1

3GPP TSG-SA4#41

S4-060591

Athens, Greece

Nov. 6-10, 2006

Agenda item:
7

Source:
Lucent Technologies

Title:
Code Implementation of the Test Conditions
Document for:

Discuss and Approval

Contact:
David Huo [dhuo@lucent.com]

1. Introduction

In SA4#40[2], SQ has agreed to launch the test campaign for the conversational test and agreed on test conditions to be used for the test. The test conditions consist of 4 radio conditions and 8 audio conditions. While the test laboratories should provide the audio conditions during the test, the test bed shall include the appropriate radio conditions as an integrated part of the test bed. The following describes an implementation of the radio test conditions in C++.

2. Radio (or Network) Conditions

It was agreed during the SA4#40, that the following notions are used to indicate the radio conditions:

	Network Condition Number
	Light Loaded Network
	Heavy Loaded Network

	Low Mobility Mobile
	1
	3

	High Mobility Mobile
	2
	4

where definitions are

· Light Loaded Network: 40, or 45, or 60 mobile users per cell

· Heavy Loaded Network: 80, or 100 mobile users per cell

· Low Mobility Mobile: ITU –Channel-Model: PedB3_km or PedA3_km

· High Mobility Mobile: ITU-Channel-Model: VehA30km or Veh120km or PedB30km

The off-line simulation of the radio interface provides different traces for uplink and downlink for the same network condition. The traces are color coded as the following:

	Condition
	1
	2
	3
	4

	Down-link
	Pink
	Lime
	Yellow
	Green

	Up-link
	Gray
	Blue
	
	

Files of the corresponding color will be used for the subjective tests in pairs of uplink and downlink. Thus, 8 combinations of the uplink and the downlink are available. In addition, to reduce the number of test cases, only symmetrical radio conditions are in question for both conversation partners. This leaves the following 4 combinations to be deployed for the test:

	Code
	Down-Link
	Uplink
	Load

	11
	Pink:

PedB3_km+PedA3_km

	Gray:

PedB3_km+PedA3_km

	UE 40+45+60

	22
	Lime:

VehA30km+Veh120km+PedB30km
	Blue:

VehA30km+Veh120km+PedB30km
	UE 40+45+60

	31
	Yellow:

PedB3_km+PedA3_km
	Gray:

PedB3_km+PedA3_km
	UE 80+100

	42
	Green:

VehA30km+Veh120km+PedB30km
	Blue:

VehA30km+Veh120km+PedB30km
	UE 80+100

3. Implementation

The radio conditions are implemented as a C++ class, that is initiated with the given condition number, i.e. 1, 22, 31, or 42. By calling the instance in the class, the packet arrival time (in seconds) and the error flags (1 or 0) are retrieved from storage. The stored values are obtained by transforming the error-delay profiles provided by off-line simulations [3] to arrival time. By circulating the finite traces, an infinite call of the instance is made possible. Thus, it can be left on during the entire conversation.

The code is given verbatim in the following:

//-------------- by David Huo, Lucent Technologies, October 1. 2006----------------

#include<cstdlib>

#include<cstdio>

//==

// Class Providing Arrival Times of Each Packet

//--

//Assumption:

//

Arrived packets are ordered in original sequence: The arrival time returned is

//
 the time between the moment the packet left the transmitter and the moment

//
 when the packet left the reordering buffer of the receiver. The inter-packet time

//
 at the transmitter is 20 ms. The transmission system consists of a uplink, a downlink and

//

a static wired link which introduces only a fixed delay.

//Usage:

//

Declare Data x(index of conditions, fixed delay in ms)

//

Return x.getData(arrive, error), where

//

arriv=arrival time in SECONDS for arrival time, assumed the packet is transmitted every 20 ms

//

error=error flag in binary 0, 1 for error (0:no, 1:yes)

//

x.getNumPkt()=number of packets received or lost

//Assesories:

//

From the foundamental files provided by 3GPP-TSG-RAN-WG1 (54):

//

pink.txt, lime.txt, yellow.txt, green.txt, gray.txt, blue.txt

//

Using Combine() the complete mobile-to-mobile link is prepared as 8 files:

//

//

cond_11, cond_22, cond_31, cond_42

//

//

They must be put into the same folder as the executable of this code, or the

//

corresponding path be prepended to each file.

//

//Parameters:

//

ncond: 11, 22, 31,42 are jitter conditions defined in test plan

//

ncond: 00 corresponds to calibration, i.e. fixed delay only

//

fixed: length of fixed delay in milliseconds

//Exceptions:

//

1: condition index is incorrect

//

2: cannot find the data file

//--

class Data

{

double *sstime, *erflag;

double ctime, slt;

int count, nn, calibration;

public:

Data(int ncond, double fdelay);

~Data();

void GetData(double &arrtm, double &error);

//current packet

int GetNumPkt(){return count;}
//number of packets passed

};

Data::Data(int ncond, double fixed)

{

FILE *fp;

char *file=new char[12];

switch(ncond)//condition number: see test plan for definition

{

case 00: //calibration: no jitter

slt=0.02;

//20 ms inter-packet time

calibration=1;

break;

case 11:// lm+lt (dn) lm (up)

file="cond_11.txt";

break;

case 22:// hm+lt (dn) hm(up)

file="cond_22.txt";

break;

case 31:// lm+ht (dn) lm(up)

file="cond_31.txt";

break;

case 42://hm+ht (dn) hm (up)

file="cond_42.txt";

break;

default:

try{

printf("unknown test condition\n");

throw 1;

}

catch(int i)

{

printf("caught an exception:\t");

printf("%d\n", i);

}

}

if((fp=fopen(file, "r"))==NULL) try{

printf("cannot open the file %s", file);

throw 2;

}

catch(int i)

{

printf("caught an exception:\t");

printf("%d\n", i);

}

//----------

int i;

if(ncond)

{

calibration=0;

nn=0;

double dum;

fseek(fp, 0L, SEEK_SET);
//first read to find range

while(!feof(fp)){

fscanf(fp, "%lf\n", &dum);

++nn;

}

rewind(fp);

sstime=new double[nn];

erflag=new double[nn];

for(i=0; i<nn; i++) fscanf(fp, "%lf %lf", &sstime[i], &erflag[i]);

fclose(fp);

printf("%d original file has %d entries, that is %f minutes\n", ncond, nn, (nn*0.02)/60.);

}else sstime=erflag=new double[1];

count=0;

ctime=fixed;

}

Data::~Data()

{

delete [] sstime;

delete [] erflag;

count=0;

}

void Data::GetData(double &arrtm, double &error)//next availble data: (second, error)

{

if(calibration)

{

arrtm=(ctime+=slt);//add 20 ms=0.02 seconds

error=0.;

}else

{

arrtm=(ctime+=sstime[count%nn])/1000. ;
//output in seconds

error=erflag[count];

}

count++;

}

The underlying files for C11, C22, C32 and C42 will be integrated into the test bed, as part of this code.

4. Recommendation

 The code be used for the test.

5. Reference

[1] SA-060513, Lucent, ” Working Document v.0.0.4”, Sophia Antipolis, Sept.2006
[2] SA-060593, Lucent, ”Test Plan for AMR…”, Athens, Nov, 2006

[3] R1-061097.doc (R1-061028.zip, R1-061070.zip)

