3GPP TSG SA4#34 meeting
Tdoc S4-050043
February, 2005, Lisbon, Portugal

Source:
David Singer, Apple

Title:
Requirements for a mandatory MBMS video codec

Document for:
Discussion

Agenda Item:
Release 6 MBMS
1. Introduction

This contribution is a working draft of our process requirements (i.e. what we will do) and our technical requirements (i.e. what we require on implementations) that if met allow us to specify a mandatory codec in MBMS Release 6.

There are user-experience questions. It is better to show corrupt video that contains at least some information, or nothing at all? Our experience is the latter (‘the video was awful but I saw the goal happen’ vs. ‘everything I saw was perfect but it dropped out at the critical moment’); but that implies at least ‘copy the previous frame’ error concealment for lost slices.

2. Definitions

We assume that if FEC is used, the residual uncorrected errors are (a) acceptably infrequent and (b) rather large, in that they represent FEC blocks with so many errors that the FEC could not correct them. However, we note that FEC is not required; it is up to the operation to choose whether to use FEC, and if so, of what strength (block length). And even if the FEC is applied in the multicast stream, a receiving terminal may ignore the FEC parity packets.
There are four cases to consider:

1) Error-free.

2) 'Light' errors with FEC, where 'light' means that the FEC can and does correct them. In this case the frequency of uncorrected errors is assumed to be very low (and negligible).

3) 'Light' errors without FEC, i.e. an FEC would have corrected them if it had been used. In this case the error pattern is assumed to be stochastic loss (actual loss patterns are not available).

4) 'Heavy' errors, i.e. the stream is incorrect even if FEC is used. Essentially this means that the rate of uncorrected errors after FEC is high, too high for any acceptable service quality.

For the purposes of this document, ‘light’ means an error rate less than X% IP packet loss.

Note that the vast majority of what is written below only applies to case (3), since case (2) reduces to case (1) from the video codec’s point of view, and in case (4) we permit stopping playback.

Therefore the error-resilience cases to consider are (a) what to do in the case of the negligible residual error rate after FEC when the errors are light; (b) what to do when FEC is not used and the errors are light; (c) what to do when heavy errors occur.
A note on MTU

In all networks one desires to maximize "goodput" when possible -- the amount of usable data that is received at the client. Goodput can be less than the actual throughput when the client must discard data that does, in fact, arrive. One of the most common causes of this discard behavior is when a data unit has to be fragmented, and one or more of the fragments is lost; the other fragments must generally be discarded. This can occur when coding layer fragments are split into IP packets, for example, or when IP packets are split over transmission units.

In many IP networks the physical transmission unit is of variable size, and IP packets are aligned with them. Therefore in those networks IP fragmentation data loss can be eliminated by ensuring that all IP packets fit into the maximum transmission unit. This is not the case here; IP packets are formed into a stream, end to end, which is then segmented into transmission units at regular boundaries. Under these circumstances, it is not hard to see that goodput is maximized when the IP packets are as small as possible -- this minimizes the statistical 'overlap' of packets from received transmission units into lost ones. However, against this desire for small packets must be set the cost of per-packet overhead. Given all this, the actual best goodput is a dynamic function of the loss rate and IP packet size, and hard numbers cannot be given.

However, there are some guidelines. First, form compression data units (e.g. H.264 NAL Units) of a reasonable size -- certainly not so large as to exceed the size of an IP packet packed into a single ethernet packet, and preferably smaller. Secondly, the actual transmission unit size in UMTS is XXXXX bytes; any IP packet that exceeds this must necessarily straddle a transmission unit boundary and is therefore at risk of loss if one of those transmission units is lost. NAL Unit and RTP packet size not exceeding this may well be preferred. Third, do not attempt to meet this size exactly (e.g. by padding) as any slight error or other misalignment will cause every following packet to be misaligned.

3. Process Requirements

p1) When the anchors are encoded at 50% higher bit-rate, SA4 should be satisfied that the proposed codec performs as well as or better than the best of the anchors under no loss and with 0.5%, 1.0% and 1.5% loss (four cases). [[Question: what error resilience is used in the anchors, that is, in the H.263 and MPEG-4 decoders? The 'best' of today's existing practice?]] [[What is the definition of ‘perform better’? PSNR?]]
p2) The source code that achieves (1) should be an SA4 reference code (if necessary both encode/packetize and depacketize/decode).

4. Decoder Requirements

d1) The decoder must continue to ‘play’ error-free, and lightly-errored streams (with or without FEC). On heavily-errored streams (with or without FEC) it may indicate 'loss of signal' and cease decoding

d2) The depacketizer must handle lost packets without crashing; it may choose to pass only whole NALUs to the decoder (i.e. discard fragments of incompletely received NALUs).

d3) The decoder must handle the loss of NALUs without crashing. (Note that since parameter sets are supplied out of band and SEIs are not mandated, this effectively means lost slice-data NALUs).

d4) The combined depacketizer/decoder must not crash when presented with streams that were valid and then been subject to any degree of packet loss. (It may error-conceal or pause, see below, but not crash).

d5) In the presence of 'light' errors, the decoder may pause playback; if it does, it must resume playback at the next IDR, or after receiving a GDR SEI message and detecting that the recovery interval has been correctly received.
d6) The decoder may perform other error concealment and continue to play lightly-errored streams, not waiting for GDR or IDR.

d7) When RTP packets are lost (discontinuities in the RTP sequence number), the decoder may indicate to the user (whether it pauses or not) that there are reception problems.

d8) Under heavy errors or loss of connectivity, the decoder may indicate 'loss of signal' and pause. Loss of connectivity is indicated by an empty input buffer (buffer under-run).

d9) The decoder should track the sender’s clock, using the RTP timestamps and sender reports, so as to avoid buffer under-run or over-run caused by clock-drift. [[This is actually quite hard]]

5. Encoder Requirements

e1) The encoder must use an IDR frequency of at least once every 5 seconds (for both tune-in and signal recovery after errors or loss of signal), or must use GDR to ensure that every macroblock is 'healed' within the same period. GDR SEI messages should be sent, but as they are in-band, they may be lost.

e2) The encoder should encode with a reasonable maximum NAL Unit size, generally not exceeding 490 bytes (to fit into GERAN), and smaller values are recommended as this allows greater flexibility in forming RTP packets. There is a known tension between this and coding efficiency, however.
e3) The encoder/packetizer should choose a suitable IP packet size for the loss regime and other network characteristics. If packetization is done at a time or in a place where this is not possible, the recommended IP packet size is 1436 bytes for UTRAN or 496 bytes for GERAN.
e4) The encoder must not drop so many frames as to cause a buffer under-run in the decoder, i.e. it must code at least 2 frames within each buffer-period. (Does this ban slide-shows? ed). [[Note that requiring 1 frame within each buffer period is risky both under loss and under clock adjustment]]

e5) The encoder should strive not to use fragmented NALUs, as generally a decoder may have to discard the fragments that did arrive.

1

