TSG SA4#37 meeting
Tdoc S4 050745

14-18 November, 2005, Bordeaux, France

Source:
Streamezzo, 3, KPN, Bouygues Telecom, Orange, E.T.R.I.

Title:
LASeR candidate to DIMS

Document for:
Approval
Agenda Item:
13.4

Introduction

LASeR, formally known as ISO/IEC 14496-20 (MPEG-4 Part 20), is the new Rich Media standard dedicated to the mobile, embedded and consumer electronics industries specified by the MPEG standardization group. The objectives of MPEG4 part20 are to enable a fresh and active user experience on constrained networks and devices based on enriched content, including Audio, Video, Text, and Graphics; and to address the requirements of the end-to-end rich media publication chain: ease of content creation, optimized rich media data and streams delivery and enhanced rendering on all devices.
MPEG-4 part 20 is composed of LASeR (Lightweight Application Scene Representation) and SAF (Simple Aggregation Format). LASeR and SAF can be used independently.
LASeR is a format for scene description and:

· Is inspired by the concepts of Macromedia Flash™, and ISO/IEC MPEG/BIFS,
· Is an extension of the W3C SVG specification; LASeR cumulates the particular knowledge and know-how of both W3C and MPEG groups.
LASeR supports:

· The SVG Tiny 1.1 and 1.2 scene description.

· A set of key compatible extensions over SVG Tiny1.2.

· The ability to encode and transmit LASeR files, LASeR scene fragments, and private XML data.

· The ability to encode and transmit LASeR stream. LASeR content can be delivered into packaged pieces, allowing display as soon one piece is received (as opposed to a download an play mechanism). This concept of “streaming”, already into place for audio and video data, has been generalized to scene description and Rich Media. As such, services can be designed such that there is always some information of interest on the screen.
· Dynamic updating of the scene to achieve a reactive, smooth and continuous service.
· Simple yet efficient compression to improve delivery and parsing times, as well as storage size.
· An efficient interface with audio and visual streams with frame-accurate synchronization.
· Usage of any font format.

· Easy conversion from other popular rich-media formats in order to leverage existing content and developer communities.

Answers to DIMS and RME Requirements
This document will give an overview on how MPEG4 part 20 can fully or partially answers to the RME and to the actual non finalised DIMS requirements.

It will also highlight which complement should be use to achieve a complete DIMS/Rich-Media enabler. The complementary technologies will be described in section 3.

The global architecture for an application is as follow:

[image: image1.emf]SVG SceneTree

LASeR

Commands

BinaryEncoding

LASeR

Extensions

SAF

AudioVideoFontImage…

Application

Network

Transport

Figure 1: Architecture of LASeR and SAF
1.1 Alignment with SVG Tiny 1.1 and 1.2

There is a clear consensus that the Rich-Media/DIMS enabler will be based on the SVG Tiny 1.2 specification.

LASeR is an MPEG extension of the W3C SVG Tiny specification and a full compliancy with the rendering model is provided as described in the figure below:

[image: image2.emf]LASeR

decoder

LASeR

Scene

Tree

Manager

LASeR

Renderer

Scene

Stream

Decoded

Access

Units

Scene

Tree

Rendered

Scene

Normative in LASeR

Normative in SVG

Figure 2: LASeR engine components and normative parts
LASeR V1 is a superset of SVGT1.1, including features of SVG1.1 Full and SMIL2 which will be present in SVGT1.2.

LASeR V2 will be a superset of SVGT1.2 and will complete the alignment with the non stable features of SVGT1.2

LASeR V1 is already able to encode and transmit SVGT1.2 content due to its generic, extensible binary encoding scheme.

The non relevant part of the SVGT content will be skipped by the LASeR V1 decoder, will be rendered by the LASeR V2 decoder, and could be transmitted to an SVG player depending on the implementation.

LASeR scene extensions cover:

· The management of any input device to ease the content adaptation to any particular MMI and terminal

· The association of a precise timing model to any attribute

· The clipping by a pixel-aligned rectangle with horizontal and vertical borders, which is crucial to create UI widgets

· The possible use of any font system, including OpenType.

· A fullscreen mode for videos and images.

· A means to stop non-rendered animations to optimize CPU usage.

· The use of the SMIL mediaClipping module to allow VCR-like control of media.

· A simple way to underline text.

1.2 Dynamic updates

One key additional feature provided by LASeR to the SVG Tiny specification is the dynamic modification of the scene.

Dynamic updates are a key to efficient representation of server-driven or user-triggered scene changes over time. This feature, present in Macromedia Flash, is necessary to enable:

· The efficient representation of streamable cartoons,

· The partitioning of scenes into small packets that fit in size-limited delivery mechanisms (such as cell broadcast),

· The dynamic creation of answers to a user request, and their integration in the current scene,

· Or the dynamic push of content into an existing scene.

The dynamic update mechanism can be achieved with two complementary technologies:

Using the laser command: The scene Commands are a declarative way (as opposed to programmatic as in a script) of specifying changes to the scene. The following commands are defined.

1. General commands:

· Insert: to insert any element in a group, a point in a sequence.

· Delete: to delete any element by id or from a group by index, a point in a sequence.

· Replace: to replace an element by another element (by id or from a group by index), or to replace the value of any attribute of any element.

2. Commands specify for streaming and broadcast:

· NewScene: to create a new scene.

· RefreshScene: to repeat the current state of the scene, for use as a random access point into the LASeR stream or as a means to recover from packet loss.

3. Commands defined in LASeR for additional requirements

· Add: similar to replace, but with the notion of adding to the value rather than replacing it.

· Save, Restore and Clean: to save, reload or remove persistent scene information in the form of the value of a list of attributes. Other commands have no influence on persistent scene information.

· SendEvent: to send an event to any element in the scene.
4. Extensibility

LASeR includes a mechanism to extend the LASeR commands to other functionality
A timing model is associated to the LASeR commands, allowing the player to provide a very tight synchronization, with an accuracy specified by the content creator wishes (frame accurate synchronization, synchronization on a user interaction, on a time basis, etc…)

In addition to the LASeR command, the use of scripting and DOM Network API and an ad-hoc protocol to communicate scene modification from the server to the client can be used.

LASeR V1 does not yet specify the usage of the uDOM, it is left to the implementation. LASeR V2 will specify the usage of uDOM and extend it to the LASeR scene tree extension.

1.3 Streaming and reliability

The LASeR format allows streaming over reliable and non reliable network. As its parent SVG Tiny specification LASeR supports the following scenarii:

· The first option is the classical “download and play” mode. The user waits until the end of the download to start viewing the content.

· The second option is the progressive rendering mode. This mode is an improved version of the previous one enabling visualization while downloading the content. But the downloaded content only adds new content to the existing one, making it difficult to manage long-running documents.
In addition LASeR provides a pure streaming scenario:

· The notion of session completes the notion of file in the LASeR format:

A laser stream is a succession of:

<sceneUnit time="1">...</sceneUnit>

<sceneUnit time="3">...</sceneUnit>

<sceneUnit time="10">...</sceneUnit>

<sceneUnit time="12">...</sceneUnit>

<sceneUnit time="24">...</sceneUnit>

...

<endOfSession/>
· The timing notion is as a consequence very flexible and fit also to the broadcast and streaming modes.

· Tuning in into the middle of a scene is possible through the use of RefreshScene commands. RefreshScene commands contain a copy of the current state of the scene which can be skipped by all LASeR players but the ones currently trying to tune in.
Streaming implies potentially packet loss over non reliable network. In order to provide error-resilient player for streamed application, LASeR specifies how to:

· Handle packet loss gracefully: after a packet loss, LASeR commands which have become meaningless are ignored.

· errors located in packets containing transient information can be recovered naturally

· errors which cause more significant damage to the scene will cause a refresh request by the user.

· Recover from packet loss:

· through the use of RefreshScene commands, a player after a packet loss is in a state similar to the “tune in” state.

· RefreshScene commands are ignored by the players as redundant.

1.4 Caching / storing, private data management

LASeR specifies means to achieve data management on both client and server sides. This is achieved partially by the scene format and partially by the packaging format.

In the scene format, LASeR specifies interfaces to:

· local caching of RM data on the end-user device and updating of cached RM data,

· secure temporary storage of a large amount of persistent information for content cache and offline navigation,

· content storing mechanisms and storing priority according to the rich-media service logic,
· private data permanent storage in a memory area reserved by the RM enabler.

In order to protect end-user data privacy, LASeR specifies a cookies-like mechanism to limit the above functionality. LASeR uses signaling similar to the one defined in RFC 2965, which defines a state management mechanism for Rich Media presentations..
1.5 Synchronization

LASeR extends the SVG/SMIL timing model, to make it compatible with the MPEG timing model and thus optimize its interfaces with MPEG media decoders.

Together with SAF, LASeR offers a platform for efficient and frame-accurate synchronization of media and scene: both SVG-like scenes with SMIL animations and Flash-like scene with sequences of frames can be synchronized with the best achievable precision.

1.6 Efficiency

One of the key underlying requirement when designing LASeR was the global efficiency that need to be provided. To fulfill this objective, LASeR provides:

· the dynamic update mechanism,

· a binary format, necessary for a fast parsing and a fast, bit-efficient transmission of data,

· an efficient data caching management,

· and together with the SAF aggregation format, a means to reduce the number of necessary http connection and the round trip delay.

1.7 Ease of service design

Many Rich Media services rely on a key feature of LASeR: incremental scenes, made possible by the LASeR append mode. The append mode is the possibility to create a LASeR stream containing not an independent scene, but an addition to another existing scene.

There are two typical use cases of incremental scenes:

· Streaming style: the scene is designed as a sequence of frames, and there is a continuous stream of updates to change the current frame into the next frame. Bandwidth usage is varying but never drops to 0. The incremental scenes of this kind are usually best transported over streaming protocols like RTP. A typical use case is a cartoon-like animation.

· Interactive style: the scene is interactive and user requests are processed by the server. The response to user request is a change to the existing scene, not a new scene. Such scenario also requires continuous updates to the scene, but the statistics of the transmission are totally different from the previous style: bandwidth is heavily used for a short time after a user request, and then drops to 0 until the next user request. Given the variety of usages of mobiles, the next user request could come a few seconds or a few hours later.

From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections, since each data burst results from a user request. However, from a LASeR viewer point of view, it is the same scene/service that is modified. Hence the requirement for the server to be capable of signaling an append mode: “this stream does not contain a totally new scene, but an improvement to the scene the viewer is currently processing”.

The append mode also allows the creation in advance of multiple responses to possible user requests. If the service is modeled as a state machine, each transition of the state machine represents a change to the current scene and may be implemented as an append component. Careful authoring and scope management is required, in particular to avoid clashes of id between elements added by different append components. Still, this functionality opens the way to servers caching most of the responses to users, therefore dramatically improving the service’s performance.

1.8 Binary Encoding

The binary format specified in LASeR allows the encoding of SVG content. It uses a compact representation for the structure of the SVG elements and uses specific coding algorithms to encode the attribute values of the SVG elements. Because the mobile platforms usually lack hardware float processing, the compression of these attribute values has to be simpler than on PC. Complex computations that would improve the compression ratio by a small amount at the cost of doubling the decoding time have been rejected during the standardization process. Thus, the binary encoding of LASeR is straightforward, and its quality resides in the complexity/efficiency balance. Special care was taken for the encoding of values for some attribute types, like list of float coordinates, vector graphics paths or transformation matrices

The LASeR binary syntax is extensible, so that private extensions can be mixed among normal LASeR elements and attributes, to be ignored by decoders that do not know how to process them.

LASeR in the 3GPP and the Mobile environment

1.9 Integration with the SVGT client

[image: image3.png]
Figure 3 : Dual SVG Tiny/LASeR Client

To complement the figure above, the SVG Font subsystem can be a common element.

We estimate a dual player LASeR/SVG to share more than 60% of the code.

The current footprint of the LASeR reference software, in Java, non optimized is about 100K (excluding SVG Font, XML parser and uDOM).

1.10 Integration with the Browser

As an SVG player, the LASeR client or the dual LASeR/SVG client can be integrated in a browser in multiple ways:

· As a plugin: the choice of interfacing is left to the responsibility of implementations, i.e. providing Netscape API or particular API to specific browsers.

· As a plugin using the uDOM API: the integration is more generic and offers interoperable services.

· Integrated according to CDF/WICD recommendations: the integration is generic, offers interoperable services and compound documents are reliably rendered the same way on all implementations.

1.11 Integration in the 3GPP architecture

LASeR content can take two forms:

1. LASeR scenes: The first form is like an SVG scene, with only one access unit, and no stream.

2. LASeR streams: The second form is a video-like stream, with multiple access units. Examples include cartoons.

A variant of the first form is a LASeR scene with few access units. This is in principle like a short video clip, and can be assimilated with form 1.

For MBMS, PSS and MMS, LASeR integration is:

· LASeR scenes with just one access unit, or a few access units, behave exactly like gzipped SVG scenes, and should be treated the same way within MBMS, PSS or MMS.

· LASeR streams behave like audio or video streams, and as such, should be treated the same way as video or audio streams within MBMS or PSS. It does not seem appropriate to send large cartoon streams as part of an MMS.

· LASeR uses the payload format RFC3640 for RTP streaming.

1.12 Usage of file formats and packaging format

The 3GPP Extended File Format

LASeR content can be stored within files compatible with the 3GPP Extended File Format. As a LASeR stream is a timed stream, made of AUs, the storage of LASeR streams in 3GP files is straightforward and similar to the storage of audio or video streams. Each LASeR AU is stored as a sample. All these samples form a LASeR track identified by a four character code. The configuration for the LASeR decoder is stored as an entry the sample description box. In case of a LASeR stream comprising only one AU, it is also possible to store this AU, as it is done in the 3GPP specification for SMIL presentation, i.e. as a primary item of the file, using the Metadata box structure.

Other packaging format can be used: e.g. SAF, Multipart…
Implementation and Conformance

As MPEG 4 part 20 has reached the FDIS stage, the LASeR V1 specification is now stable. MPEG provides in addition:

· A reference software to ease the development of a LASeR client.

· An extended conformance test suite, together with a conformance testing document.

Currently we are aware of 5 different implementations of a LASeR client including the reference software.

Complete product suites including authoring tool, server, and client are already used for deployed services by major mobile actors.

2 Conclusion

We recommend LASeR to be considered as a technical candidate for the DIMS/RME enabler.

Page: 1/8

Page: 8/8

_1175158129.ppt

SVG Scene Tree

LASeR

Commands

Binary Encoding

LASeR

Extensions

SAF

Audio

Video

Font

Image

…

Application

Network

Transport

_1175384585.ppt

LASeR

decoder

LASeR

Scene

Tree

Manager

LASeR

Renderer

Scene

Stream

Decoded

Access

Units

Scene

Tree

Rendered

Scene

Normative in LASeR

Normative in SVG

