TSG System Aspects WG4#35
S4-050357
San Diego, USA, 9-13 May 2005

Source:
Digital Fountain

Title:
Computational complexity of FEC codes
Document for:
Discussion
Agenda Item:
6 PSM MBMS
1.
Introduction

It was requested at the PSM Ad Hoc #7 that an analysis of the computational complexity of the proposed FEC codes should be included in the decision making process.

This contribution provides a simple implementation-independent analysis of the two proposed codes.

2.
Analysis approach

The traditional approach for analysis of computational complexity, for example of audio codecs, has been wMOPS or ‘weighted Millions of Operations Per Second’. This is based on determining the processor operations required to perform the encoding or decoding, assigning each operation a weight based on an agreed measure of the relative time taken to perform each type of operation (e.g. addition, multiplications etc.).

This approach focussed on the basic operations to be performed by the processor. In practice, these operations require data to operate on. Fetching such data from memory is in general somewhat slower than performing a single arithmetic operation itself. Therefore the wMOPSs approach assumes that cost of memory operations is accounted for within the weighted operation cost.

In the case of FEC codes, the amount of data generally being processed precludes that it all be held in processor cache – at least on constrained systems such as mobile devices. Thus it could be expected that the principle determining factor of FEC code speed is the number of memory operations required (reads/writes) and the speed of the memory (and this is indeed Digital Fountain’s experience).
Thus, a wMOPS analysis of FEC codes needs to ensure that the cost of memory operations properly accounted for.
Simplistically, each basic operation (for example an XOR) requires three memory accesses – two to fetch the operands and one to store the result. However, depending on the construction of the FEC code, one or both operands may already be available within the processor as a result of an earlier operation. In general we can assume that an arithmetic operation and a memory access (associated with a different operation) can be performed concurrently.
In this analysis we assume that for both codes the majority of the computational complexity arises from the operations performed upon the received source and repair symbols in order to generate the lost source symbols. For both codes, a certain amount of additional processing is required to determine the operations that need to be performed and their sequencing (‘scheduling’). In fact for both codes, scheduling is equivalent to calculating the inverse of a matrix – for the proposed Reed-Solomon codes this is a dense matrix over GF(256) wheras for Raptor codes it is a sparse matrix over GF(2). It is important to note that the construction of the Raptor code matrix is such that the complexity of scheduling is close to linear as the code size increases, whereas the cost of the matrix inversion for Reed-Solomon is quadratic in the number of repair symbols. However, we will not consider scheduling costs further here and we will also assume that the scheduling information is readily available to the processor (i.e. does not have to be fetched from memory).
2.
Weighted operations

The operations required by the FEC codes in question are bitwise exclusive OR operations, in the case of Raptor codes, and finite field additions and multiplications over GF(256) in the case of Reed-Solomon codes. We assume that memory access and standard arithmetic and logical operations can be performed 32 bits at a time.

Finite field additions can be implemented using a standard Exclusive OR operation. Finite field multiplication is more complex, requiring in general a log table lookup for each operand, an addition operation and an exp table lookup to determine the result. Furthermore, these operations can only be performed 8 bits at a time. However, the log and exp lookup tables are each only 256 bytes long. We thus make the assumption that this information is readily available to the processor (i.e. in cache) and thus the cost of these operations is somewhat less than a normal operation plus memory access.
We assign the following weights to these operations and associated memory accesses:

	Operation
	Weight

	32-bit memory read or write
	4

	32-bit memory read or write + standard arithmetic/logical operation (+,-,AND, OR, XOR)
	4

	8-bit finite field log
	2

	8-bit finite field exp
	2

	8-bit finite field addition
	1

	8-bit finite field multiplication
	7 (log + log + add + exp)

	8-bit finite field multiplication plus 32-bit memory read or write
	7

2.
Reed-Solomon codes

The proposal to use Reed-Solomon codes for MBMS is rather vague on the Reed-Solomon construction that is proposed, but reference is made to the well-known approach based on Vandermonde matrices described in [Rizzo].
In this approach, the decoding operation consists of a matrix-vector multiplication over GF(256). For an (n,k) RS code, where the number of missing source symbols at the receiver is min(k, n-k), then the decoding operation can be stated as calculation of s = A*r where A is a k x k matrix (calculated during scheduling), r is a column vector containing k received symbols and s will be a column vector containing the k source symbols.

Note that for each source symbol received (i.e. already included in r) the corresponding row of A will contain only a single non-zero entry and this entry will be the identity in GF(256). We therefore do not consider these rows of A in this analysis.

For the remaining min(k,n-k) rows, the matrix-vector multiplication requires k GF(256) multiplication operations and (k-1) GF(256) addition operations. Each multiplication takes as its operands an element from the matrix A (which we assume is available in the processor) and a byte of one of the received symbols. We assume that memory access and finite field addition are carried out 32-bits at a time, so the above operation requires, for 32 bit symbols:
· k 32-bit memory reads:

cost 4k

· 4k 8-bit finite field multiplications:

additional cost 4k.7 – 4k = 40 k
· (k-1) 32-bit Exclusive OR operations:
additional cost 4(k-1)

· One 32-bit memory write:

additional cost 4

The total cost for each missing source symbol is therefore: 36k
This process must be repeated once for each missing source symbol i.e. min(k,n-k) times in the worst case.

The total weighted operations per symbol word is therefore min(k,n-k) x 36k.

3.
Raptor codes

The Raptor code decoding process uses only XOR operations. The number of XOR operations is in general proportional to the number of symbols, k, however it does vary slightly depending on the number of symbols received. This is because if more symbols are received then these excess symbols can be used in preference to the LDPC and Half symbols for decoding. This requires fewer XOR operations, because the matrix rows corresponding to LDPC and Half symbols are relatively dense.

For streaming applications, however, it is necessary to consider the ‘worst case’ computational load. This will occur when the received overhead is very low – i.e. the number of received symbols is close to the number of source symbols, k.

With very low overhead, decoding a Raptor code requires approximately 18.9 XOR operations per symbol. Each of these requires at least one of its operands to be read from memory. Approximately 8.2 of these 18.9 require both operands to be read from memory. Finally, approximately 9.6 require the result to be written back to memory. The cost in weighted operations of these is:

· XOR operations (including one memory read):

4 x 18.9k = 75.4 k
· Additional memory reads:

4 x 8.2k = 32.9 k

· Memory writes:

4 x 9.6k = 38.2 k

The total weighted operations per symbol word is therefore: 146.6 k
4.
Comparison

Based on the above analysis, it is easy to see that the computational complexity of the Raptor and Reed-Solomon codes is equivalent when min(k,n-k) = 4.0.
The following table shows the relative decoding speed increase which is possible using Raptor codes compared to Reed-Solomon codes for the file delivery simulation parameters as in AHP-247 and a target of 99% success probability.

	File size (KB)
	BLER
	RS code
	min(k,n-k)
	Raptor speedup

	50
	1%
	(122,113)
	9
	2.2

	
	5%
	(138,113)
	25
	6.1

	
	10%
	(158,113)
	45
	11.1

	
	15%
	(178,113)
	65
	16.0

	
	20%
	(201,113)
	88
	21.6

	
	30%
	(131,57)
	57
	14.0

	512
	1%
	(241,230)
	11
	2.7

	
	5%
	(225,192)
	33
	8.1

	
	10%
	(254,192)
	62
	15.2

	
	15%
	(248,165)
	83
	20.4

	
	20%
	(227,144)
	83
	20.4

	
	30%
	(249,144)
	105
	25.8

	3072
	1%
	2x(87,84)
	3
	1.5

	
	5%
	2x(90,84)
	6
	2.9

	
	10%
	2x(97,84)
	13
	6.4

	
	15%
	2x(105,84)
	21
	10.3

	
	20%
	2x(115,84)
	31
	15.2

	
	30%
	2x(141,84)
	57
	28.0

The following table shows the relative decoding speed increase which is possible using Raptor codes according to the analysis in this paper compared to Reed-Solomon codes for the streaming simulation parameters as in AHP-247 and a target of 3600s Mean Time Between FEC Block Losses.
	Bearer rate
	BLER
	Protection
	RS code
	min(k,n-k)
	Raptor speedup

	64kbit/s
	1%
	5
	(81,71)
	10
	2.5

	
	
	20
	(161,151)
	10
	2.5

	
	5%
	5
	(80,58)
	22
	5.4

	
	
	20
	(162,135)
	27
	6.6

	
	10%
	5
	(81,49)
	32
	7.9

	
	
	20
	(161,118)
	43
	10.6

	128kbit/s
	1%
	5
	(162,145)
	17
	4.2

	
	
	20
	(215,204)
	11
	2.7

	
	5%
	5
	(161,128)
	33
	8.1

	
	
	20
	(215,186)
	29
	7.1

	
	10%
	5
	(161,110)
	51
	12.5

	
	
	20
	(216,168)
	48
	11.8

	256kbit/s
	1%
	5
	(198,182)
	10
	2.5

	
	
	20
	(198,188)
	10
	2.5

	
	5%
	5
	(198,159)
	39
	9.6

	
	
	20
	(198,169)
	29
	7.1

	
	10%
	5
	(198,140)
	58
	14.2

	
	
	20
	(198,150)
	48
	11.8

4.
Conclusion

Based on this analysis, the Raptor code is faster than the Reed-Solomon in all cases. In the majority of cases the Raptor code is many times faster than the Reed-Solomon code.

Note that this analysis did not take into account the time required for ‘scheduling’ – that is to determine the sequence of operations required to decode the code. The analysis is thus most applicable to cases where large symbols are used and the cost of performing operations dominates over the cost of scheduling. However, it should be noted that the cost of scheduling for Reed-Solomon (matrix inversion) increases with the square of the code size – thus reducing the symbol size (and thus increasing the number of symbols) will have a much greater effect on the complexity of the Reed-Solomon codes than on the Raptor code.
It is important to note that there are many many factors which impact the decoding speed for FEC codes, not least the availability of cache and deliberate localisation of memory access in the code implementation (to increase cache hits). The availability of cache would improve the speed of both codes, although it is unlikely that the improvement would be the same for both codes. Additionally, some modern processors have registers wider than 32-bits, which allows further optimisation of XORs and finite field addition operations, but not finite field multiplication operations.

1
1

