3GPP TSG SA WG4 #41

Tdoc S4 (06)0617

6 - 10 nov, 2006, Athens, GR

Source:
Apple Computer

Title:
On random access and error recovery in DIMS

Document for:
Discussion

Agenda Item:
PSS/DIMS 6/13.4

1 Introduction

We have previously proposed ‘refresh scene’ and ‘rolling random access recovery points’ (R-RAP). In this contribution we show how they are related, and generalize them into the same structures.

This also follows on from a discussion we had about English words ending in RAP, and the possible techniques they might identify; this one explores the technique that is analogous to macroblock spreading in video, which gives continuous refresh or random access. No acronym is offered.

2 Refresh Scene (review)

A ‘refresh scene’ supplies the entire scene, but is only decoded by terminals known to be in ‘error state’ – either following a loss, or after initial tune-in.

3 Rolling Random Access Points (review)

3.1 RRAP Design

In rolling raps, we supply an initial scene, as for refresh scene, but we mark it as ‘incomplete’ pending the arrival of some number of updates. If needed, we place placeholders in the initial scene, and allow the insert/replace commands – which must be in the updates – to do their work.

<scene>

<..drawable stuff />

<group ID=GG/>

<..more stuff../>
</scene>

<update number=’3’>

<..drawable stuff />

<insert or replace command referring to ID=GG>

<..something drawable with ID=xx..>

</insert or replace>

<..more stuff../>
</update>

This has two advantages: we do not need to invent new XML for the forward pointers, and we do not need to have a special processing loop while rolling forward from a DRAP. Instead of saying “turn off the operation of DIMS updates, scan the original scene for forward pointers, find all that they resolve to, and replace them” we simply say “load the scene and do the commands for the indicated distance”.

The only disadvantage I can see is that there may be ‘un-needed’ updates in the roll-forward interval (e.g. elements that are updated more than once). However, if we had been decoding the stream normally we would have had to execute them, and we have to balance that cost against the cost of the search of the initial scene in the given algorithm.

4 Continuous Repair

We now take the idea of a ‘refresh scene’, and we spread it out in time. Instead of supplying the entire scene, we supply some fraction of it. In the stream setup we say “you need N refresh actions in sequence, and the scene will be re-constructed”. The terminal merely has to receive N sequential refresh fractions, and do the updates in them that can be applied, and it is reset.

In order to be effective, each update fraction has to code from the root of the scene graph down, so it can always be instantiated . It is easy to see why – imagine it is the first action taken after a tune-in, when there are no elements in the tree at all.

The question is, can a stream with these characteristics always be constructed? I believe so. In I-frame-only video (e.g. motion JPEG), the rule is “remember the last time that a macroblock was supplied, and re-supply it in a refresh fraction if that gets older than the threshold”. In predicted (B or P frame) video, it is a little worse; the ‘age’ has to follow the prediction vectors; each macroblock gets an age of 1 plus the age of the oldest source on which it draws. When that age hits the threshold, you refresh it with an independently coded (I) macroblock.

Here, we do something similar. Again, nodes that are supplied completely in a ‘refresh fraction’ get an age of 1. Nodes that are added in an update get the age of their oldest parent, which, because updates always update from the root, is the age of their direct parent. This propagates down, when a sub-tree is added.

Let us examine this and how it works.

Consider the following graph. Each label has a single letter for each level in the tree. So the root is ‘a’, its children are ‘aa’, ‘ab’ and so on.

At beginning we supply the scene

root - a

child aa

child aaa

child aab

child ab

At AU 10 we update, adding aba. At AU 20, we update adding abb, aaba, and aabb. The complete graph now is

root - a

child aa

child aaa

child aab

child aaba

child aabb

child ab

child aba

child abb

Let’s now look at a plausible sequence of refresh fractions and updates. We promise a refresh distance of 5 AUs. The ages are shown after each node as an AU count.

AU
Refresh
Update
Ages
1
-
New: a aa ab aaa aab
a0 aa0 ab0 aaa0 aab0
2
-
-
a1 aa1 ab1 aaa1 aab1
3
a aa aaa
-
a0 aa0 ab2 aaa0 aab2
4
-
-
a1 aa1 ab3 aaa1 aab3
5
a aa aab
-
a0 aa0 ab4 aaa1 aab0
6
a ab
-
a0 aa1 ab0 aaa2 aab1
7
-
-
a1 aa2 ab1 aaa3 aab2
8
a aa aaa
-
a0 aa0 ab2 aaa0 aab3
9
-
-
a1 aa1 ab3 aaa0 aab4
10
a aa aab
+ aba
a0 aa0 ab4 aba4 aaa1 aab0
11
a ab aba
-
a0 aa1 ab0 aba0 aaa2 aab1
12
-
-
a1 aa2 ab1 aba1 aaa3 aab2
13
a aa aaa
-
a0 aa0 ab2 aba2 aaa0 aab3
14
-
-
a1 aa1 ab3 aba3 aaa1 aab4
15
a aa aab
-
a0 aa0 ab4 aba4 aaa2 aab0
16
a ab aba
-
a0 aa1 ab0 aba0 aaa3 aab1
17
-
-
a1 aa2 ab1 aba1 aaa4 aab2
18
a aa aaa
-
a0 aa0 ab2 aba2 aaa0 aab3
19
-
-
a1 aa1 ab3 aba3 aaa1 aab4
20
a aa aab
+ aaba,aabb,abb
a0 aa0 ab4 aba4 abb4 aaa2 aab0 aaba0 aabb0
21
a ab aba abb
-
a0 aa1 ab0 aba0 abb0 aaa3 aab1 aaba1 aabb1

Here we can see some interesting moments. In the early stages, the encoder has deliberately spread out the refresh of the new scene, to avoid a large refresh action at time 6. At time 10, aba is added, and it gets the age of its parent (ab, 4), so it gets refreshed at time 11. This is correct; a system tuning in at AU7 would have been unable to apply the update as the parent ab was only refreshed in AU6, and AU7,8,9,10,11 is the promised set of 5 AUs to complete a refresh. A similar action occurs for abb in AU 20, but aaba and aabb are luckily added to a node that is refreshed in the same AU.

Since this is example is so simple, there is sometimes nothing to put in an AU, neither a refresh nor an update. This is unlikely to occur in practice, or if does, the encoder could run a shorter refresh distance (e.g. here refresh in 3 AUs, as there are only 3 ‘leaves’ to the tree). Note that the root of the tree rarely gets very old, which is good – it may be used to contain ‘early information’ about the scene (e.g. a fill color). Whether display occurs during refresh is terminal dependent.

This example does not use ‘placeholder’ nodes to reduce the size of updates.

5 The Repair System

Each access unit, in this design, consists of two portions (one of them may be empty):

a) the ‘refresh fraction’ portion, only decoded in the terminal is known to be in error state

b) the ‘update’ portion, always decoded and applied to the extent possible. ‘Errors’ (updates to non-existent nodes) may occur if the terminal is in error state, but not otherwise.

The refreshed scenes may contain ‘placeholder’ nodes that must be updated by some number of updates. This can help keep the cost of the refreshment low.

An encoder must tell the terminal when error recovery is complete.

The simplest algorithm is to have a value in stream setup of the number of consecutive access units that must be received. This value is composed from two calculations: the number of ‘fractions’ that the complete scene has been divided into, plus the number of updates that must be received to replace ‘placeholders’ in the refreshed scene with true nodes.

Slightly more complex (and probably not worth it), is the possibility that each refresh fraction contain its fractional value, and the terminal sum these until they meet or exceed 1 (100%). Then, in every access unit the encoder also indicates the number of forward update frames needed to replace ‘placeholders’ if scene recovery completed at that AU. Though this would enable shorter recovery in easier parts of the scene, it is more complex.

If the tune-in represented by the maximum sum of these is acceptable anywhere in the stream, it is probably acceptable always to process this long, even if sometimes recovery has completed earlier.

The encoder must keep track of the ‘last refresh AU’ for each node in the tree; updates that add nodes copy this value from the parent into the added nodes. When this value reaches the threshold, then that node is due for refresh. Encoders should also refresh nodes early, to avoid a burst of refresh at the threshold distance after a new scene, refresh scene, or significant update.

6 Conclusion

We propose that fractional repair and rolling RAP make a matched pair of techniques that can be used to provide excellent, ‘continuous’ tune-in and error recovery, with respectable use of bandwidth, and avoiding bandwidth peaks. We are happy to leave to the committee the choices of how detailed the signaling is (in stream or in stream setup).

Apple
1/1
DIMS

