TSG-SA4#40 meeting
Tdoc S4 (06)0443
28 August – 01 September, 2006, Sophia Antipolis, France

Source:
Nokia

Title:
FEC-subsequences
Document for:
Information and Discussion

Agenda Item:
9
1 Introduction

We presented at SA4#39 a mechanism of which we believe it can improve the reproduce video quality in MTSI environments. The concept is known as FEC/subsequencees, and consists of the use of a low framerate “anchor” video stream that is FEC protected. A form of H.264 baseline compliant temporal scalability, known as subsequences, is used to enhance the framerate to a comfortable level. The coded pictures in the subsequences are not FEC protected; therefore, the bandwidth requirements for FEC are reasonable in spite of the considerable quality improvements.

We found (and, at least partly acknowledgd at the MTSI ad hoc) a number of problems with previous simulations. For example, we used only the foreman sequence and not our SA4 sequences, only random IP loss and not 3GPP loss imulator loss, one picture per packet (which is unrealistic over a mobile link), and so forth. Since the MTSI ad hoc, we (that’s primarily our friends at Helsinki University of Technology) have considerably enhanced the packetization software, and run a large amount of simulations. These are believed to be in line with the simulation methods used in the video ad hoc, including the use of the 3GPP channel simulator with the 0.5% and 1% PDU loss PSC bearers, slicing to a useful slice size, FEC compliant with RFC 2733, more accurate tuning of the rate control to fulill the channel, and so on. The most important change is the use of a hard rate control setting intended to minimize delay, and, in practice, disallowing intra/IDR pictures.

Our basic findings are consistent with previous results; namely, the use of FEC-subsequences has advantages over the use of subsequences only, and that is better than simply using slices.

We still do not want to propose any text for the TS, mostly because we are still unsure about a few aspects of the simulations (to be conveyed orally during the meeting), and because we didn’t manage to dream up appropriate text in time for this document.

2 FEC-Subsequences technology

Please see S4-060227

3 Results

We have run results according to simulation conditions closely aligned with S4-060263. In addition, for some simulations we added a 3% IP packet loss rate on top of the 3GPP losses, to reflect a heterogeneous, at ;least partly Internet-based, environment. Slice size was set to 200 bytes (could be optimized further, but that size appears to be a good starting point). Mobile channel conditions (including RoHC simulations, error patterns, etc. etc. from S4-060263, with the exception that we allowed a bit higher delay tolerance (as the loss rates skyrocket with the tight settings of -263. We are still unclear why that happened, and hope to figure something out in real-time during the meeting.
Here are the raw average PSNR results for the test set. Time is running out, so I refrain from a more readable representation in favour of timely document upload. Nevertheless, a few words of interpretation:

· in the vast majority of cases and especially when the error rates go up, FEC/subsequences outperforms the other algorithms
· only ion one case, simple slizes insignificantly outperforms the otheralgorithms

· the higher the error rates get, the more pays error resilience off. In some cases, the improvements are close to 12 dB

\

The filenames of the statistics files (not attached due to their size) are constructed as follows:

sequence_bitrate_errorresilience_IPlossrate_slicesize_Bearer_1.txt, wherein

Sequence denotes the source sequence used (bugs, or stunt_walk_friends)

Bitrate: either 64 or 128, used both as the channel bitrate for the bearer selection and as the maximum video (or video plus FEC) bitrate

ErrorResilience is a single letter. o == no error resilience except slicing and 6% intra, p == use of subsequences, w == subsequences and FEC

IPlossrate is either 0 or 3%

Slicesize is either 200 (bytes) or 50000 (bytes). the latter means in practice one IP packet per coded picture

Bearer: the Stockhammer simulator bearer used

o=without error resilience, p=reference frame, w=FEC;

 0/3=IP loss; 200/50000=slice size; 7/8/2/3=SA4 simulator bearer;

 1=the first iteration of simulation run

bugs128_psnr_o_0_200_7_1.txt
30.0328
bugs128_psnr_p_0_200_7_1.txt
29.3411

bugs128_psnr_w_0_200_7_1.txt
29.8542

bugs128_psnr_o_0_200_8_1.txt
27.8799

bugs128_psnr_p_0_200_8_1.txt
28.4940
bugs128_psnr_w_0_200_8_1.txt
26.9969

bugs128_psnr_o_0_50000_7_1.txt
29.3299

bugs128_psnr_p_0_50000_7_1.txt
28.3576

bugs128_psnr_w_0_50000_7_1.txt
29.8148
bugs128_psnr_o_0_50000_8_1.txt
25.4343

bugs128_psnr_p_0_50000_8_1.txt
25.2057

bugs128_psnr_w_0_50000_8_1.txt
28.0481
bugs128_psnr_o_3_200_7_1.txt
24.5031

bugs128_psnr_p_3_200_7_1.txt
25.7534

bugs128_psnr_w_3_200_7_1.txt
28.2803
bugs128_psnr_o_3_200_8_1.txt
23.1784

bugs128_psnr_p_3_200_8_1.txt
25.3013

bugs128_psnr_w_3_200_8_1.txt
26.6166
bugs128_psnr_o_3_50000_7_1.txt
26.1941

bugs128_psnr_p_3_50000_7_1.txt
25.4953

bugs128_psnr_w_3_50000_7_1.txt
29.5052
bugs128_psnr_o_3_50000_8_1.txt
24.0550

bugs128_psnr_p_3_50000_8_1.txt
24.3170

bugs128_psnr_w_3_50000_8_1.txt
27.5178
stunt128_psnr_o_0_200_7_1.txt
27.3917

stunt128_psnr_p_0_200_7_1.txt
32.9040
stunt128_psnr_w_0_200_7_1.txt
28.4442

stunt128_psnr_o_0_200_8_1.txt
24.0857

stunt128_psnr_p_0_200_8_1.txt
30.7761
stunt128_psnr_w_0_200_8_1.txt
26.7297

stunt128_psnr_o_0_50000_7_1.txt
26.8440

stunt128_psnr_p_0_50000_7_1.txt
27.5852

stunt128_psnr_w_0_50000_7_1.txt
31.7837
stunt128_psnr_o_0_50000_8_1.txt
19.7737

stunt128_psnr_p_0_50000_8_1.txt
19.2735

stunt128_psnr_w_0_50000_8_1.txt
31.4542
stunt128_psnr_o_3_200_7_1.txt
19.8668

stunt128_psnr_p_3_200_7_1.txt
23.5755

stunt128_psnr_w_3_200_7_1.txt
27.0372
stunt128_psnr_o_3_200_8_1.txt
19.4221

stunt128_psnr_p_3_200_8_1.txt
22.9071

stunt128_psnr_w_3_200_8_1.txt
24.4219
stunt128_psnr_o_3_50000_7_1.txt
21.8309

stunt128_psnr_p_3_50000_7_1.txt
23.6802

stunt128_psnr_w_3_50000_7_1.txt
31.1941
stunt128_psnr_o_3_50000_8_1.txt
17.8606

stunt128_psnr_p_3_50000_8_1.txt
18.1313

stunt128_psnr_w_3_50000_8_1.txt
29.5427
stunt64_psnr_o_0_200_2_1.txt
24.3872

stunt64_psnr_p_0_200_2_1.txt
25.5131

stunt64_psnr_w_0_200_2_1.txt
26.1631
stunt64_psnr_o_0_200_3_1.txt
23.0360

stunt64_psnr_p_0_200_3_1.txt
21.9181

stunt64_psnr_w_0_200_3_1.txt
24.8224
stunt64_psnr_o_0_50000_2_1.txt
20.6312

stunt64_psnr_p_0_50000_2_1.txt
25.1422

stunt64_psnr_w_0_50000_2_1.txt
27.2959
stunt64_psnr_o_0_50000_3_1.txt
18.6956

stunt64_psnr_p_0_50000_3_1.txt
19.4738

stunt64_psnr_w_0_50000_3_1.txt
25.2526
stunt64_psnr_o_3_200_2_1.txt
19.0815

stunt64_psnr_p_3_200_2_1.txt
22.2646

stunt64_psnr_w_3_200_2_1.txt
25.0463
stunt64_psnr_o_3_200_3_1.txt
18.8405

stunt64_psnr_p_3_200_3_1.txt
19.0564

stunt64_psnr_w_3_200_3_1.txt
24.0335
stunt64_psnr_o_3_50000_2_1.txt
18.5643

stunt64_psnr_p_3_50000_2_1.txt
22.7662

stunt64_psnr_w_3_50000_2_1.txt
26.6704
stunt64_psnr_o_3_50000_3_1.txt
17.9363

stunt64_psnr_p_3_50000_3_1.txt
18.6087
stunt64_psnr_w_3_50000_3_1.txt
24.6563
4 Subjective results
Admittedly, the video below represent a case where FEC/subsequences work particularly well. Nevertheless, the results are so impressive, even subjectively, that I cannot refrain from showing them. From left to right: no error resilience bit 6% intra macroblock refresh rate, subsequences Ppp, and FEC/subsequences. Channel bitrate 129 kbit/s, Sequence stunt_walk_friends, Bearer #8 (1% PDU loss), and no IP losses. The rightmost video lags behind, as the FEC recovers pictures that would otherwise be lost.

[image: image1.emf]stunt128_50000_8_

1c.mov

� Stephan Wenger, stewe@stewe.org

_1217795464/stunt128_50000_8_1c.mov

