INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG/N7583
Nice, France, October 2005
	Title
	VM of Amendment 2 to 14496-12:2005 (2nd edition) FLUTE hint tracks in ISO base media file format

	Status
	VM

	Sub group
	System

	Authors
	Jani Toiminen, Miska M. Hannuksela, Daidi Zhong and Ramakrishna Vedantham
Nokia Corporation

1 Introduction

This document is a VM for an amendment that proposes boxes related to FLUTE hint track to be added in ISO base media file format as an amendment.

Section 2 explains why the hint track is needed and proposed file format changes are presented in Section 3.

2 Motivation for FLUTE hint tracks

FLUTE (File Delivery over Unidirectional Transport) is a protocol for unidirectional delivery of files over the Internet and it is defined by the IETF (RFC 3926). FLUTE has been recently adopted in 3GPP Multicast/Broadcast Service (MBMS) and IP datacast over DVB-H.

The Meta box and its child boxes enable storing of a variety of data items, such as static media (pictures) and SMIL presentations, into an ISO base media file. They also allow associating file names and paths to items and signaling of the file directory structure in the ISO base media file.

In order to transmit a presentation including both static and real-time media over multicast/broadcast connection, it makes sense to use FLUTE for the transmission of the static parts and RTP for the transmission of real-time media (audio and video). Consequently, the ISO base media file should also contain instructions for a multicast/broadcast server how to describe the FLUTE sessions (with SDP) and how to encapsulate items into FLUTE packets. We propose new boxes for these purposes in this contribution.

3 Proposal

There are three elements in the proposal: boxes for the SDP description for FLUTE, boxes for the storage of the file delivery table, and the the FLUTE hint track format, which are described in more details in sections 3.1, 3.2, and 3.3 respectively.

FLUTE packets can be used to transport e.g. dynamic internally embedded media and static internally embedded media. The URLs of the internally embedded media are indicated in the File Delivery Table (FDT) inside of the FLUTE session, rather than in the Session Description.
Table 1 shows the relevant box hierarchy of the ISO Base Media File Format. Bolded box names relate to FLUTE hint track format.
Table 1, Relevant box hierarchy of the ISO Base Media File Format.
	moov
	
	
	
	
	
	container for all the metadata

	
	mvhd
	
	
	
	
	movie header, overall declarations

	
	trak
	
	
	
	
	container for an individual track or stream

	
	
	tkhd
	
	
	
	track header, overall information about the track

	
	
	mdia
	
	
	
	container for the media information in a track

	
	
	udta
	
	
	
	user data

	
	
	
	hnti
	
	
	track hint information container

	
	
	
	
	fthi
	
	FLUTE track hint information (FLUTE scheme)

	
	
	
	
	fdtt
	
	FLUTE track FDT information (FLUTE scheme)

	
	udta
	
	
	
	
	user data

	
	
	hnti
	
	
	
	movie hint information container

	
	
	
	fmhi
	
	
	FLUTE movie hint information (FLUTE scheme)

	
	
	
	flmf
	
	
	FLUTE movie FDT information (FLUTE scheme)

	meta
	
	
	
	
	
	meta data box

	
	iloc
	
	
	
	
	item location box

	
	iinf
	
	
	
	
	item information box

	
	pitm
	
	
	
	
	primary item reference

	
	ihib
	
	
	
	
	item hint information box

	
	
	fihi
	
	
	
	FLUTE item hint information (FLUTE scheme)

	
	
	flif
	
	
	
	FLUTE item FDT information(FLUTE scheme)

	
	phib
	
	
	
	
	presentation hint information box

	
	
	fphi
	
	
	
	FLUTE presentation hint information (FLUTE scheme)

	
	
	flpf
	
	
	
	FLUTE presentation FDT information (FLUTE scheme)

3.1 SDP for FLUTE

There may be various description formats for FLUTE, but only SDP is defined in current document. The syntax of the SDP description for FLUTE has been defined in the Internet-Draft: SDP Descriptors for FLUTE, which can be found at www.ietf.org/internet-drafts/draft-mehta-rmt-flute-sdp-03.txt (Expires: January 1, 2006). The sdptext is correctly formatted as a series of lines, each terminated by <crlf>, as required by SDP. As the current ISO Base Media File Format does not have SDP container boxes for FLUTE at any level (presentation, movie, track, item, etc.), boxes for all these four levels are defined as shown.
In the current ISO Base Media File Format, SDP information is stored in a set of boxes within user-data boxes at both movie and track levels using the movie hint information box and track hint information box respectively. The movie hint information box contains the session description information that covers the data addressed by the current movie. It is contained in the User Data Box under “Movie Box.” The track hint information box contains the session description information that covers the data addressed by the current track. It is contained in the User Data Box under “Track Box.” However, as the hint information box (‘hnti’) is defined only at the movie and track levels and therefore two additional hint information containers are defined here for metadata items: ‘item hint information box’ and ‘presentation hint information box.’

The item hint information box contains the session description information that covers the data addressed by all the items. It is contained in the Meta Box. The syntax is as follows:
aligned(8) class itemhintinformationbox extends box (‘ihib‘) {
}

The presentation hint information box contains the session description information that covers the data addressed during the whole presentation. It may contain any data addressed by the items or tracks, as well as the data in the XMLBox. It is contained in the Meta Box. The syntax is as follows:

aligned(8) class presentationhintinformationbox extends box (‘phib‘) {
}
A track level hint information container is defined within 'hnti' box, dedicated for FLUTE. This can be used when all the content in current track is sent via FLUTE. The syntax is as follows.

aligned(8) class flutetrackhintinformation extends box(‘fthi‘) {

uint(32) descriptionformat = ‘sdp ‘;

char sdptext[];
}
A movie level hint information container is defined within 'hnti' box, dedicated for FLUTE. This can be used when all the content in “current movie” is sent via FLUTE. The syntax is as follows.
aligned(8) class flutemoviehintinformation extends box(‘fmhi‘) {

uint(32) descriptionformat = ‘sdp ‘;

char sdptext[];
}
An item level hint information container is defined within 'ihib' box, dedicated for FLUTE. This can be used when all the content in “current item” is sent via FLUTE. The syntax is as follows.
aligned(8) class fluteitemhintinformation extends box(‘fihi‘) {

unsigned int(16) item_ID;

uint(32) descriptionformat = ‘sdp ‘;

char sdptext[];
}
The “item_ID” contains the ID of the item for which the hint information is specified. It has the same value as the corresponding item in the ItemLocationBox and ItemInfoBox.
A presentation level hint information container is defined within 'phib' box, dedicated for FLUTE. This can be used when all the content in “current presentation” is sent via FLUTE. The syntax is as follows.
aligned(8) class flutepresentationhintinformation extends box(‘fphi‘) {

uint(32) descriptionformat = ‘sdp ‘;

char sdptext[];
}
3.2 File Delivery Table

The File Delivery Table (FDT) provides a mechanism for describing various attributes associated with files that are to be delivered within the file delivery session. Logically, the FDT is a set of file description entries for files to be delivered in the session. Each file description entry must include the TOI (Transport Object Identifier) for the file that it describes and the URI (Uniform Resource Identifier) identifying the file. Each file delivery session must have an FDT that is local to the given session. Within the file delivery session, the FDT is delivered as FDT Instances. An FDT Instance contains one or more file description entries of the FDT. FDT boxes are defined and used herein to store the data of FDT instances. FDT boxes are defined for the four levels – presentation, movie, track and item as shown below.
A track level FDT data container is defined within 'hnti' box, dedicated for FLUTE. This can be used when all the content in current track is sent via FLUTE. The container is defined as follows:

aligned(8) class flutetrackfdtinformation extends box(‘fdtt‘) {

char fdttext[];
}
FDT data container is defined within movie level 'hnti' box, dedicated for transport scheme. The container is defined as follows:
aligned(8) class flutemoviefdtinformation extends box(‘flmf‘) {

unsigned int(32) fdt_instance_count;

for (i=0; i< fdt_instance_count; i++) {

char fdttext[];

}
}
FDT data container is defined within ’ihib’ box, dedicated for FLUTE transport scheme. This container is defined as follows:
aligned(8) class fluteitemfdtinformation extends box(‘flif‘) {

unsigned int(32) fdt_instance_count;

for (i=0; i< fdt_instance_count; i++) {

char fdttext[];

}
}
FDT data container is defined within the ‘phib’ box, dedicated for FLUTE transport scheme. This container is defined as follows:
aligned(8) class flutepresentationfdtinformation extends box(‘flpf‘) {

unsigned int(32) fdt_instance_count;

for (i=0; i< fdt_instance_count; i++) {

char fdttext[];

}
}
3.3 FLUTE Hint Track Format

The hint track structure is generalized to support hint samples in multiple data formats. The hint track sample contains any data needed to build the packet header of the correct type, and also contains a pointer to the block of data that belongs in the packet. Such data can comprise dynamic and static embedded media.
In order to facilitate the generation of FLUTE packets, the hint track format for FLUTE is defined below. Similar to the hierarchy of RTP hint track, the FluteHintSampleEntry and FLUTEsample are defined. In addition, related structures and constructors are also defined.

FLUTE hint tracks are hint tracks (media handler ‘hint’), with an entry-format in the sample description of ‘flut‘. The FluteHintSampleEntry is contained in the SampleDescriptionBox ('stsd'), with the following syntax:

class FluteHintSampleEntry() extends SampleEntry (‘flut‘) {

uint(16)
hinttrackversion = 1;

uint(16)
highestcompatibleversion = 1;

uint(32)
maxpacketsize;

box

additionaldata[]; //optional
}

The fields, “hinttrackversion,” “highestcompatibleversion” and “maxpacketsize” have the same interpretation as that in the “RtpHintSampleEntry” field described in section 10.2 of the ISO/IEC 15444-12:2005 specification. The additional data is a set of timescaleentry and timeoffset boxes, which are specified in ISO/IEC 15444-12:2005 section 10.2. These boxes are optional for FLUTE.
Each FLUTE sample in the hint track will generate one or more FLUTE packets. In contrast to RTP samples, FLUTE samples do not have their own specific timestamps, but instead are sent sequentially. Each sample contains two areas: the instructions to compose the packets, and any extra data needed when sending those packets (e.g. an encrypted version of the media data). It should be noted that the size of the sample is known from the sample size table.

aligned(8) class FLUTEsample {

unsigned int(16)
packetcount;

unsigned int(16)
reserved;

FLUTEpacket
packets[packetcount];

byte

extradata[];

//optional
}

Each packet in the packet entry table has the following structure:

aligned(8) class FLUTEpacket {

FLUTEheader
flute_header;

unsigned int(16)
entrycount;

dataentry

constructors[entrycount];
}

aligned(8) class FLUTEheader
{

UDPheader
header;

LCTheader
lct_header;

unsigned int(8) FEC_payload_ID;
}

The “flute_header” field contains the header for current FLUTE packet. The “entrycount” field is the count of following constructors, and the “constructors” field defines structures which are used to construct the FLUTE packets. The FEC_payload_ID is determined by the FEC Encoding ID that must be communicated in the Session Description.

The details of the following syntax are based on RFCs 3926, 3450 and 3451:

class pseudoheader {

unsigned int(32) source_address;

unsigned int(32) destination_address;

unsigned int(8) zero;

unsigned int(8) protocol;

unsigned int(16) UDP_length;
}

class UDPheader {

pseudoheader pheader;

unsigned int(16) source_port;

unsigned int(16) destination_port;

unsigned int(16) length;

unsigned int(16) checksum;
}

class LCTheader {

unsigned int(4) V_bits;

unsigned int(2) C_bits;

unsigned int(2) reserved;

unsigned int(1) S_bit;

unsigned int(2) O_bits;

unsigned int(1) H_bit;

unsigned int(1) T_bit;

unsigned int(2) R_bit;

unsigned int(2) A_bit;

unsigned int(2) B_bit;

unsigned int(8) header_length;

unsigned int(8) codepoint

unsigned int((C_bits+1)*32) congestion_control_information;

unsigned int(S_bit*32 + H_bit*16) transport_session_identifier;

unsigned int(O_bits*32 + H_bit*16) transport_object_identifier; //For EXT_FDT, TOI=0

if (T_bit == 1) {

unsigned int(32) sender_current_time;

}

if (T_bit == 1) {

unsigned int(32) expected_residual_time;

}

if (header_length > (32 + (C_bits+1)*32 + S_bit*32 + H_bit*16 + O_bits*32 + H_bit*16)) {

LCTheaderextentions header_extention;

}
}

class LCTheaderextentions {

unsigned int(8) header_extention_type; //192- EXT_FDT, 193- EXT_CENC, 64- EXT_FTI

if (header_extention_type <= 127) {

unsigned int(8) header_extention_length;

}

if (header_extention_type == 64){

unsigned int(48) transfer_length;
if ((FEC_encoding_ID == 0)||(FEC_encoding_ID == 128)
 ||(FEC_encoding_ID == 130)) {

unsigned int(16) encoding_symbol_length;

unsigned int(32) max_source_block_length;

}

else if ((FEC_encoding_ID >= 128)||(FEC_encoding_ID <= 255)) {

unsigned int(16) FEC_instance_ID;

}

else if (FEC_encoding_ID == 129) {

unsigned int(16) encoding_symbol_length;

unsigned int(16) max_source_block_length;

unsigned int(16) max_num_of_encoding_symbol;

}

}

else if (header_extention_type == 192){

unsigned int(4) version = 1;

unsigned int(20) FDT_instance_ID;

}

else if (header_extention_type == 193){

unsigned int(8) content_encoding_algorithm; //ZLIB,DEFLATE,GZIP

unsigned int(16) reserved = 0;

}

else {

byte other_extentions_content[];

}
}

There are various forms of the constructor. Each constructor is 16 bytes, in order to make iteration easier. The first byte is a union discriminator. This structure is based upon section 10.3.2 from ISO/IEC 15444-12:2005.

aligned(8) class FLUTEconstructor(type) {

unsigned int(8) constructor_type = type;
}

aligned(8) class FLUTEnoopconstructor extends FLUTEconstructor(0)
{

uint(8) pad[15];
}

aligned(8) class FLUTEimmediateconstructor extends FLUTEconstructor(1)
{

unsigned int(8) count;

unsigned int(8) data[count];

unsigned int(8) pad[14 - count];
}

aligned(8) class FLUTEsampledescriptionconstructor extends FLUTEconstructor(2)
{

signed int(8) trackrefindex;

unsigned int(16) length;

unsigned int(32) sampledescriptionindex;

unsigned int(32) sampledescriptionoffset;

unsigned int(32) reserved;
}

aligned(8) class FLUTEitemconstructor extends FLUTEconstructor(3)
{

unsigned int(16) item_ID;

unsigned int(16) extent_index;

unsigned int(64) data_offset; //offset in byte within extent

unsigned int(32) data_length; //length in byte within extent
}

aligned(8) class FLUTExmlboxconstructor extends FLUTEconstructor(4)
{

unsigned int(64) data_offset; //offset in byte within XMLBox or BinaryXMLBox

unsigned int(32) data_length;

unsigned int(32) reserved;
}

FDT data is one part of the whole FLUTE data stream. This data is transmitted during the FLUTE session in the form of FLUTE packets. Therefore, a constructor is needed to map the FDT data to FLUTE packet. The syntax of the constructor is provided as follows:

aligned(8) class FLUTEfdtconstructor extends FLUTEconstructor(5)
{

unsigned int(2) fdt_box; //0-'fdtp', 1-'fdtm', 2-'fdti', 3-'fdtt'

if ((fdt_box==0)||(fdt_box==1) ||(fdt_box==2)) {

unsigned int(30) instance_index; //index of the FDT instance

unsigned int(64) data_offset; //offset in byte within the given FDT instance

unsigned int(32) data_length;
 //length in byte within the given FDT instance

} else {

unsigned int(64) data_offset; //offset in byte within the given FDT box

unsigned int(32) data_length; //length in byte within the given FDT box

bit pad[30]; //padding bits

}
}

PAGE
1

