3GPP TSG SA4#40 meeting
 Tdoc S4-060405
August 28-September 01, 2006

Sophia Antipolis, France

Source:
Streamezzo
Title:
Append Mode for DIMS
Document for:
Approval

Agenda:
13.4
1 Introduction

The append mode was proposed in Bordeaux as part of the LASeR based specification.

The comparison document S4-060203 clearly indicates the need of this feature which is missing in the other proposal.

The document S4-AHP282 describes the append mode in depth.
During the adhoc meeting we spent significant time to understand both the append mode and the new proposal: the update element

After a review of both proposals, this document compares the features of the a element used with the append mode, and the features of the update element proposed in S4-AHP287
2 Requirement

The problem that the two technologies are trying to solve is the following. A mobile service may be delivered in multiple pieces –or segments as defined in the LASeR specification–. Each piece or segment may be delivered by a different transport mechanism. There is a need for a means to reconnect each segment with the relevant service.
There are two approaches to solve this connection problem:

· the service (a set of concatenated segments) sends a request for the next segment of the service

· the segment contains a way to identify the service it should be concatenated to.

Both proposals use the first option.

3 Summary of each specification

3.1 append mode / a element
The append mode is composed of:

· The usage of the a element for both receiving a new scene and receiving a new set of updates
· The definition of the newSceneIndicator bit which indicates that the segment is a new scene or an update.

The linking from the service to the next segment is done through an <a> element. The service contains an <a> element which gets activated by any appropriate mean. When using HTTP as transport mechanism, a GET request is sent to the server, using the URL in the xlink:href attribute of the <a> element. The server may then decide whether to send a new segment or a new service (i.e. new scene): this flexibility is crucial for each service in which the logic is server-centric and in general for easy service design.

If the server sends a new service/new scene, two things are important:

· the terminal should be able to go on playing the previous service while waiting for the next service/scene to come, including receiving progressively downloaded or streamed media related to an earlier request, in order to alleviate the impression of waiting

· the terminal should be able to switch to the new service in the best possible conditions, i.e. as soon as it receives the first bytes of the new service, the terminal should be able to recognize that the incoming content is a new service, and that every resource related to the previous service can be reclaimed. It should not have to wait for the first scene packet, which for multiplexing reasons could arrive after some media. The new sceneIndicator bit, which is the basis of the append mode optimisation, allows the terminal to optimally switch, while still allowing the server to decide about sending a segment or a new service.
If the server sends a set of updates to a service:

The same mechanism is used to link a new segment to a current related service. Contrary to what has been said at the adhoc in Cupertino, the use of the” a element” is perfectly legal. There is nothing in the definition of the a element that prohibits the use of the a element as described in the append mode.

There is no practical use for different linking mechanisms and there is no need for defining an extension to the SVG scene as the a element is already part of the SVG scene description..

The scene time within the new segment is connected to the current scene time of the service through section 6.3 of the LASeR specification as explained in the timing model section below.

3.2 <update> element

The linking from the service to the next segment is done through an <update> element. The service contains an <update> element which gets activated by any appropriate mean. When using HTTP as transport mechanism, a GET request is sent to the server, using the URL in the xlink:href attribute of the <update> element. The server can then only send a new segment.

Sending a new service requires the use of an <a> element.

This is incompatible with scenarios where the new segment could be either an update or a new scene.
The scene time is reconnected by the begin attribute of the <update> element

One strong statement during the Cupertino meeting is that SVG scene extension should be avoided as much as possible in particular when other existing mechanisms could be reused.

The update element is a new element, which is incompatible with HTML and SVG, in the sense that it duplicates existing functionality.
The usage of the “a” as per the append is an existing alternative that does not request a scene extension.

Another concern with the update element approach is that the scene level and the update level are not orthogonal anymore and this proposal breaks the creation of a DIMS specification based on a layered approach which was strongly requested by the group.
4 Technical Comparison

4.1 Timing Model

The <update> element has a begin attribute which is only useful when using the meta box of a 3GP file together with a stream of updates stored in a 3GP track. For any other scenarios, the execution of the update element will produce content that will always arrive late (by the network delivery delay), whereas the scene time reconnection of the append mode is designed to avoid this.

The timing model applicable to the append mode is that of section 6.3 of the LASeR specification:
When a scene segment does not start with a NewScene, the scene time is not reset to 0 and let Ts0 be the scene time within the initial scene segment upon reception of the first access unit of that new scene segment. In such a scene segment, the scene time of a LASeR access unit is defined as the difference between the media time of that access unit and the media time of the first access unit of that scene segment incremented by Ts0. Note: the determination of Ts0 will vary if there is any variation in delivery times between terminals.

[image: image1.emf]NewScene

x

sceneTime(x) = mediaTime(x) –mediaTime(NewScene)

Within a scene segment

NewScene

x

sceneTime(y) = T

s0

With more scene segments

y

z

First scene segment

Second scene segment

T

s0

sceneTime(z) = T

s0

+ mediaTime(z) –mediaTime(y)

Figure 1 — scene time and scene segments
As a result, the append mode makes new segments impervious to transport delays.
4.2 Usage in Broadcast Scenarios

The following table in the draft TS is irrelevant for the following reasons.
	Updating the current scene or opening a new scene?
	First data of the update stream is a new or refresh scene, or a difference?
	Terminal behaviour

	Update
	New/Refresh
	Replace the current scene within the current session

	Update
	Scene Difference
	Apply the difference to current scene

	Open New
	New/Refresh
	Tune in to the new session, if necessary waiting for a random access point

	Open New
	Scene Difference
	

This table seems to indicate that there is a need for the difference between “a” and “update” to be able to choose the appropriate behaviour in broadcast when the first packet of a stream is an update and not a new scene. It is incorrect and results from a confusion between layers: this information related to delivery should be in the delivery layer and not in the media type.

The information required to tune in is the RAP bit only:

· for a new service,
· the first packet is a NewScene (or equivalent) and the RAP bit is set

· when tuning in the middle of a stream, the RAP bit is set only on RefreshScene (or equivalent)

· for a new segment of the same service

· the first packet is any update (not a NewScene) and the RAP bit is set because this packet is a valid entry point into the stream. This may seem confusing, but it derives from the strict application of the definition of random access point.

· in the middle of a segment, the RAP bit is set only on RefreshScene (or equivalent), same as for a new service.

As a result, both technologies can deal with broadcast and segments with no problem.
5 Maturity
The append mode to be used together with the a element is a solution which is implemented in terminals and servers in production today, and many services, including mobile TV services, make use of append/a for optimal service efficiency. This technology is validated and working in the field. It is proven.

The update element has been proposed for the first time in July 2006. It was not present in the MORE proposal before. The technology has not been implemented, and beyond high level explanations, there is no proof that it does what is claimed. In particular we have strong concerns regarding the timing issue and the fact that the update element could be useful only for specific scenarios and not as a general mechanism.
6 Conclusion

We have summarised the comparison in the next table:
	feature
	the append mode with the a element
	the update element

	maturity
	mature, validated technology, implemented in terminals, servers/applications and used in existing services
	proposal, neither validated nor implemented

	reuse
	reuses existing standards
	defines new incompatible technology

	flexibility
	allows the server/application the flexibility of choosing the optimal solution between new segment and new service
	does not allow flexibility to the server/application

	timing
	scene time reconnection between segment is well defined and avoids delivery delays
	scene time reconnection between segments is sensitive to delivery delays

	broadcast
	supports broadcast and tune in
	supports broadcast and tune in

We strongly recommend to use the new scene indicator for the DIMS specification.

7 Text for DIMS specification
7.1 Linking

Linking between the current service and other content is done through the SVG <a> element, in particular when linking to a new segment, i.e. a new set of updates not starting with a new scene.
7.2 Segment Type Signalling
DIMS defines a way to partition scenes into incremental scene segments, allowing services to be built of different scene segments, the first scene segment containing a NewScene update, having the newSceneIndicator bit set, and the other scene segments not starting with a NewScene update, and being designed as addition to the first scene segment.

newSceneIndicator: this Boolean indicates if this scene segment starts with a NewScene command or a RefreshScene command. When it is set, the first LASeR command in this scene segment shall be a NewScene or a RefreshScene; otherwise, the first LASeR command in this scene segment shall be neither a NewScene nor a RefreshScene.

_1183893250.ppt

NewScene

x

sceneTime(x) = mediaTime(x) – mediaTime(NewScene)

Within a scene segment

NewScene

x

sceneTime(y) = Ts0

With more scene segments

y

z

First scene segment

Second scene segment

Ts0

sceneTime(z) = Ts0 + mediaTime(z) – mediaTime(y)

