3GPP SA4 PSM Ad-Hoc #32
Tdoc S4-040444
Prague, Czechia, August 16-20 2004
Agenda Item: 6.5.4.1
Source:
Digital Fountain
Title:
Raptor encoder specification for MBMS file download
Document For:
Discussion and Approval
1. Introduction

The present contribution and companion document [5] specifies an FEC code suitable for the MBMS file download service. The FEC code, hereafter called Raptor, has properties that meet all of the current and future requirements of an MBMS file download service. The basic properties of Raptor are that, for any packet loss conditions, for delivery of source files of any relevant size: (a) reception overhead of each individual UE is minimized; (b) the total transmission time needed to deliver source files to any number of UEs can be minimized (this depends on choosing the transmission schedule wisely).

The amount of working memory needed for decoding can easily fit into the MBMS requirements and still provide the above properties, and the amount of computation needed to encode and decode is minimal. In this document, we provide a simple and easy to implement description of the Raptor code. For a more technical description of the theory that underlies the design and analysis of Raptor, see for example [1], [2].

Raptor is a fountain code (as for example defined in [2]), i.e., as many encoding packets as needed can be generated on-the-fly, each containing unique encoding symbols that are equally useful for recovering a source file. There are many advantages to using fountain codes versus other types of FEC codes, some of which are described in [2] and [3]. One advantage is that, regardless of packet loss conditions and UE availability, fountain codes minimize the number of encoding packets each UE needs to receive to reconstruct a source file. This is true even under harsh packet loss conditions and when for example mobile UEs are only intermittently turned-on or available over a long file download session.

Another advantage is the ability to generate exactly as many encoding packets as needed, making the decision on how many encoding packets to generate on-the-fly while the transmission is in progress. This can be useful if for example there is feedback from UEs indicating whether or not they received enough encoding packets to recover a source file. When packet loss conditions are less severe than expected the transmission can be terminated early. When packet loss conditions are more severe than expected or UEs are unavailable more often than expected the transmission can be seamlessly extended.

Another advantage is the ability to inverse multiplex. Inverse multiplexing is when a UE is able to combine received encoding packets generated at independent senders to reconstruct a source file. One practical use of inverse multiplexing is described in Section 8.

Since for the MBMS file download service the variety of future packet loss, UE availability and application conditions is hard to predict, it is important to choose an FEC solution that is as flexible as possible to work well under unpredictable conditions. Raptor codes provide maximum flexibility unmatched by other types of FEC codes.

This document describes the Raptor encoder and the companion document [5] describes the corresponding Raptor decoder. The document [6] describes a systematic Raptor code that is a modification of the Raptor encoder and decoder.

1.1. Terminology

We use the following terminology hereafter. For a positive value x let floor(x) be x rounded down to the nearest integer and let ceil(x) be x rounded up to the nearest integer. For positive integers i and j let i % j denote i modulo j, and let choose(i,j) denote the number of ways j objects can be chosen from among i objects without repetition. For example, if i = 11 and j = 3 then i modulo j = 2 and choose(i,j) = 165.

For equal-length data strings X and Y let X ^ Y denote the bit-by-bit exclusive-or of X and Y. For two values x and y let pow(x,y) denote x raised to the power y.

Let K denote 1,024, let M denote 1,024·K and let B denote bytes. For example, 2 KB denotes 2,048 bytes, 3 KB denotes 3,072 bytes and MB denotes 1,048,576 bytes.

We use a Gray sequence in the description of the generation of the half symbols in the pre-coding step. For all positive integers i, let g[i] be defined as follows. Let b[i] be the highest order bit that is different in the binary representation of i-1 and i. Then, the binary representation of g[i] is obtained by flipping bit b[i] of g[i-1]. Table 1 provides some example values for g[i]. Note that g[·] has the property that each pair of consecutive elements in the sequence differ in exactly one bit position.

	i [in binary]
	g[i] [in binary]

	0000
	0000

	0001
	0001

	0010
	0011

	0011
	0010

	0100
	0110

	0101
	0111

	0110
	0101

	0111
	0100

	1000
	1100

	1001
	1101

	1010
	1111

	1011
	1110

	1100
	1010

	1101
	1011

	1110
	1001

	1111
	1000

Table 1 – Gray sequence g[·]
We also use the function cnt[i], where cnt[i] returns the number of bits that are set to one in the binary representation of i. For example, if i = 25, then its binary representation is 11001, and thus cnt[i] = 3.

For any fixed positive integer j let g[·,j] be the subsequence of g[·] where for each element in the sequence exactly j bits are set to 1. Thus, g[·,j] can be defined based on g[·] as follows:

· Initialize c = 0, i = 0

· Do forever

· While (cnt(g[c]) ≠ j) c = c+1

· g[i,j] = g[c]

· c = c+1

· i = i+1

Thus, for example, for j=2, g[0,2] = g[2], g[1,2] = g[4], g[2,2] = g[6], g[3,2] = g[8], g[4,2] = g[12], etc. Note that g[·,j] has the property that each pair of consecutive elements in the sequence differ in exactly two bit positions. For all i ≥ 1, let Pos1[i,j] be one of the bit positions in which g[i,j] and g[i-1,j] differ and let Pos2[i,j] be the other bit position in which the differ. Thus, for example, Pos1[2,2] = 0 and Pos2[2,2] = 1.

1.2. Work

The complexity of encoding and decoding is measured in terms of the number of bytes of symbols that are exclusive-ored together or copied, which is defined to be the work. Thus, for example, if a symbol is 64 bytes in length, then computing the exclusive-or of two symbols counts as 64 bytes of work, and copying a symbol from one location to another also counts as 64 bytes of work. The total encoding and decoding times depend also on the amount of bookkeeping operations that are needed to determine which symbols to exclusive-or together or copy. But since the symbols are typically relatively long, and since when there are multiple source blocks the bookkeeping operations are done only once and can be amortized over all the source blocks, the exclusive-or and copy of symbols operations provide a rough estimate of the relative time it takes to encode and decode on different CPU/OS platforms. Furthermore, the efficiency of the bookkeeping operations are implementation dependent, and for a good implementation take a fraction of the time that the exclusive-or and copy operations take.
2. Encoding overview

Symbols are the fundamental data units of the encoding and decoding process, and for each source file all symbols are the same size, typically a few bytes in length. The atomic operation performed on symbols for both encoding and decoding is the exclusive-or operation. A source file is partitioned into one or more source blocks. Each source block is partitioned into some number K of source symbols. A pre-coding step is used to produce L-K redundant symbols from the K source symbols, where L > K, and the combination of the K source symbols and the L-K redundant symbols form the L pre-coding symbols. The Raptor encoder uses keys to produce encoding symbols from the pre-coding symbols. The encoding symbols are organized into encoding packets. Each encoding packet contains encoding symbols together with a key that identifies all of the encoding symbols carried in that encoding packet. The details of these steps are explained in the subsequent sections.

3. Encoding a source block

In this section we describe how pre-coding symbols are generated from the source symbols of a source block, and then how encoding symbols are generated from the pre-coding symbols.

3.1. Pre-coding

The pre-coding step consists of generating redundant symbols from the K source symbols as follows. The redundant symbols consist of S static symbols and H half symbols. Let X be the smallest positive integer such that X·(X–1)/2 ≥ K. The value of S is the smallest positive prime integer that is at least ceil(0.01·K) + X. The value of H is the smallest integer such that choose(H,ceil(H/2)) ≥K + S. Then, L = K+S+H. Let the positions of the pre-coding symbols range from 0 to L-1, where the first K are the source symbols, the next S are the static symbols, and the final H are the half symbols.

For i = 0,…,L-1 let C[i] denote the ith pre-coding symbol. Note that C[0], …, C[K-1] are the original source symbols. Initialize all the redundant symbols C[K],…,C[L-1] to all zeroes.

The S static symbols are defined as follows. For i = 0,…,K-1,

· Compute a = 1 + (floor(i/S) % (S-1))

· Compute b = i % S
· Compute C[K + b] = C[K + b] ^ C[i]

· b = (b + a) % S
· Compute C[K + b] = C[K + b] ^ C[i]

· b = (b + a) % S
· Compute C[K + b] = C[K + b] ^ C[i]

The H half symbols are defined as follows. Let H’ = ceil(H/2).

· For h = 0,…,H-1

· For i = 0,…,K+S-1

· If bit h of g[i,H’] is equal to 1 then C[h+K+S] = C[h+K+S] ^ C[i].

Equivalently, the H half symbols can be defined as follows, which suggests an efficient implementation:

· Initialize symbol T = C[0].

· Repeat the following for i = 1,…,K+S-1

· C[Pos1[i,H’]+K+S] = C[Pos1[i,H’]+K+S] ^ T.

· C[Pos2[i,H’]+K+S] = C[Pos2[i,H’]+K+S] ^ T.

· T = T ^ C[i].

· For all bit positions h of g[K+S-1,H’] that are equal to1

· C[h+K+S] = C[h+K+S] ^ T.

3.2. Keys

Keys are used to uniquely identify encoding symbols generated from the L pre-coding symbols. Each key is 4-bytes in length, and thus the number of potential distinct keys is pow(2,32). When an encoding symbol is to be produced, a key is used to uniquely determine how the encoding symbol is generated from the pre-coding symbols. The pre-coding symbols and thus the source block can be successfully decoded when enough encoding packets carrying encoding symbols with distinct keys have been received.

3.3. Generating encoding symbols

The encoding symbol E[X] that corresponds to key X is generated as follows from the pre-coding symbols C[0],…, C[L-1] of the source block. For j = 0,…,3, let Xj be the jth byte of X. Let V0, V1, V2 and V3 be arrays of 256 entries each, where each entry is a random 4-byte unsigned integer.

Let L’ be the smallest prime integer greater than or equal to L.
1) Generate v from X
a. v = (V0[X0] ^ V1[X1] ^ V2[X2] ^ V3[X3]) % M

2) Generate the degree D from v
a. In Table 2, find the index j such that f[j-1] ≤ v < f[j]

b. Set D = d[j]

3) Generate two positive integers (a, b) from X
a. For j = 0,…,3, yj = (Xj + 1) % 256

b. a = 1 + ((V0[y0] ^ V1[y1] ^ V2[y2] ^ V3[y3]) % (L’-1))

c. For j = 0,…,3, yj = (yj + 1) % 256

d. b = (V0[y0] ^ V1[y1] ^ V2[y2] ^ V3[y3]) % L’

4) Generate E[X] from D and (a, b)
a. While (b ≥ L) do b = (b + a) % L’

b. Initialize E[X] = C[b].
c. For j = 1,…,D-1

i. b = (b + a) % L’

ii. While (b ≥ L) do b = (b + a) % L’

iii. E[X] = E[X] ^ C[b]

	Index j
	f[j]
	d[j]

	0
	0
	--

	1
	10241
	1

	2
	491582
	2

	3
	712794
	3

	4
	831695
	4

	5
	 948446
	10

	6
	1032189
	11

	7
	1048576
	40

Table 2 – Defines the degree distribution for encoding symbols

3.4. Encoding work per source block

The work to produce the static symbols is 3 times the total length in bytes of the source symbols. The work to produce the half symbols is essentially 3 times the total length in bytes of the source symbols. Thus, the total work for generating the pre-coding is 6 times the total length in bytes of the source symbols.

From the degree distribution described in Section 3.3 via Table 2, it is not hard to see that the work on average to generate encoding symbols is 4.63 times the total length in bytes of the encoding symbols generated.

4. Encoding a source file

Suppose F is the length of the source file in bytes, P is the space in bytes for encoding symbols in each encoding packet, and W is the largest source block size in bytes that can be decoded in working memory by a UE. The algorithms described below compute the number N of source blocks into which the source file is partitioned, the number G of encoding symbols for each source block carried in each encoding packet, the number K of source symbols in each source block and the symbol size T in bytes. The number of encoding symbols carried in each packet is then N·G.

In this document the value of P is set to 512 bytes. This means that the total encoding packet length, which includes the IP, UDP and FLUTE headers totaling 44 bytes, is 556 bytes. The symbol size is a power of two times 16 bytes, e.g., 16 bytes, 32 bytes, 64 bytes, etc., depending on the file size. Other values of P and symbol sizes could also be suitable, e.g., P = 256 bytes and the symbol size a power of two times 16 bytes, or P = 480 bytes and the symbol size is a power of two times 20 bytes.

In this document the maximum size W of a source block that can be decoded in working memory is set to 256 KB. Other values of W could also be suitable, e.g., W = 512 KB or W = 128 KB. How the source file is partitioned into source blocks depends on whether the source file size F is smaller or larger than working memory W.

4.1. Smaller files

When the source file size F ≤ 256 KB the source file is encoded and decoded as a single source block, i.e., N = 1. The number G of encoding symbols placed into each encoding packet and the symbol size T is determined by Table 3 based on the file size F. The number K of source symbols in the source file is computed as ceil(F/T). There is one key X contained in each encoding packet.

The values of the G encoding symbols E0 [X],…, EG-1[X] placed into the packet with key X are then computed as follows:

· Generate v from X as described in Step 1) of Section 3.3

· Set v0 = v and for i = 1,…,G-1 compute vi = (vi-1 + M/G) % M

· For i = 0,…,G-1, generate degree Di from vi as described in Step 2) of Section 3.3

· For i = 0,…,G -1, compute Xi = (X·G + i) % pow(2,32)

· For i = 0,…,G -1, generate (ai,bi) from Xi as described in Step 3) of Section 3.3

· For i = 0,…,G-1, generate Ei [X] from Di and (ai,bi) as described in Step 4) of Section 3.3

	F range
	N
	G
	T
	K range

	0 KB < F ≤ 32 KB
	1
	32
	16 bytes
	32 < K ≤ 2 K

	32 KB < F ≤ 64 KB
	1
	16
	32 bytes
	1 K < K ≤ 2 K

	64 KB < F ≤ 128 KB
	1
	8
	64 bytes
	1 K < K ≤ 2 K

	128 KB < F ≤ 256 KB
	1
	4
	128 bytes
	1 K < K ≤ 2 K

Table 3 – Source block parameters for small files

EXAMPLE 1

Source file size F = 10 KB

Number of source file packets = 20

Number of source blocks N = 1

Number of encoding symbols per source block per encoding packet G = 32

Symbol size T = 16 bytes

Number of source symbols K = 640

EXAMPLE 2

Source file size F = 50 KB bytes

Number of source file packets = 100

Number of source blocks N = 1

Number of encoding symbols per source block per encoding packet G = 16

Symbol size T = 32 bytes

Number of source symbols K = 1,600

4.2. Larger files

When the source file size F > 256 KB the source file is partitioned into more than one source block, where the length of each source block is greater than 128 KB but at most 256 KB. Table 4 is used to determine the source block parameters based on the file size F. The size B of each source block is computed as ceil(F/N), and the number K of source symbols per source block is computed as ceil(B/T).
When F is greater than 256 KB but at most 512 KB there are N = 2 source blocks, and each encoding packet contains G = 2 encoding symbols for each of the two source blocks. There is one key X contained in each encoding packet, and the two encoding symbols for each of the two source blocks are generated from X as described in Section 4.1 and placed into the encoding packet.

When F is greater than 512 KB then G = 1 as can be seen in Table 4. Each encoding packet contains one encoding symbol for each of the N source blocks. There is one key X contained in each encoding packet, and an encoding symbol for each of the N source blocks is generated from X as described in Section 3.3 and placed into the encoding packet.

	F range
	N
	G
	T
	K range

	256 KB < F ≤ 512 KB
	2
	2
	128 bytes
	1 K < K ≤ 2 K

	512 KB < F ≤ 1 MB
	4
	1
	128 bytes
	1 K < K ≤ 2 K

	1 MB < F ≤ 2 MB
	8
	1
	64 bytes
	2 K < K ≤ 4 K

	2 MB < F ≤ 4 MB
	16
	1
	32 bytes
	4 K < K ≤ 8 K

	4 MB < F ≤ 8 MB
	32
	1
	16 bytes
	8 K < K ≤ 16 K

Table 4 – Source block parameters for large files

EXAMPLE 3

Source file size F = 400 KB

Number of source blocks N = 2

Size of a source block in bytes B = 200 KB

Number of encoding symbols per source block per encoding packet G = 2

Symbol size T = 128 bytes

Number of source symbols per source block K = 1,600

EXAMPLE 4

Source file size F = 3 MB

Number of source blocks N = 16

Size of a source block in bytes B = 192 KB

Number of encoding symbols per source block per encoding packet G = 1

Symbol size T = 32 bytes

Number of source symbols per source block K = 6,144

4.3. Encoding work per file

The encoding work per file can be seen directly from the encoding work per source block described in Subsection 3.4, i.e., the work to generate the pre-coding for a file is 6 times the total file length in bytes and the work on average to generate packet payloads containing encoding symbols for a file is 4.63 times the total length in bytes of the generated packet payloads.

5. Other considerations

The Raptor code as described in this document is not a systematic code, i.e., all of the original source symbols of a source block are not necessarily among the encoding symbols that are sent. However, the companion document [6] describes how to modify the Raptor code described in this document to design a systematic Raptor code, albeit at the cost of slightly more complex encoding and decoding and slightly higher encoding and decoding workloads
6. Conclusions

A description of the Raptor encoder has been provided that minimizes, under all packet loss and UE availability conditions, the transmission time needed to reliably deliver files to UEs. Furthermore, under all packet loss and UE availability conditions, the number of SDUs that each individual UE needs to receive to fully recover files is minimal. Because Raptor codes are fountain codes that are designed to work well in all conditions and provide unprecedented flexibility, testing the properties of Raptor codes under a wide variety of simulation conditions will only prove the superior performance of Raptor codes versus any other type of reliable file delivery mechanism.

7. References

[1] M. Luby. “LT Codes”, Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, November 16-19 2002, pp. 271-282.
[2] A. Shokrollahi, “Raptor Codes”, Digital Fountain Technical Report, DF2003-06-001

[3] J. Byers, M. Luby, M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast”, IEEE J. on Selected Areas in Communications, Special Issue on Network Support for Multicast Communication, Vol. 20, No. 8, October 2002, pp. 1528 – 1540

[4] T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh, “FLUTE - File Delivery over Unidirectional Transport”, IETF RMT working group, draft-ietf-rmt-flute-08.txt, June 5, 2004

[5] “Raptor decoder specification for MBMS file download”, Digital Fountain, 3GPP SA4 PSM Ad-Hoc #32, Prague, Czechia, Agenda item 6.5.4.1, Tdoc S4-040445, August 16-20, 2004

[6] “Systematic Raptor specification for MBMS file download”, Digital Fountain, 3GPP SA4 PSM Ad-Hoc #32, Prague, Czechia, Agenda item 6.5.4.1, Tdoc S4-040446, August 16-20, 2004
