3GPP TSG SA4#41 meeting
 Tdoc S4-060637
6-10th November, 2006

Athens, Greece

Source:

Streamezzo
Title:
Issues with REX
Agenda Item:
6, 13.4
Document for:
Discussion and decision
1 Introduction

We have made an initial review of the REX second public draft specification:
http://www.w3.org/TR/rex/
This contribution highlights some new concerns we have on this draft specification. We maintain our claims on the cost of REX, as describe in previous contributions.
2 REX and uDOM
The REX message is based on the DOM specification and not on the uDOM specification. The REX draft specification says in section 4:

“if the previous step produced a node and it is not ignored according to this specification, the event or events initialised in step 1 MUST be dispatched as if by a call to EventTarget.dispatchEvent(). If the event is defined to have side-effect (such as modifying the DOM tree, as is the case with mutation events), this is the moment at which the side-effect MUST occur. Whether the side-effect occurs immediately preceding or following the event being dispatched is specified for each such event.”
The EventTarget.dispatchEvent() is not part of the uDOM specification.

Then mandating REX in DIMS specification would imply that REX cannot be implemented on top of an unmodified uDOM implementation.

Note: Another consequence of this section in the specification that the bubble phase can not be avoided at the rendering stage, which brings some extra cost compared to the LASeR Commands. According to our experiments, depending on the depth of the scene tree, the extra cost can lead to an increase of the execution time for an update by a factor of 3.
3 Changing a value in a list of value

The REX specification does not allow to modify a value in a list attribute (such as animate.begin, which is a list of times, or polygon.points, which is a list of coordinates) either by insert, delete or replace. These functionalities are possible with the LASeR commands.
Use cases for changing a value in a list of value are multiple:
· starting/stopping a media interactively from the server: the server needs to add a value in the begin or end attribute of the media element (to simulate a beginElement() call);

· changing a starting condition in a begin or end attribute: this would mean an indexed replace on a begin or end attribute;

· spatial scalability: adding more points in a polygon to improve the spatial resolution.

The following additions to the REX specification are necessary to achieve this functionality: in order to minimise the additions, we propose to add 3 possible values to the existing attribute attrChange and two new attributes listPosition and listSeparator to the REX event element.
The definitions of the new attributes of the REX event element are:

· listPosition: this attribute defines the (1-based) position of the target value in the list attribute

· listSeparator: this attribute defines the string used for list separator. By default, the list separator is a single white space.

The three additional values for attrChange (which is an existing attribute of the REX event element) are:

· listInsertion: the content of the existing attribute newValue is inserted at position listPosition in the list. This may involve adding a list separator in the string representation of the target list attribute.

· listDeletion: the attribute value at position listPosition is removed from the list. This may involve removing a list separator from the string representation of the target list attribute.

· listModification: the content of the existing attribute newValue replaces the existing value at position listPosition in the list. This may involve adding a list separator in the string representation of the target list attribute.

As with other updates, if listPosition is negative or greater than the size of the list, the message is ignored.
4 Timing model
4.1 Synchronization
The fact that the REX timestamps are located in XML makes it impossible to stream or event synchronize with other media. Timestamps in XML only allow the synchronization within the XML domain, i.e. with SVG/LASeRML content. Other synchronization modules expect timestamps and packets sizes in a binary form:

· 3GP file format: the “frames” or access units are documented in a separate set of tables (the sample table box) where the location, size and duration of each frame is easy to access.

· SAF and RTP: each packet has a header with size and timestamp. Thus the timing module can efficiently get the information necessary to synchronization.

Conversely, by having timestamps in XML, REX does not offer a realistic interface to such synchronization modules:

· Timestamps need to be fetched from XML, thus the synchronization module needs to be extended to be able to parse XML. XML parsing is multiple orders of magnitude more expensive than the reading of size and timestamp information in RTP, SAF, or even in the slightly more complex 3GP file format.

· There is no way to get at the next timestamp in XML without parsing all of the packet between the timestamps. XML parsers are not designed to be able to skip, and if they were, could not just skip any random string. Such skipping would require extending XML, which is probably difficult.

As such, even if REX can be synchronized with a SVG scene, the current definition of REX is incompatible with efficient synchronization with media streams. Worse: REX streams cannot be synchronized with media streams with the current proven and implemented synchronization technologies.

Note: there are two types of synchronization: event synchronization and continuous synchronization (lip-sync). Flash and REX allow event synchronization, i.e. a frame in Flash or REX can be synchronized loosely with a point in a media stream. It is not possible to fake lip-sync with event synchronization, but since Flash is binary, Flash implementations have an easier task at faking lip-sync than XML-based REX would.
Note: being defined with a clear separation between the synchronization layer and the scene layer, and using the MPEG systems decoder model, LASeR has none of these issues.
Note 2: mapping REX events and messages onto LASeR Commands and encoding the result with the LASeR binary format will allow synchronization of a REX stream through the use of the LASeR timing model.
4.2 Streaming

REX documents cannot be streamed. There is no definition of fragmentation or packetization of REX documents. This is also the case for an SVG document.
The lack of any fragmentation or packetization makes it impossible to map a REX document to an RTP stream. As such, REX is not a proper candidate to fulfil the DIMS requirements.

Note: LASeR binary format is designed as a sequence of timed access units, and thus does not have the above issue.

Note 2: mapping REX events and messages onto LASeR Commands and encoding the result with the LASeR binary format will define precisely the packetization and thus provide the relevant mechanism for mapping over RTP.

5 Conclusion
Due to the issues raised above we propose to:

Either rely for the DIMS specification on LASeR Commands and LASeR binary format and wait for REX improvement in W3C for later DIMS specifications.

Or achieve the following tasks:
· Mandate the REX specification in XML with restrictions described in contribution S4-060638.
· Mandate the mapping and encoding of REX in equivalent Laser binary commands for streaming and synchronised scenarii
· Define Additional parameterization to tune the event dispatching overhead of REX.

· Mandate the LASeR Commands in binary and XML
· Improve REX according to section 3 or equivalent during the DIMS specification phase.

· Define the extended uDOM profile necessary for REX.

The group should take into consideration the cost of this second choice and the risk that REX, not been scope for DIMS specific needs, as a draft specification and as a specification not dedicated to SVGT1.2 could evolved independently from 3GPP DIMS’s needs.
