TSG SA4#38 meeting
Tdoc S4 060055
13-17 February, 2006, Rennes, France

Source:

Streamezzo,
Title:
SAF comparison to other formats
Document for:
Discussion and decision

Agenda Item:
13.4

[image: image7.emf]

1. Introduction
1.1. Purpose of the document
The aim of this document is to compare SAF with others existing streams aggregation techniques present in 3GPP.

Existing streams aggregation techniques present in 3GPP are:
1. The 3GPP File Format when optimized for Progressive Download (i.e. where the media data are interleaved and the meta-data are incrementally fragmented).
2. The "data" URL scheme specified in RFC 2397 that allows the inclusion of small media data items as "immediate" data inside an SVG description or a MIME Multipart message.
3. Streaming of media tracks from 3GPP File Format in one or several RTP streams based on the RTP packetization scheme defined in RTP Hint Track(s).

2. Presentation

2.1. SAF

The Simple Aggregation Format (SAF) defines the binary representation of a compound data stream composed of different data elementary streams (ES) such as LASeR scene description, video, audio, image, font, and metadata streams. Data from these various data elementary streams result in one SAF stream by multiplexing them for simple, efficient and synchronous delivery (cf clause 7 of ISO/IEC 14496-20).
2.2. 3GPP File Format: 3GP
The 3GPP File Format (3GP) is an instance of the ISO base media file format [ISO 14496-12]. 3GP contains data in a structured way. 3GP can contain timing, structure and media data for multimedia streams. 3GP is used by MMS and PSS (cf [TS 26.244] / Introduction) for timed visual and aural multimedia
2.3. "data" URL scheme

The "data" URL scheme, defined in [RFC 2397], allows inclusion of small data items as "immediate" data, as if it had been included externally.

· SVG reuses the "data" URL scheme to embed base64-encoded raster images in the SVG document instead of referencing externally the same images.
· MIME multipart messages reuse the "data" URL scheme for aggregating media content in one text file.
3. Context for adding SAF in 3GPP
The addition of SAF enables to improve the user experience on specific scenario that may be listed as follows:
1. Reception of a message : it is related to MMS

2. Reception of a broadcast session announcements or improvements: it is related to MBMS/FLUTE

3. Rich Media Browsing : it is related to PSS, however PSS is defined only to describe an implementation of the delivery of content via streaming functions; no browsing scenario on Rich Media scenes using the delivery of composite multimedia scenes has been defined by PSS. DIMS proposes some concepts on this subject but the implication of PSS documents are not well defined (e.g., impact on the TS 26.233 General Description of PSS).
4. Streaming of contents over 3G networks: it is related to the use of RTP within PSS.
5. Streaming of contents over multicast/broadcast networks: it is related to the use of RTP within MBMS.

1, 2 and 3 belong to download or progressive download use cases.

4 and 5 belong to streaming use cases.

4. SAF as an improvement of 3GP
4.1. Presentation of use cases
Four use cases are considered in this part to study the benefits of SAF to improve the current 3GP specifications:

1. Simple download: the file of a multimedia presentation is downloaded with no need to play the content during the download of the file.
2. Progressive download: the content may be played during its download. Two delivery scenarios are possible depending on the scene description :

a. Without dynamic aggregation: The multimedia presentation to download is called “predictable” and does not depend on interactions of the user. So downloading it consists in downloading its file with a Progressive-download profile. The structure of the file can use :
i. either a basic movie (i.e. ‘moov’ atom) with interleaved media data,
ii. or a set of movie fragments (i.e. ‘moof’ atoms).
b. With dynamic aggregation: downloading the multimedia presentation by aggregating dynamically the right set of elementary streams at the right time is required because of interactive rich media browsing features. These features make the presentation to download so called “unpredictable”.
c. Of live streams: the processing of live streams when the size and number of future frames is unknown is of similar difficulty as dynamic aggregation.

3. Interaction with static scenes: the user can switch from several static user interface screens, all of them being composed of one scene description access unit and several still pictures.
4. The limitations of the bytecode footprint: in the particular (but strategic in mobile phones industry) case of Java based client terminals, we study if SAF can help to decrease the Java bytecode footprint of the client application.
4.2. Size of the ‘moov’ atom

Because some arguments are based on the comparison with moov atom size overhead, the Table 1 provides details about the size of the moov atom in a 3GP file.
	Atom types
	Comments
	Sizes

	
	
	Header
	Content

	ftyp
	
	
	
	
	
	
	8
	12

	moov
	
	
	
	
	
	
	8
	-

	
	mvhd
	
	
	
	
	version 0
	12
	96

	
	trak
	
	
	
	
	
	8
	-

	
	
	tkhd
	
	
	
	version 0
	12
	80

	
	
	tref
	
	
	
	None
	-
	-

	
	
	edts
	
	
	
	None
	-
	-

	
	
	
	elst
	
	
	None
	-
	-

	
	
	mdia
	
	
	
	
	8
	-

	
	
	
	mdhd
	
	
	
	12
	20

	
	
	
	hdlr
	
	
	no string name
	12
	20

	
	
	
	minf
	
	
	
	8
	

	
	
	
	
	vmhd
	
	
	12
	8

	
	
	
	
	smhd
	
	
	12
	4

	
	
	
	
	hmhd
	
	None
	-
	-

	
	
	
	
	nmhd
	
	None
	-
	-

	
	
	
	
	dinf
	
	
	8
	-

	
	
	
	
	
	dref
	
	12
	-

	
	
	
	
	stbl
	
	
	8
	-

	
	
	
	
	
	stsd
	one entry only
	12
	V: 44

A: 24

	
	
	
	
	
	stts
	
	12
	V: 4+(N_video x 8)

A: 4+(N_audio x 8)

 (see note 2)

	
	
	
	
	
	ctts
	None
	-
	-

	
	
	
	
	
	stsc
	- interleaved data

- one of the tracks has

variable chunk lengths

(see note 1)
	12

	V: 2x12 +4 = 28

A: (1/depth x dur)x12 + 4

 (see note 2)

	
	
	
	
	
	stsz
	- several different sizes
	12
	V: N_video x 4+8

A: N_audio x 4+8

(see note 2)

	
	
	
	
	
	stco
	interleaved data

num_chuns = dur x 1/depth
	12

	(dur x 1/depth)x4 + 4

(see note 1)

	
	
	
	
	
	stss
	None
	-
	-

	NOTE 1 – Hypothesis

- Content with audio and video tracks

- Tracks are interleaved

- The ‘moov’ size is minimized with a constant length of video chunks, but the audio chunks have an alternatively (+/- 1) different length value due to the constraint of synchronization.

- All sample are “sync”, so no need of ‘stss’

NOTE 2 – Parameters:

N_video: sample count of the video track

N_audio: sample count of the audio track

dur: duration of the content

depth: Interleaved depth (0.5 sec).

Table 1 : Details about size of moov atom
4.3. Size of the SAF headers
For similar comparison reasons, we provide below, the overhead due to the SAF headers for N access units:
· 13 + 10 + 10 x N
4.4. Use case 1: simple download
This is the typical case of content downloading services for music, movies and others.

For the same content, the Figure 1 shows that the SAF overhead is consistantly 20 % smaller than the ‘moov’ overhead. This 20 % represent ~100 kbytes for 15 minutes of content, i.e. ~13 secs of download time at 64 kbps.
	Conclusions in this case:

· SAF is better than 3GP in this use case but the gain of headers overhead is small

[image: image1.emf]SAF versus 3GP 'moov' overhead

video 15 fps - audio 32 khz - interleave depth 0,5 sec with 'moov'

0

100

200

300

400

500

600

0,5 5 10 15

duration of content (min)

overhead (kbytes)

3GP 'moov'

SAF

Figure 1 : SAF versus 3GP headers size overhead
4.5. Use case 2: progressive download

4.5.1. Without dynamic aggregation:

4.5.1.1 With basic movie (one ‘moov’ atom)

From the Table 1, we can estimate the size of ‘moov’ atom and the initial latency on a network bandwidth due to the initial download of ‘moov’ atom before starting to play the first access unit.
Figure 2 shows the evolution of this latency depending of the duration of the content:
· More than 1 minute of latency is necessary for 15 minutes of content when no latency with SAF would be required for downloading only the first ~30 bytes.

[image: image2.emf]Initial latency due to the downloading of 'moov' atom

network 64 kbps - video 15 fps - audio 32 khz -

interleave_depth 0,5 sec

0

10

20

30

40

50

60

70

0,5 5 10 15

content duration (min)

latency (sec)

latency (sec)

Figure 2 : initial latency with 'moov' atom

	Conclusions in this case:

· SAF significantly minimize initial latency.

· 3GP files using ‘moov’ boxes induce significant initial latency.

4.5.1.2 With movie fragments (a set of ‘moof’ atoms)

It’s necessary to check now what happens if movie fragments (a set of ‘moof’ atoms) are used instead of a single movie (‘moov’) atom.
A new parameter must be considered: the inter-moofs duration that fixes the granularity of consecutive ‘moof’ atoms.

For a number of N_Aus access units, N_tracks tracks and N_moofs ‘moof’ atoms in the content, the overhead due to the ‘moof’ atoms sizes is:

· (14 + 60 x N_tracks) x N_moofs + 16 x N_Aus

As shown by the Figure 5 with 30 seconds of a typical audio/video content, the gain of headers size overhead due to SAF can be only ~4 kbytes, what is not relevant (less than 1 sec of download for any network with a bandwith < 32 kbps).
	Conclusions in this case:

· SAF is better than 3GP files using ‘moof’ boxes, but the difference is not significant.

4.5.2. With dynamic aggregation:

This case happens for mobiles services with rich media browsing. The downloaded content depends deeply on the interactions of the user that are not predictable. That’s why the rich media server must aggregate dynamically the content in response to the user requests when browsing the content on the terminal.
By consequence, the question here is the following one:
· Can the rich media server produce dynamically a bitstream compliant with the current 3GP specifications and satisfy basic requirements of quality?
Example:

The Error! Reference source not found. illustrates an application where the user can switch from several subtitles languages as he is watching TV on his mobile. We want to start the download of the selected Timed Text stream at a selective unpredictable time when the request 2 is launched.
[image: image3.wmf]audio track

video track

timed text track 1

timed text track n

timed text track

i

. . .

. . .

LASeR track

3GP File Format

audio track

video track

timed text track

i

LASeR track

TIME=0

User Interaction

TIME

request 2

request 1

}

}

DYNAMIC

SERVER

CLIENT

DELIVERY

Figure 3 : downloading only the selected Timed Text stream at the right time

The first Timed Text data sample that should be sent is the one with its CTS being the closest one to the CTS of the current video frame that is sent when the user does his request 2.

Using ‘moov’ based 3GP file is out of scope here because it does not enable the dynamic aggregation of the Timed Text stream as soon as this stream is not declared within the initial ‘moov’ atom (declaring only audio and video tracks). So only a ‘moof’ based 3GP file can be considered.
Problem 1: Latency

As illustrated in the Error! Reference source not found., downloading data through a 3GP bitstream introduces latency just after the user interaction to choose his language. The reason of this latency is that all the media data referenced by the last received ‘moof’ atom must be transmitted to the receiver before sending a new ‘moof’ containing the Timed Text track interleaved with audio and video tracks.

Such latency is not present with SAF: the server can close as soon as it receives the request_2 the current SAF packet and create a new one with the right first Timed Text sample.

[image: image4.wmf]DYNAMIC

SERVER

CLIENT

request 1

request 2

L

ASeR

A

udio

V

ideo

L/A/V

A/V

moov

mdat

moof_1

mdat

moof_2

mdat

A/V/

TText

within

3GP FF

 bitstream

A/V

SAF header

A/V/

TText

SAF payload

SAF header

SAF payload

within a

SAF

 bitstream

L/A/V

SAF header

SAF payload

Aggregation of a

T

imed

Text

 stream

User Interaction

latency

 SAF

 3GP FF

moof

mfhd

traf

tfhd

trun

8

16

8

40

12

(16 x sample_count)

SAF Pckt header

SAF AU header

8

2

> 84 bytes

10 bytes

overhead

Figure 4 : latency of a 3GP ‘moof’ solution compared to SAF
Problem 2: Headers size overhead

For reducing the latency exposed in the previous part with a 3GP ‘moof’ bitstream, the only solution is to decrease the time durations between all consecutive ‘moof’ atoms : any ‘moof’ atom can be seen here as a “random access point” in the 3GP bitstream.
The effect of decreasing the inter ‘moof’ atoms duration on the headers size overhead is illustrated on the Figure 5 : for ½ sec of latency, there is an overhead of 11 kbytes for 30 sec, i.e. 3 kbps.

· 3 kbps ~ 3 % of a 96 kbps bandwith => acceptable for UMTS networks.

· 3 kbps ~ 5 % of a 64 kbps bandwith => significant for EDGE networks.
· 3 kbps ~ 10 % of a 32 kbps bandwith => damageable for GPRS networks.
	Conclusions in this case:

· For avoiding significant latency (i.e. ½ sec compared to the network round trip of ~3 secs) after unpredictable user requests, SAF is relevant for 64 kbps networks (e.g. current EDGE generation) and significantly relevant for 32 kps networks (e.g. GRPS generation).

[image: image5.emf]SAF versus 3GP 'moof' overhead

30 secs of audio/video content - video @ 15 fps

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0,5 1 5 10 15 30

inter 'moof' duration

 = max_latency (secs)

headers size (kbytes)

3GP FF with 'moof'

SAF

Figure 5 : Headers size overhead : 3GP 'moof' scheme versus SAF
4.5.3. Of live streams:

This case happens for mobiles services with rich media browsing in live event situations. In order to be able to create a 3GP file, a number of information must be present before the packaging can start:

· the number of AUs in each stream.
· the size of each AU

When SAF is used, each stream can be added at any time, and each AU can be placed in the stream as soon as it becomes available.

When 3GP is used, ‘moov’ cannot be used, only ‘moof’. Then a ‘moof’ frequency needs to be chosen. The time interval between ‘moof’ boxes is named T. Then when all the AUs in the current T interval have been received and all reaquired information for that interval Is known, the AUs can be placed in an ‘mdat’ box, and a ‘moof’ box can be computed and sent. The latency experienced by the user will be at least longer by T than in the case with SAF. The choice of T will incur a penalty similar to that described in the previous section.

4.6. Use case 3: static interactivity
By “static”, we mean that the user switches from different user interface screens with no temporal updates in each of these screens. An example of switching between 3 different screens is illustrated on the Figure 6.

4.6.1. Solution 1: with 3GP Extended presentation profile:

The basic need is to define an improvement of existing 3GP without breaking any compatibility/interoperability with the current specification (i.e the v6.3.0 of TS26.244 that adds the Extended-presentation profile with a ‘meta’ atom to enable a 3GP file to carry any kind of multimedia presentation composed of tracks, media files and a scene description).
So, a player conforming to this 3GP Extended-presentation profile shall display each of the 3 screens illustrated by the Figure 6 by rendering the content of each 3GP file as prescribed by the contained scene description (primary item) present in the LASer access unit.
The three main advantages of the 3GP based solution illustrated by Figure 6 :
· Less time consuming (no need of ‘moov’ parsing):

· Using a ‘meta’ atom to store the LASer access unit avoids any parsing of its ‘trak’ atom in the ‘moov’ atom.
· Referencing the still picture by its file offset (and not only its track_ID) avoids any parsing of its ‘trak’ atom in the ‘moov’.
· Interoperability with all 3GP players: putting the ‘moov’ atom at the end of the file enables any 3GP player to play the content by parsing the ‘moov’ atom, once the entire 3GP file is downloaded.
Considering the sizes of ‘meta’/’3gsd’/’lasr’ atoms (24 bytes), SAF is not relevant for decreasing any headers size overhead.

[image: image6.wmf]scene1

scene2

scene3

scene1

scene2

scene3

scene1

scene2

scene3

scene 1

scene 2

scene 3

'meta'

'3gsd'

'ftyp'

'3ge6'

'lasr'

#box=moov; trackID=1

or

#box=mdat; offset=...

LASeR access unit

'moov'

'trak'

(jpg)

'tkhd'

trackID 1

'mdat'

picture data

'trak'

('LASeR)

'tkhd'

trackID 2

'meta'

'3gsd'

'ftyp'

'3ge6'

'lasr'

#box=moov; trackID=1

or

#box=mdat; offset=...

LASeR access unit

'moov'

'trak'

(jpg)

'tkhd'

trackID 1

'mdat'

picture data

'trak'

('LASeR)

'tkhd'

trackID 2

'meta'

'3gsd'

'ftyp'

'3ge6'

'lasr'

#box=moov; trackID=1

or

#box=mdat; offset=...

LASeR access unit

'moov'

'trak'

(jpg)

'tkhd'

trackID 1

'mdat'

picture data

'trak'

('LASeR)

'tkhd'

trackID 2

scene 1

scene 2

scene 3

Display

Bitstream

pict1

pict2

pict3

pict1

pict2

pict3

Figure 6 : Using 3G Extended presentation profile for static hyperlinked scenes
	Conclusions in this case:

· The difference between 3GP and SAF is irrelevant when there are no temporal update.

4.6.2. Solution 2: Handling media data in text file

4.6.2.1 Handling raster images in SVG

In a SVG document or MIME Multipart message, there are two types of methods for handling images.

· Linked: Images are linked using the URI of the link origin without change.

· Embedded: Raster images are embedded, using the "data" URL scheme specified in the RFC 2397, in SVG document or MIME Multiparts messages as Base64 encoding data. Vector images are outputted as SVG. This method can be considered as concurrent of the SAF aggregation in the sense that SVG data and images data are “aggregated” together in the same “stream” which is here the XML text document.

Example:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg . . .>

 <desc>This graphic links to an external image

 </desc>

 <image id="image_1" x="200" y="200" width="100px" height="100px"

 xlink:href="data:;base64,/9j/4AAQSkZJR... SkZ"/>

 <title>My image</title>

 </image>

</svg>

This “data URL scheme” approach is acceptable when we have:

· a few images in the scene,

· only small data items to include as "immediate" data (ref RFC 2397),

· a static scene (i.e. with no scene time stamped update commands that update the images).

But for longer slides-show presentation synchronized with audio or timed text comments (for example) and containing hundreds of slides, we can not author an XML text file containing hundreds of Base64 encoded images:

· Because the encoded data are consistently about 33 percent larger than the unencoded data, we should avoid the Base64 encoding/decoding step (i.e. the text format) and choose a binary scheme.

· The bitstream syntax should integrate a temporal multiplex scheme to guarantee that the images data would be transported in the same transport unit as their corresponding scene update command.

· The bitstream must be suitable to be transported over HTTP (for progressive download scenario), but also packetized in RTP (for RTSP/RTP streaming scenario) and UDP (for MBMS / FLUTE scenario).

4.6.2.2 Multipart MIME message

 A multipart message has more than one part. Each part can have its own content type. Data of audio, video and image parts are encoded in base64 (i.e. each output byte is in the "7bit" range) to make them safe to carry over restricted transports (e.g. mailing gateways).
Because the encoded data are consistently about 33 percent larger than the unencoded data, this solution is not relevant.
Example:

Content-Type: multipart/mixed; boundary="Snip snip snip"

--Snip snip snip

Content-type: image/jpg

Content-transfer-encoding: base64

Content-description: an image

/Xr++/hoX2lqeXt8d/7z8/D5+PLw7/b+9fD09319/vz5f3j//Pz9fHp7fvrs9Wz/eH59d

...

--Snip snip snip—

	Conclusions in this case:

· Handling media data in text file (with SVG reusing the data url scheme of the IETF, or with a MIME multipart message) is not relevant compared to the 3GP based solution proposed in the 4.6.1. section or to SAF, mainly because of the 33 % overhead created by the Base64 encoding of media data

4.6.3. Solution 3: Introducing a LSR file
The LSR file is the SAF bitstream aggregating the still pictures with the LASeR access units in one SAF packet.
Interoperability with existing 3GP:
· Local playability: as soon as it is possible to use the Data References (‘dref’ atom) tool of ISO Media File Format in 3GP, a 3GP file can be composed of only the ‘moov’ atom and references all the access units contained in the external LSR file.
· Progressive downloadable: the possibility of an 3GP progressive download exists if the 3GP file containing the ‘moov’atom is first downloaded before the .lsr file. The overhead due to the SAF headers will be in such a scenario: 4.2 kbps for an audio @ 37 khz and video @ 15 fps content.

· For any network bandwith lesser than 80 kps (= 4.2 kbps / 5%), the SAF headers size overhead is damageable.

· When network bandwith > 80 kbps : the SAF overhead is not significantly damageable.

	Media type
	Container files

	
	Without LSR file
	With LSR file

	Scene
	SMIL file: "scene.smil"
	LSR file: “scene.lsr”

	Still pictures
	Image files: "pic1.jpg", "pic2.jpg" and "pic3.jpg".
	

	3G extensibility
	3GP file with ‘moov’ atom only and Data Referencs

	Conclusions in this case:

· SAF bitstream stored “as is” in a .lsr file is relevant here:

· It avoids the complexity of ‘trak’ atom, not necessary here because we have static access units and no time stamped elementary streams.

· It aggregates scene and media data in one container.
· It is still interoperable with 3GP if Data References can be used.

4.7. Use case 4: Java bytecode delivery

In the particular case of Java based client terminals, a strategic context in mobile phones industry, SAF helps to decrease the Java bytecode footprint of the client application. SAF provides a light mechanism that uses low memory footprint (size of the code) and low run-time memory:

· The footprint of Java SAF parser is ~5 kbytes when the footprint of a Java 3GP File Format parser is ~35 kbytes.

	Conclusions in this case:

· SAF is significantly relevant.

4.8. Overall Conclusion

	· SAF technology improves the 3GPP framework in all use cases, in a very significantly manner in some use cases, specifically those related to the DIMS.

· SAF technology introduction in 3GPP can be done as a well distinct component, in a backward compatible way with existing 3GPP technology.

· SAF technology overhead in the device as well as in the end-to-end architecture is minimal.

Streamezzo – 83, Bd du Montparnasse 75006 Paris – France
Phone : + 33 1 53 63 28 30 - Fax : + 33 1 42 22 46 01
www.streamezzo.com

_1187597955.xls
Graph2

		0.5

		5

		10

		15

latency (sec)

content duration (min)

latency (sec)

Initial latency due to the downloading of 'moov' atom
network 64 kbps - video 15 fps - audio 32 khz - interleave_depth 0,5 sec

2

21

42

64

Feuil1

		dur (sec)		900				N_audio		28125

		depth (sec)		0.5				N_video		13500

				header		content

		ftyp		8		12

		moov		8

		mvhd		12		96

		trak video		8

		thkh		12		80

		mdia		8

		mdhd		12		20

		hdlr		12		20

		minf		8

		vmhd		12		8

		smhd		12		4

		dinf		8

		dref		12

		stbl		8

		stsd		12		44

		stts		12		108,004

		stsc		12		28

		stsz		12		54,008

		stco		12		7,204

		trak audio		8

		thkh		12		80

		mdia		8

		mdhd		12		20

		hdlr		12		20

		minf		8

		smhd		12		4

		dinf		8

		dref		12

		stbl		8

		stsd		12		24

		stts		12		225,004

		stsc		12		7,204

		stsz		12		112,508

		stco		12		7,204

		Sub Total (bytes)		360		521,596				duration (min)		0.5		5		10		15

		TOTAL overhead (kbytes)		509.72						moov overhead (kbytes)		18		170		340		509

		Latency @ 64 kbps (sec)				63.72				latency (sec)		2		21		42		64

										saf overhead (kbytes)		14		136		271		407

										"10+13+10*(N_audio+N_video)"

												0.2222222222		0.2		0.2029411765		0.2003929273

Feuil1

		0

		0

		0

		0

latency (sec)

content duration (min)

latency (sec)

Initial latency due to the downloading of 'moov' atom
network 64 kbps - video 15 fps - audio 32 khz - interleave_depth 0,5 sec

0

0

0

0

Feuil2

		0		0

		0		0

		0		0

		0		0

3GP 'moov'

SAF

duration of content (min)

overhead (kbytes)

SAF versus 3GP 'moov' overhead
video 15 fps - audio 32 khz - interleave depth 0,5 sec with 'moov'

0

0

0

0

Feuil3

		

		

_1187599397.xls
Graph1

		0.5		0.5

		1		1

		5		5

		10		10

		15		15

		30		30

3GP FF with 'moof'

SAF

inter 'moof' duration
 = max_latency (secs)

headers size (kbytes)

SAF versus 3GP 'moof' overhead
30 secs of audio/video content - video @ 15 fps

15.46875

4.4169921875

11.25

4.4169921875

7.875

4.4169921875

7.453125

4.4169921875

7.3125

4.4169921875

7.171875

4.4169921875

Feuil1

		duration (secs)		30				moof		24				saf		10

		fps		15				traf		60

		bitrate (kbps)		100				sample		16				tracks_count		2

		fragments duration (secs)		0.5		1		5		10		15		30

		3GP FF with 'moof'		15.47		11.25		7.88		7.45		7.31		7.17

		SAF		4.42		4.42		4.42		4.42		4.42		4.42

		3GP FF with 'moov'

Feuil1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

&A

Page &P

3GP FF with 'moof'

SAF

inter 'moof' duration
 = max_latency (secs)

headers size (kbytes)

SAF versus 3GP 'moof' overhead
30 secs of audio/video content - video @ 15 fps

0

0

0

0

0

0

0

0

0

0

0

0

Feuil2

		

Feuil3

		

_1187595597.xls
Graph1

		0.5		14

		5		136

		10		271

		15		407

3GP 'moov'

SAF

duration of content (min)

overhead (kbytes)

SAF versus 3GP 'moov' overhead
video 15 fps - audio 32 khz - interleave depth 0,5 sec with 'moov'

18

170

340

509

Feuil1

		dur (sec)		900				N_audio		28125

		depth (sec)		0.5				N_video		13500

				header		content

		ftyp		8		12

		moov		8

		mvhd		12		96

				8

		thkh		12		80

		mdia		8

		mdhd		12		20

		hdlr		12		20

		minf		8

		vmhd		12		8

		smhd		12		4

		dinf		8

		dref		12

		stbl		8

		stsd		12		44

		stts		12		108,004

		stsc		12		28

		stsz		12		54,008

		stco		12		7,204

				8

		thkh		12		80

		mdia		8

		mdhd		12		20

		hdlr		12		20

		minf		8

		smhd		12		4

		dinf		8

		dref		12

		stbl		8

		stsd		12		24

		stts		12		225,004

		stsc		12		7,204

		stsz		12		112,508

		stco		12		7,204

		Sub Total (bytes)		360		521,596				duration (min)		0.5		5		10		15

		TOTAL overhead (kbytes)		509.72						moov overhead (kbytes)		18		170		340		509

		Latency @ 64 kbps (sec)				63.72				latency (sec)		2		21		42		64

										saf overhead (kbytes)		14		136		271		407

										"10+13+10*(N_audio+N_video)"

Feuil1

		

latency (sec)

content duration (min)

latency (sec)

Initial latency due to the downloading of 'moov' atom
network 64 kbps - video 15 fps - audio 32 khz - interleave_depth 0,5 sec

Feuil2

		

3GP 'moov'

SAF

duration of content (min)

overhead (kbytes)

SAF versus 3GP 'moov' overhead
video 15 fps - audio 32 khz - interleave depth 0,5 sec with 'moov'

Feuil3

		

		

