TSG-SA4#30 meeting
Tdoc S4 (04)0048, Annex B

February 23-27, 2004

Source:
Nokia

Title:
Complexity of AVC baseline decoder with different loopfilter implementations

Document for:
Discussion

Agenda Item:
Annex B for S4-040048

1 Introduction

Loopfilter in AVC codec can be implemented in two different ways: filter whole frame at once after all macroblocks of the frame has been decoded (frame-based filtering) or filter each macroblock right after the macroblock has been decoded (macroblock-based filtering). In principle, macroblock-based filter is more efficient since data locality is better and thus data cache is used more efficiently.

Macroblock-based filtering can only be used if FMO/ASO are disabled or filtering over slice boundaries is disabled. Since both of those features can be freely enabled in an AVC baseline decoder, a compliant decoder that has macroblock-based filtering has to have frame-based filtering for the cases where macroblock-based filtering is not possible. Macroblock-based filtering increases implementation complexity since it requires some of the non-filtered pixels to be temporarily stored for intra prediction. Additional complexity is not significant in ARM decoder, though.

Two sets of simulations were run with the target bitrate of 64kbps for both. In the first set of simulations no FMO/ASO was used, i.e. macroblock could be decoded in raster scan order. In the second set of simulations FMO was used and slice boundaries were not filtered. To achieve equal bitrate, a constant QP value was selected separately for both sequences. All simulations were run on Armulator with processor set to ARM9 104MHz and DRAM wait states set to 9 clock cycles. The decoder used was Nokia AVC decoder with ARM assembly optimizations.

2 Simulation without FMO and ASO

The sequence used was Foreman QCIF encoded at 15fps and 66kbps using QP value of 31. Table 1 summarizes results for frame-based filter and Table 2 for macroblock-based filter. Core cycle values in these tables do not include memory wait states or any other memory related cycles. Total cycle values include all cycles.

Table 1 - Cycles with frame-based filter. FMO/ASO is not used.

	I-cache/D-cache (KB)
	Million Core cycles/s
	Million Total cycles/s
	Change

	4/4
	34.32
	85.95
	

	8/4
	34.32
	73.88
	-12.07

	8/8
	34.32
	69.82
	 -4.06

	16/8
	34.32
	59.09
	-10.73

	16/16
	34.32
	57.11
	 -1.98

	32/16
	34.32
	52.15
	-4.96

	32/32
	34.32
	50.39
	 -1.76

	64/32
	34.32
	49.76
	-0.63

Table 2 - Cycles with macroblock-based filter. FMO/ASO is not used.

	I-cache/D-cache (KB)
	Million Core cycles/s
	Million Total cycles/s
	Change

	4/4
	34.45
	101.17
	

	8/4
	34.45
	91.18
	-9.99

	8/8
	34.45
	84.46
	 -6.72

	16/8
	34.45
	64.78
	-19.68

	16/16
	34.45
	61.67
	 -3.11

	32/16
	34.45
	52.61
	-9.06

	32/32
	34.45
	50.72
	 -1.89

	64/32
	34.45
	49.76
	-0.96

When the cache size is small the decoder that is using frame-based filtering is much faster than the decoder that is using macroblock-based filtering. When the cache size is increased complexity difference diminishes. It seems that macroblock-based filtering scheme works best with bigger instruction cache since most of the reduction in cycle count is a result of increasing of the size of the I-cache. This is logical since there is more program code that is executed in the macroblock decoding loop.

3 Simulations with FMO

To test complexity when FMO is used heavily, interleaved slice group type was used with maximum number of slice groups (8). Each slice group also contained 3 slices. To emphasize the importance of cache, slice groups were organized so that neighboring macroblocks belonged to different slice groups. The sequence used was Foreman QCIF encoded at 15fps and 68kbps using QP value of 36. Table 3 summarizes results for frame-based filter and Table 4 for macroblock-based filter.

Table 3 - Cycles with frame-based filtering. FMO is used.

	I-cache/D-cache (KB)
	Million Core cycles/s
	Million Total cycles/s
	Change

	4/4
	27.72
	80.15
	

	8/4
	27.72
	69.78
	-10.37

	8/8
	27.72
	65.74
	 -4.04

	16/8
	27.72
	57.06
	-8.68

	16/16
	27.72
	53.75
	 -3.31

	32/16
	27.72
	46.04
	-7.71

	32/32
	27.72
	43.74
	 -2.30

	64/32
	27.72
	41.90
	-1.84

Table 4 - Cycles with macroblock-based filtering. FMO is used.

	I-cache/D-cache (KB)
	Million Core cycles/s
	Million Total cycles/s
	

	4/4
	27.72
	88.68
	

	8/4
	27.72
	77.73
	-10.95

	8/8
	27.72
	72.67
	 -5.06

	16/8
	27.72
	59.20
	-13.47

	16/16
	27.72
	55.25
	 -3.95

	32/16
	27.72
	46.25
	-9.00

	32/32
	27.72
	43.67
	 -2.58

	64/32
	27.72
	41.73
	-1.94

Macroblock-based filtering does not provide any advantage over frame-based filtering here. It is actually quite a bit slower when cache size is small. Only with large cache sized is macroblock-based filtering at the same level of complexity as frame-based filtering.

It also seems that decoding complexity of FMO streams is not really higher than that of non-FMO stream when both are encoded to the same bitrate. However, visual quality for decoded FMO streams is lower since higher QP has to be used and loopfilter is not applied on the macroblock boundaries.

4 Memory bandwidth requirements

Typical video decoding system contains processing unit(s) for decoding the bitstream, main memory (SDRAM) for storing decoded images and display system for displaying decoded images. Processing unit contains small quantity of internal fast memory (SRAM) that holds data required for decoding few macroblocks at a time. Main memory contains the data for whole frame(s). Data is transferred between main memory and internal memory using DMA transfers which happen in the background. Bitstream data and reference pixels are transferred to internal memory and decoded macroblocks to external memory. Also when frame-based loopfilter is used, decoded macroblocks need to be transferred back to internal memory, filtered there are then transferred again to main memory. Bitstream and other data are quite insignificant compared to all the pixel data.

Reference pixels for maximum of 16 4x4 luma blocks and 32 2x2 chroma blocks have to be transferred to internal memory. Thus, maximum of 1.5*16*(4+5)^2=1944 bytes of reference pixels per macroblock must be transferred taking into account extra pixels required for 6-tap luma filter and bilinear chroma filter.

Peak bandwidth requirement for decoder system using frame-based filter is

frame_rate * (4*(1.5*width*height) + (width*height/256)*1944)

For QCIF 15 frames/second required memory bandwidth is 4.93 MB/s.

When macroblock-based loopfilter is in use, less memory transfers are needed and the peak bandwidth is then

frame_rate * (2*(1.5*width*height) + (width*height/256)*1944)

For QCIF 15 frames/second required memory bandwidth is now 3.84 MB/s which is 22% less than with frame-based decoding.

DMA set up times, DRAM timings or any other hardware parameters were not taken into account in computations since they are system dependent. These factors can be significant especially in motion compensation where many small blocks of data are transferred.

5 Conclusion

Macroblock-based filtering was tested with Armulator and it was found that it does not offer any significant complexity reductions compared to frame-based filtering. In many cases it is more complex due to increased use of instruction cache.

A decoder with a macroblock-based loopfilter requires 22% less peak memory bandwidth for transferring pixel data compared to a decoder with a frame-based filter. On the other hand, macroblock-based filtering requires more program code to be loaded from main memory to instruction cache, which could be significant if cache size is small.

Page: 1/4

Page: 2/4

