is given below. The elements “Element1” to “ElementN” are to be taken from the two scene updates following the random access point.

<?xml version="1.0"?>

<drap xmlns:dims=”www.3gpp.org/dims” updatesrequired=”2” SVGTime=”99”>

 <getfromupdate source=”Element1” target=”Old_Element1”>

 ...

 <getfromupdate source=”ElementN” target=”Old_ElementN”>

 <svg xmlns=”http://www.w3.org/2000/svg”

 version="1.2" baseProfile="tiny"

 viewBox="0 0 30 30">

 <desc>Random access example</desc>

 <g xml:id="Old_Element1"/>

 ...

 <g xml:id="Old_ElementN"/>

 </svg>

</drap>
SU: Update

DRAP: Distributed Random Access Point

The update SU(x+3) is applied in the same way irrespective of if the DRAP was used or not

DRAP

The DRAP can then be used at t=x+2, ie replacing SU(x+2).

The DRAP is sent between SU(x) and SU(x+1)

Element myelement2 is copied from SU(x+2)

Element myelement1 is copied from SU(x+1)

x+3

x+2

x+1

x

time

SU

SU

SU

SU

