3GPP TSG SA4#39 meeting

 Tdoc S4-060204
May 15-19, 2006

Dallas, USA

Source:
Streamezzo, ENST, ETRI
Title:
LASeR/DIMS implementations
Document for:
Information
Agenda Item:
13.3
1. introduction
In the call for proposal and the selection criteria 3GPP SA4 has requested information on proof of implementation of the technical candidates.
This contribution gives an overview of some existing implementations of the MPEG4 part 20 candidates for DIMS.

2. MPEG reference software
2.1 LASeR and SAF Reference Software overview

The LASeR and SAF reference software is a complete implementation of ISO/IEC 14496-20. It may be used under the terms of the ISO copyright licence (see below), which basically says you can used it freely for any purposes in products compliant with the standard.
The reference software is currently under editing to include the modification provided in the corrigendum and the reference software for the 1st amendment is ongoing.

The JAR size of the last released version of the LASeR reference software, non optimized, is about 110K.
2.2 Description

The software is written in Java and is available as source code. An encoder, decoder and media packager are available on the J2SE platform (tested with JDK1.4.2). A decoder and compositor are available on the J2ME platform (MIDP2.0, tested with WTK21).
The J2SE encoder takes an XML representation of the LASeR and SAF content (with pointers to already encoded media), and encodes it to LASeR (binary) and media streams, packaged into SAF packets.

The J2SE decoder takes a SAF packet stream, and decodes it into an XML representation of the LASeR and SAF content.

[image: image1.png]
The J2SE media packager takes already encoded media streams (in MP4/3GP file format), wraps these streams in SAF and multiplex them with an already encoded scene.

[image: image2.png]
The J2ME player has been tested on Nokia 66x0 phones. By default, it reads a file top.lsr in its resource directory and presents it.

3. ENST implementation: LASeR support in GPAC Framework
3.1 Introduction

GPAC is an R&D multimedia framework developed at ENST, leading French Telecommunications University in Paris, and distributed under the LGPL license. Its main features cover:

· Advanced Rich Media technologies exploration, including coverage of scene representation media standards such as MPEG-4, VRML/X3D and W3C SVG, oriented toward enhancement of audio-visual content, with a strong broadcast/streaming design,

· Media delivery standards such as HTTP/FTP, RTP/RTSP, ISMA and 3GPP,

· A modular architecture for media codecs (MPEG 1-2-4 audio and video, AMR/AMR-WB, H263, H264-AVC, …), scene codecs (MPEG-4 BIFS, MPEG-4 LASeR, 3GPP Timed Text),

· Authoring tools for scene encoding, packaging and delivery.

GPAC's architecture is based on the MPEG-4 Systems standard. It has been designed to support any kind of scene description languages, with clear separations between the loading layers (XML or text parsers, binary decoders), the execution layers (DOM Tree handling or similar, application engines such as ECMAScript) and the composition layer (audio-visual rendering). This allows the framework to easily support new scene description languages or coded representation (binary XML, GZip, etc...).

3.2 SVG Support

As part of its research activities, ENST has been involved in the SVG 1.2 standardization process since 2004, and has in parallel added support of SVG 1.1 Mobile profile in the GPAC framework, as well as some features of SVG 1.2 Tiny. This support is an ongoing effort, and is not as stable or as complete as the MPEG-4 BIFS one, the historical scene description standard used in GPAC. The framework however supports new media features of SVG 1.2, audio and video elements as well as the discard element. Parsing is done through a simple SAX parser, and supports GZip'ed SVG with progressive loading and rendering from local or remote source.

3.3 LASeR Support

As part of its research activities, ENST has long been involved in the MPEG standardization process, and has actively participated in the development of MPEG-4 BIFS, MPEG-21 DIA and MPEG-4 LASeR technologies. As part of the LASeR activity, ENST has added in GPAC support for encoding, decoding and playback of LASeR content. The compression modules have been developed without any modification of the SVG rendering and tree management modules. As far as our project is concerned (given the implemented features of both SVG and LASeR in GPAC), the implementation is a proof of compatibility between LASeR and SVG.

4. ETRI implementation

The purpose of LASeR implementation in ETRI is to examine the performance of LASeR decoder on mobile phone in Korea. In this section, we will explain what kinds of mobile terminal are used and what the architecture of software is in mobile terminal. Finally, conclusion follows with our results of the implementation.
4.1 Terminal environment

As described in Table 1, we have chosen the high performance mobile terminal since LASeR decoder was implemented in Java.

	Model
	Samsung SCH-B250
	Samsung SCH-V770

	Picture
	[image: image3.emf]

	[image: image4.emf]

	Virtual Machine
	WIPI 2.0 for SK
	WIPI 2.0 for SK

	CPU
	MSM6500 (Core: ARM 9)
	MSM6500 (Core: ARM 9)

	LCD Size
	240 x 320
	240 x 320

	Heap memory
	4,095 KB
	6,143 KB

	Sound
	40 Poly
	40 Poly

	Others
	Satellite DMB
	10 megapixel carmera

Table 1. Specification of mobile Terminals

4.2 Software architecture
In Korea, we have adopted WIPI (Wireless Internet Platform for Interoperability) as a virtual machine on the mobile terminals. WIPI is common platform envisioned by the Korean Ministry of Information and Communications for running mobile applications on any handset independent to the vendor [1]. WIPI serves as a backbone for content providers to develop applications that run seamlessly on any mobile platform. Figure 1 shows the general architecture of WIPI and where the LASeR implementation is placed.

The general software modules of WIPI are on the skyblue background. The Handset hardware and Native systems software module in the lowest layer is dependent on the access technology in use and the corresponding platform of choice, such as WinCE, REX/DMSS, or other platforms supported by WIPI Handset Adaptation Layer (HAL). The HAL provides a common interface to underlying hardware devices and mobile platforms and WIPI runtime engine provides the execution environment for WIPI applications. This runtime engine includes the linker/loader, memory manager, garbage collector, thread manager, synchronization manager and runtime library. WIPI basic API and extended API support two kinds of libraries, C libraries and Java libraries.

Application modules on the green background are implemented using WIPI APIs. The LASeR application takes its position on application layer. The LASeR application is constituted two components, the User Interface and the LASeR player. The User Interface provides an interface to choose LASeR contents. The LASeR player decodes LASeR binary representations and is rendering accoding to the decoded results.
[image: image5.emf]

Figure 1. Software Architecutre of the ETRI Implementation

4.3 Results

The ETRI LASeR implementation is based on LASeR Utility Software [2]. As we explained in the previous section, the LASeR Utility Software has been modified for applying to the WIPI platform and we add the user interface for convenient. Also, some code optimizations have been maded for improving the performance. Figure 2 provides some screenshots from the LASeR implemtation.

[image: image6.emf]

Figure 2. Screenshots from the LASeR Implementation

5. Streamezzo implementations

Streamezzo has developed LASeR-based solutions since 2004 and is currently updating its product to ensure comformance with MPEG4 Part 20 and SVGTiny specifications.
5.1 LASeR CD

The initial Streamezzo’s product development was based on the LASeR FCD specification (Final Committee Draft).

[image: image9.png]
[image: image7]
A number of elements have not changed between the FCD stage and the FDIS stage of the specification, then there implementations are valid.

The identical elements to the FDIS specification are:

· SAF

· LASeR command

· Append mode
· The SVGTiny 1.2 subset that was at this time reused in the LASeR specification.

5.2 LASeR FDIS implementation
Streamezzo has released a LASeR FDIS implementation that includes the corrigendum.

Compared to the above implementation the stabe and valid implemented elements are:
· The previous one.

· The binary format

· The scene extensions.

Note: A demonstration can be presented.
5.3 Dual LASeR/SVGT FDIS Implementation

The LASeR component part of the Streamezzo RichMedia Engine fully implements the LASeR format and execution model.

The SVG component part of the Streamezzo Rich-Media Engine is a subset of SVGT1.2 (features not stable have been excluded, estimation of 80% of compliancy with the estimated final specification as well as the uDOM)
We describe only these two parts of Streamezzo’s product architecture.
The LASeR and SVG format have enough in common to gather some processes and structures.

The LASeR and SVG format common features include:

· A similar execution model. The LASeR execution model is more complex than the SVG’ one. It includes extra features like scene updates that cannot be found in SVG. The LASeR execution model will be used for SVG scenes in the Streamezzo RichMedia Engine because the LASeR specific steps of the execution model can be easily discarded while executing a SVG scene.

· Similar element definitions. The LASeR format includes the SVG format and the LASeR extensions are comparatively small. The graphic rendering constraints are very similar. The differences are easily managed, allowing the LASeR and SVG engine to share the same scene graph component.

The LASeR and SVG component input format are really different:

· SVG is a XML based format,

· LASeR is a binary based format, built upon the binary SAF transport layer.

The RME architecture must be designed in order to clearly separate the input formats.

[image: image8.emf]SVG

LASeR

SVG

parser

XML

parser

LASeR

binParser

SAF

layer

Scene Graph

execution model

Render Graph

composition

rendering

Screen device

Authoring

API

SVG/LASeR enabled component architecture

The SVG/LASeR enabled component includes the following common objects/structures:

· The Scene Graph: this object is the DOM representation of the current scene. It arranges all the defined nodes and their attributes as defined in the content. The Scene Graph can be created by the SVG parser or the LASeR binary parser. The execution model process step that is applied to the Scene Graph is the composition step.

· The Render Graph: this is a more graphic representation of the current scene. It arranges the graphic and device related objects. The Render Graph is computed during command execution and composition steps of the execution model. The graphic output of the Streamezzo RME is built with the render graph at the rendering step of the execution model. The Render Graph is a structure that is necessary for optimization as well as for computing presentation values for the SVG attributes. The rendering step will be done through a Renderer object. This Renderer object must be able to draw the LASeR/SVG classes of objects (paths, complex text, bitmaps,…)

The SVG/LASeR enabled component uses the LASeR execution model described in document.

It relies on the following steps on a LASeR content:

1. Compute the new scene time Ts for the current frame

2. Decoding of any LASeR AU with a presentation time below or equal to Ts, and not yet presented in earlier frames

3. Execution of LASeR Commands from:

a. script elements activated at the previous frame

b. decoded LASeR AUs not yet presented in earlier frames

4. Event processing and timing resolution: in this phase, all events (DOM, SVG or LASeR) are processed and all begin and end times that can be resolved, are resolved

5. Fetching of any decoded media AU used in active media objects with a presentation time below or equal to Ts, and not yet presented in earlier frames

6. Audio and visual rendering of the current scene state according to the SVG rendering model

The RichMedia Engine should consider SVG content as a LASeR content in a single uncompressed AU, e.g. the insertion commands of a SVG content must be executed in a single step.

The execution model for SVG content discards step 2. Step 3 is only the decoding of XML content and the application of the new scene in the Scene Graph.

The Scene Graph structure is the DOM representation of the SVG/LASeR content. The elements and value present in this graph are those set by the content definition. The application of inheritance, animate and set nodes is rather reported in the Render Graph element.

The Scene Graph, as a SVG/LASeR document DOM representation, is a graph of SVG/LASeR elements with a SVG node as the root node.

5.4 Dual LASeR Amendment 1/SVGT1.2 Implementation
Streamezzo intends to release a complete dual implementation of MPEG-4 part 20 Amendment 1 and SVGT1.2 specification when both specifications will be finalized, estimated in Q3 2006.
6. Other implementations

We are aware of other LASeR based implementations but companies are not ready to disclose it in a 3GPP contribution.

7. Conclusion
We ask SA4 to acknowledge the existence of multiple implementations of LASeR technologies as standalone or dual implementations (along with SVG Tiny client).

_1208618591.ppt

SVG

LASeR

	SVG

	parser

XML

parser

	LASeR

	binParser

SAF

layer

execution model

composition

rendering

Screen device

Authoring

API

Scene Graph

Render Graph

