

Mobile DLS
Version 0.991

November 2003

Published By:
The MIDI Manufacturers Association

Los Angeles, CA

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 2 November 2003

PREFACE

The MMA’s Mobile Downloadable Sounds Specification (Mobile DLS) is an extension of DLS-2.1 intended for
mobile applications.

Mobile DLS Specification

RP-0XX

Copyright  2003 MIDI Manufacturers Association Incorporated

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL,
INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT
PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

Printed 2003

MMA

PO Box 3173

La Habra CA 90632-3173

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 1 November 2003

About this Document
The document is a draft version of the Mobile DLS specification developed by the MIDI Manufacturers
Association (MMA) and the Association of Mobile Electronics Industry (AMEI). Public presentation or
distribution of this document outside MMA and AMEI is not permitted without the approval of MMA and AMEI.
This page will be removed from the final specification.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 2 November 2003

TABLE OF CONTENTS

About this Document 1
1. Synthesis Model 2

1.1 Abstract 2
1.2 Overview of Synthesizer Model 2

1.2.1 Control Logic 3
1.2.2 Digital Audio Engine 5
1.2.3 Articulation Modules and Connections 5

1.3 Minimum Device Requirements 6
1.4 Synthesizer Design Detail 6

1.4.1 Control Logic 6
1.4.2 Articulation Data 7
1.4.3 Conditional Chunks 8
1.4.4 Note Exclusivity 8
1.4.5 Voice Allocation 8
1.4.6 Bank Select and Program Change 9
1.4.7 Phase-Locked Samples 9

1.5 Digital Audio Engine 10
1.5.1 Digital Oscillator 10
1.5.2 Digitally Controlled Filter 11
1.5.3 Digitally Controlled Amplifier 15

1.6 Articulation Modules and Connections 15
1.6.1 Signal Flow 15
1.6.2 Connection Block 15
1.6.3 Default, Global, and Local Articulation Data 16
1.6.4 Controller Theory 17
1.6.5 Transforms 17

1.7 Generators 21
1.7.1 Low Frequency Oscillator 21
1.7.2 Envelope Generator 21
1.7.3 Key Number Generator 25

1.8 Performance Controllers 25
1.8.1 Note Number 25
1.8.2 Volume 25
1.8.3 Expression 25
1.8.4 Velocity 25
1.8.5 Pan 25
1.8.6 MIDI Controller 1 (Modulation) 26
1.8.7 Channel Pressure 26
1.8.8 Pitch Bend 27
1.8.9 MIDI Controller 64 (Sustain) 27
1.8.10 MIDI Controller 91 (Reverb) 27
1.8.11 MIDI Controller 93 (Chorus) 27

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 3 November 2003

1.8.12 Registered Parameter Numbers (RPN) 27
1.8.13 Registered Parameter Number Data Entry 27

1.9 Channel Mode Messages 28
1.9.1 Reset All Controllers (MIDI Controller 121) 28
1.9.2 All Notes Off (MIDI Controller 123) 28
1.9.3 All Sound Off (MIDI Controller 120) 28
1.9.4 Other Channel Mode Messages 28

1.10 Active Sensing (0xFE) 28
1.11 Power-on Default Values 29
1.12 Articulation Architecture 29
1.13 Modulation Routing 29

1.13.1 Default Connections 29
1.14 Data Format Definitions 35

1.14.1 Absolute Pitch 35
1.14.2 Relative Pitch 35
1.14.3 Absolute Time 35
1.14.4 Gain 35
1.14.5 Sample Frequency 35
1.14.6 Instrument 35
1.14.7 Region 35
1.14.8 Wave Link 36
1.14.9 Articulation 36
1.14.10 Wave Sample 36

1.15 Tolerances 37
1.15.1 Digital Oscillator 37
1.15.2 Digitally Controlled Filter 37
1.15.3 Digitally Controlled Amplifier 38
1.15.4 LFO Generator 38
1.15.5 Envelope Generator 38

1.16 DLS System Exclusive Messages 39
2. DLS File RIFF Structure 41

2.1 RIFF Format 41
2.2 RIFF Structure 41
2.3 LIST Chunk 44
2.4 <colh-ck>, Collection Header Chunk 44
2.5 <dlid-ck>, DLSID Chunk 44
2.6 <cdl-ck>, Conditional Chunk 46

2.6.1 DLS-1 and DLS-2 Compatibility 48
2.7 <insh-ck>, Instrument Header Chunk 49
2.8 <rgnh-ck>, Region Header Chunk 49
2.9 <art1-ck>, DLS-1 Articulator Chunk 50
2.10 <art2-ck>, DLS-2 Articulator Chunk 53
2.11 <wlnk-ck>, Wave Link Chunk 57
2.12 <wsmp-ck>, Wave Sample Chunk 58
2.13 <ptbl-ck>, Pool Table Chunk 59

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 4 November 2003

2.14 <vers-ck>, Version Chunk 60
2.15 <INFO-list>, INFO List Chunk 60
2.16 DLS Wave File Format 62

2.16.1 Format Chunk <fmt-ck> 62
2.16.2 Data Chunk <data-ck> 64
2.16.3 Data Packing for WAVE_FORMAT_PCM Files 64
2.16.4 Data Packing for 8-Bit Mono PCM 64
2.16.5 Data Packing for 8-Bit Stereo PCM 64
2.16.6 Data Packing for 16-Bit Mono PCM 65
2.16.7 Data Packing for 16-Bit Stereo PCM 65
2.16.8 Data Format of the WAVE_FORMAT_PCM Samples 65

2.17 Instrument Object Hierarchy 66
2.18 Proprietary Chunk IDs 67
2.19 File Examples 68

2.19.1 Generic DLS-1 File 68
2.19.2 DLS-1 File With 3rd Party Extensions 69
2.19.3 Generic DLS-2 File 71

3. Compatibility Notes 72
3.1 Coding Requirements and Recommendations 72
3.2 DLS-1 and DLS-2 Compatibility 72
3.3 DLS-1 Compatibility 73
3.4 Mod LFO to Gain Change (DLS 2.1) 73
3.5 DLSID Integrity 73

4. DLS Header Files 75
4.1 DLS-1 Header File 75
4.2 DLS-2 Header File 80

5. References 83

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 1 November 2003

 TABLE OF FIGURES

FIGURE 1: BLOCK DIAGRAM OF MOBILE DLS SYSTEM ARCHITECTURE ... 4
FIGURE 2: CONTROL LOGIC.. 7
FIGURE 3: FORWARD LOOP .. 10
FIGURE 4: LOOP AND RELEASE... 10
FIGURE 5: LOW PASS FILTER.. 12
FIGURE 6: FILTER RESONANCE... 12
FIGURE 7: FILTER CUTOFF FREQUENCY ... 13
FIGURE 8: MOBILE DLS CONNECTION BLOCK... 16
FIGURE 9: INPUT TRANSFORMS .. 19
FIGURE 10: ENVELOPE ... 22
FIGURE 11: PAN CURVE.. 26
FIGURE 12: DLS FILE FORMAT .. 43
FIGURE 13: USTRANSFORM FIELD .. 53

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 2 November 2003

1. Synthesis Model
1.1 Abstract
Music synthesis architectures have become increasingly prevalent; thus, there is a need for a standard format for
defining musical instruments. Although the General MIDI (GM) specification [1,4] for 128 instrument presets
helps to a small degree, it lacks both the depth and breadth to deliver a truly consistent playback experience across
a wide range of platforms. There is a need for a musical instrument standard that allows composers to define
exactly how each musical instrument sounds on a wide variety of playback devices.
In January 1997, the MIDI Manufacturers Association ratified the first industry-wide standard for transporting
complete sounds between synthesizers. The Downloadable Sounds Level 1 Specification (DLS-1) [2] defines a
first order cross-platform synthesizer model that allows developers to target a large range of playback devices with
a single set of content while still maintaining consistent playback across all those platforms.
In 2000, the Downloadable Sounds Specification Level 2 (DLS-2) [3] was introduced as an extension of DLS-1.
The DLS-2 described a new playback device architecture as well as extensions to the DLS-1 file format. The DLS-
2 specification was the result of collaboration between numerous hardware and software manufacturers
represented by the MMA, as well as input from other organizations intending to use the format, such as MPEG
(IEC/ISO JTC-1 SC-29 WG-11).This Mobile DLS specification defines a wavetable instrument representation
format for mobile applications. Technically Mobile DLS is based on DLS-2 file format and supports both DLS-1
and DLS-2 technologies according to mechanisms introduced in the DLS-2 specification.
It is important to understand that this specification defines a purely symbolic system that can be mapped onto
many different designs. It should not be viewed as a recipe for a specific synthesis architecture, but rather as a
flexible language for mapping common features across various design implementations.
Mobile DLS departs from previous DLS specifications in a few notable ways, including:

• The technical distinction between melodic programs and percussion programs no longer exists. There is
now a single bank + program space, and any bank + program address can hold either type of program.
(ulBank bit 31 no longer treated as part of bank + program address.)

• Wavetables are no longer limited to 16-bit or 8-bit linear PCM. There is an extensible mechanism
allowing the use of other encodings besides linear PCM, including compression codecs.

• It is possible to implement a Mobile DLS device without DCF and Vibrato LFO, however such an
implementation will not be able to play instrument content that is authored to require those features.

• Minimum device requirements including polyphony and system sampling rate have been relaxed due to
the limitations of mobile devices. Reverb and chorus have been made optional, and all voice allocation
decisions are left to the implementor.

• Harmonization with SP-MIDI SMF content, including a requirement for a General MIDI or General
MIDI 2 instrument set.

• Harmonization with Mobile XMF compound content (SP-MIDI SMF plus Mobile DLS instruments).
• Several corrections to the DLS 2.1 text in regard to the DCF, connection transform curve specifications,

note exclusivity, and other matters.

1.2 Overview of Synthesizer Model
The DLS-1 synthesizer consists of the following basic elements for each voice:
• A sampled sound source with loop points (forward loop)
• Two 4-segment envelope generators characterized as ADSR (Attack-Decay-Sustain-Release)
• One Low Frequency Oscillator (LFO) generators
• Standardized response to MIDI controllers

The DLS-2 synthesizer consists of the following basic elements for each voice:

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 3 November 2003

• A sampled sound source with Loop and Release
• Two 6-segment envelope generators characterized as DAHDSR (Delay-Attack-Hold-Decay-Sustain-Release)
• Two Low Frequency Oscillator (LFO) generators
• A low pass filter (DCF) with resonance and dynamic filter cutoff frequency
• Standardized response to MIDI controllers

The Mobile DLS synthesizer consists of the following basic elements for each voice:
• A sampled sound source with loop points (forward loop)
• Two 4-segment envelope generators characterized as ADSR (Attack-Decay-Sustain-Release) corresponding

to 6-segment DAHDSR envelope generators having Delay and Hold set to zero.
• A modulation Low Frequency Oscillator (LFO) generator
• Standardized response to MIDI controllers
Optionally, Mobile DLS synthesizer voice can contain the following elements:
• A sampled sound source with Loop and Release in addition to forward loop
• Two 6-segment envelope generators characterized as DAHDSR (Delay-Attack-Hold-Decay-Sustain-Release)

replacing the mandatory 4-segment envelope generators
• A vibrato Low Frequency Oscillator (LFO) generator
• A low pass filter (DCF) with resonance and dynamic filter cutoff frequency
The usage of the optional elements is supported by signaling. This signaling shall indicate if the optional elements
are used by the content.

For the sake of compact representation, this specification does not repeat the fact that the Loop and Release, 6-
segment envelope generators, vibrato LFO, and filter (DCF) are optional. Simply, the specification may discuss
about two LFOs instead of discussing about a modulation LFO and an optional LFO. In a similar way, the
specification may discuss about the Loop and Release, 6-segment envelopes, and filter without repeating each time
that they are optional for a Mobile DLS synthesizer implementation.
A musical instrument defined in DLS is much more than a simple collection of audio samples. In addition to the
actual sample data and associated loop information, the instrument must indicate under what circumstances each
sample should be used, and how to modulate, or articulate, the sample as it plays. A typical synthesizer
architecture can be broken down into three distinct subsystems:

• Control logic
• Digital audio engine
• Articulation modules and connections

1.2.1 Control Logic
The control logic receives a MIDI note event and determines which instrument should play the note, and, within
that instrument, which sample and articulation combination to use.
Choosing the instrument requires little more than observing the MIDI channel number in the event and selecting
the proper instrument accordingly.
Choosing the sample and articulation to use is not as simple. Almost all sampled synthesis architectures employ
some method of organizing samples by note range across the keyboard. In addition, individual samples can be
assigned to different velocity ranges or multiple samples can be played at once to create a richer, layered sound.
Terms such as layers, splits, blocks, and regions are commonly used in synthesizer jargon to refer to the
management of multiple samples. For the purposes of this specification, they are referred to as regions. Regions
are described further in the Synthesizer Design Detail section (Section 1.4).
Figure 1 represents a Block Diagram of Mobile DLS system architecture supporting two configurations. The
common part of the system is shown in black and optional processing blocks in gray. Mobile DLS system has a
support for signaling mechanism indicating when the optional units of the system architecture, i.e. the Loop and
Release, 6-segment envelope generators, Vibrato LFO, Digital Filter, and corresponding articulation connections,
are used by the content.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 4 November 2003

Vibrato LFO

Modulation
LFO

Modulation
Envelope

Volume
Envelope

Digital Oscillator Digital Filter
Digital
Amplifier

Digital Audio
E i

Articulation

Control
Logic

Figure 1: Block Diagram of Mobile DLS system architecture

1.2.1.1 General signaling mechanism for optional Mobile DLS features
Mobile DLS system supports an external signaling mechanism of optional Mobile DLS synthesizer configurations.
The purpose of the external signaling is to support consistent playback behavior and efficient rendering of Mobile
DLS instruments. Optional Mobile DLS features can be grouped to a control group to simplify the signaling. In
this way, a common control signal can be used for the entire control group, and no separate methods are needed to
control each unit inside the group.

1.2.1.2 Signaling mechanism for Mobile DLS system
The mobile DLS synthesizer depicted in Figure 1 contains a common part, which is illustrated by black boxes and
black lines. This part of the synthesizer voice is called the common part. In addition to the common part, it is
possible to use an optional group of processing blocks, namely, the Loop and Release loop type, two 6-segment
envelope generators replacing the 4-segment envelope generators, Digital Filter (DCF), and Vibration LFO. The
common part is always implemented in a mobile DLS synthesizer. If the optional processing blocks are used, all
items of the following must be implemented: the Loop and Release loop type, two 6-segment envelope generators,
Digital Filter (DCF), and Vibration LFO.
This Mobile DLS specification supports one “control group” consisting of the Loop and Release loop type, two 6-
segment envelope generators, DCF, and Vibration LFO. It means that a synthesizer voice can support the Loop
and Release loop type, two 6-segment envelope generators, DCF, and Vibrato LFO as a group.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 5 November 2003

Mobile DLS content, exploiting the optional group of processing blocks, should not be rendered by a synthesizer
supporting only the common part, see Figure 1. In case the content is rendered, the device should signal a content
mismatch. In essence, this recommendation means that the playback of incompatible Mobile DLS content is not
recommended, so that consistent playback behavior across different Mobile DLS synthesizers can be ensured. If a
manufacturer decides to play incompatible Mobile DLS content, the device should inform the user about the
playback of incompatible content.
A possible implementation for detecting if the optional processing blocks are used is to check if
WLOOP_TYPE_RELEASE is used or if Vol EG Delay Time, Vol EG Hold Time, Mod EG Delay Time, Mod EG
Hold Time, Initial Fc, or Vib LFO to Pitch overrides the corresponding default value. The default values for these
mobile DLS connections are given in Table 6 in section 1.13.1. The values are 0x7FFFFFFF for Initial Fc and 0
for Vol EG Delay Time, Vol EG Hold Time, Mod EG Delay Time, Mod EG Hold Time, and Vib LFO to Pitch.
Other methods can also be used to check if the content uses the optional processing blocks.

1.2.2 Digital Audio Engine
The digital audio engine is the most obvious part of the synthesizer. It is composed of a playback engine (a digital
oscillator), a digitally controlled filter, and a digitally controlled amplifier.
The digital oscillator plays a sampled sound waveform, managing loop points within the waveform so the sound
can play continuously if needed. As the note plays, it can respond to changes in pitch, allowing for real-time
expression such as vibrato and pitch bend.
The digitally controlled filter is a two-pole low-pass filter with dynamically controlled cutoff frequency and a
programmable resonance. Typical applications for the filter include varying the amount of high frequency content
according to MIDI velocity or applying the modulation envelope to reduce the upper harmonics over time to
simulate acoustic instruments.
The digitally controlled amplifier modulates the volume of the instrument. Most importantly, this is used to control
the amplitude shape, or envelope, of the note. It is also used for other types of real-time expression, such as
tremolo.
Pitch, filtering , and volume control of the oscillator and amplifier are critical because they define the shape of the
sound as it plays, and allow it to be dynamically responsive in real time, giving the sampled instrument much more
expression than simple digital audio playback could ever provide. Real-time control of these parameters comes
from modules in the Articulation section, which generate a constant stream of changing pitch, filter, and volume
messages to which the digital audio engine responds.
The digital audio path represents the journey the sound takes from the oscillator to the filter, then to the amplifier,
and then to the digital-to-analog converter (DAC). This path can optionally include additional modules, such as
effects devices, that process the sound as it flows from oscillator to DAC.

1.2.3 Articulation Modules and Connections
The articulation modules are a set of devices that provide additional control over the pitch, filtering, and volume of
the sample as it plays.
The articulation modules include low frequency oscillators (LFOs) to contribute vibrato and tremolo, envelope
generators to define an overall volume and pitch shape to the sample, and MIDI real-time controllers, such as Pitch
Bend and Modulation controller, to give the music real-time expression.
Generally, these modules can be linked in different ways to provide different results. For example, an LFO might
generate a sine or triangle wave, which modulates the pitch of the sample for vibrato or the volume of the sample
for tremolo. Modules can also receive as well as send control signals. An envelope generator might use key
velocity to influence the attack time of the envelope or the cutoff frequency of the low-pass filter.
Articulation modules can be configured in different ways, and this configuration is an important part of the
instrument definition. In fact, the term patch, as used for an instrument preset, refers to the early days when the
hardware modules in an analog synthesizer were "patched" together with cables, which routed signals from
module to module.
The ability to configure the modules is important because it yields a flexible approach to synthesizer design. At the
same time, it is important to define a base-level configuration that can be supported by all hardware. This
specification maps the routing onto a flexible system, allowing for future expansion to encompass not only
extensions of wavetable synthesis, but other forms of musical synthesis as well.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 6 November 2003

1.3 Minimum Device Requirements

Device requirements are essential for the applicability of the DLS technology for mobile applications. The
comparison of device requirements for the Mobile DLS and the existing DLS specifications is illustrated in Table
1. This specification does not review DLS-1 or DLS-2 system after this section. Instead, the specification defines
how to support Mobile DLS instruments. The Mobile DLS device must meet the following minimum
requirements to be considered compliant with the Mobile DLS specification:

Table 1: Comparison Chart of DLS System Requirements
Minimum Device requirements Mobile DLS DLS-2.1 system DLS-1.1 system
Minimum number of simultaneous voices. 5 voices 32 voices 24 voices
Minimum playback sample rate 8 kHz 22.05 kHz 22.05 kHz
Total uncompressed Mobile DLS
instrument content

7 kbytes,
15 kbytes (optional,
required for devices
supporting the
optional group of
processing blocks)

Undefined Undefined

Synthesizer voice architecture units:
Digital filter (DCF) and
Vibration LFO

Optional
(recommended)

Mandatory Not supported

Minimum number of articulation
connections for instruments

8192
(Not exceeding the
total uncompressed
Mobile DLS content
memory limit)

8192 128 sets of
articulation data

Minimum number of regions for
instruments

1024
(Not exceeding the
total uncompressed
Mobile DLS content
memory limit)

1024 128 regions

These figures are minimum requirements only, and should not be viewed as limits to device capabilities. To
encourage product differentiation and future capabilities, manufacturers are encouraged to exceed these minimums
and document their capabilities so that content authors and consumers may know what those capabilities are.

1.4 Synthesizer Design Detail
1.4.1 Control Logic
The control logic implementation is relatively simple. The control logic receives MIDI Bank Select and Program
Change commands to select the instrument on a particular channel, and MIDI Note-On and Note-Off events to
play notes on the same channel.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 7 November 2003

Instrument

Articulation Region

ArticulationArticulation

Region Region

Figure 2: Control Logic

The control logic uses the combination of instrument choice (bank select and program change) and note to select a
specific configuration of the articulation modules and digital audio engine to perform the note.
The control logic must select a specific sample for the digital audio engine to play. The sample is indirectly
accessed through a region. The region defines the key range and velocity range used by the control logic to select
the sample. It also determines a preset value for the overall amplitude of the sample and a preset tuning. The
sample, in turn, defines the actual chunk of digitized sound, along with control parameters such as loop points,
sample rate, and so on.

1.4.2 Articulation Data
The articulation is a complete configuration of articulation modules and their connections, including the envelope
generators and LFOs. These define how the note should be articulated as it plays.
An instrument is composed of one or more regions, which in turn define the range of notes and velocities, which
that particular region should play, the sample that should be played, and the articulation that should be applied to
the sample data by the digital audio engine. Layering is facilitated through the use of overlapping note regions,
with each region using up an oscillator in the device. Velocity splits are facilitated through the use of overlapping
note regions with different velocity ranges, while key splits are facilitated similarly by overlapping velocity ranges
with different note ranges.
Articulation data can either be global to the entire instrument, or it can be local to a specific region within the
instrument. Local articulation data always takes precedence over global articulation data. Global articulation data
determines the default behavior of the instrument. Local articulation can be used to modify the behavior of a
particular region. Mobile DLS content creators should prefer global articulation whenever feasible for memory
efficiency.
A connection in the articulation data consists of a Destination within the synthesizer, a Source, and a Control,
either of which may be internal or external. The combination of Destination, Source, and Control make a unique
connection. The Mobile DLS specification defines default behavior or "implied" connections in the absence of any
articulation data. The synthesizer executes each implied connection unless the articulation data in the instrument
specifically overrides it.
For example, the default connection "Mod LFO Frequency", which has Source "SRC_NONE", Control
"SRC_NONE" and Destination "DST_LFO_FREQ" (See Modulation Routing, Table 5) sets the Modulation LFO
frequency to 5 Hz. To override this, the articulation must specify the exact same Source, Control and Destination
along with the new frequency.
Global articulation data either augments, or as shown above, overrides the implied connections, creating a new set
of default connections for the instrument. Similarly, local articulation data augments or overrides the implied
connections, and overrides any global articulation data.
This document describes a number of sources, destinations and various transforms that can be applied to the
connections between them. It also describes a fixed set of routing connections that must be implemented in order
for a synthesizer to be Mobile DLS compliant. However, these fixed connections represent a small fraction of the
universe of connections that are possible. Developers are free to use these other connections in a Mobile DLS

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 8 November 2003

file, provided that they are protected by Conditional Chunks to guard them from unwitting access by devices that
are not expecting such connections.

1.4.3 Conditional Chunks
Mobile DLS supports both DLS-1 and DLS-2 chunks, which can be implemented by supporting the DLS-2 file
format. In DLS-2 files, DLS-1 chunks and DLS-2 chunks can be supported using conditional chunks. DLS-2
introduced a new functionality into the control logic, namely a block called a "Conditional Chunk." Conditional
Chunks can be used to create libraries that are both forward and backward compatible. As an example, an
instrument in a library may contain DLS-1 chunks, DLS-2 chunks, and chunks for a proprietary device. The file
parser will then select the appropriate chunks for the specific device in use. A detailed description of the
Conditional Chunk can be found in the section called "RIFF Structure."

1.4.4 Note Exclusivity
The Mobile DLS Device has provisions for two forms of note exclusivity on a MIDI channel basis. The first form
of exclusivity involves notes on a MIDI channel with the same MIDI note number. DLS-2 introduced the concept
of a shutting down an oscillator, to give the sound developer more control over polyphony without degrading
sound quality. When a note exclusive event occurs, the Volume envelope proceeds directly to the release phase,
but using the time constant EG1_SHUTDOWNTIME, instead of EG1_RELEASETIME.
By default, if a MIDI Note-On event is received and there are oscillators previously assigned to the same MIDI
note and MIDI channel that have not received a Note-Off event (or Note-On event with a velocity of 0), the
control logic will immediately shutdown those oscillators. However, there is a Non-Self-Exclusive flag in the
fusOptionsfield in the region header chunk that, when set, will defeat this logic. When the Non-Self-Exclusive flag
is set, Note-On events for a particular MIDI note number on a MIDI channel do not cause a shutdown of
oscillators assigned to the same MIDI note and MIDI channel. When the Non-Self-Exclusive flag is not set and a
second Note-On event of the same MIDI note number on the same MIDI channel is received by the synthesis
engine, the second Note-On will cause a shutdown of the first note. The Non-Self-Exclusive flag is off by default.
The second form of note exclusivity is useful for drums and sound effects. Each region can be assigned a Key
Group. If a Note-On event is received and there are oscillators that have been assigned to play a region that has the
same Key Group number as the region for the new Note-On, those oscillators are shutdown. As an example, this
can be used to create mutually exclusive Open, Closed and Pedal High Hat sounds for a drum group. A second
example might be in a sound effects collection to stop a squeaking door sound when the sound of the door closing
is triggered.

Table 2: Supported Note Exclusivity Functionality
Description Mobile DLS instrument data
Oscillator Shutdown with EG1_SHUTDOWNTIME Yes
Channels capable for mutually exclusive mode Any channel

1.4.5 Voice Allocation
Voice Allocation is the means by which digitally controlled oscillators are allocated to play samples as dictated by
the instrument parameters and the MIDI data stream. Ideally, there should be enough oscillators to play every note
and sound effect in the score. However, this may not always be the case. Some devices may have more oscillators
than others, and the composer may create a score that requires a higher polyphony playback than the device can
support. If the MIDI data stream calls for more oscillators than the device is capable of producing, the composer
must be able to accurately predict the result.
For SP-MIDI content the allocation of playback resources is supported by scalable playback of those MIDI
Channels that do not exceed playback capabilities of the device. SP-MIDI defines a dynamic (content dependent)
Channel Priority order that overrides any other channel priorization scheme. More detailed description of SP-MIDI
based voice allocation is defined in [6].
The Mobile DLS synthesizer must default to a channel priority order, which is 10, 1-9, 11-16. The synthesizer
must respond to SP-MIDI MIP messages, i.e. by setting the channel priority order according to the received MIP

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 9 November 2003

message. Choice of an oscillator allocation (note stealing) algorithm is left to the discretion of the implementer, so
long as the channel priorities are handled in the manner just described.
Mobile DLS devices do not have to support DLS StaticVoice Allocation sub-ID #2 with parameters 03 and 04.
DLS System Exclusive message cannot be used to turn off SP-MIDI based voice allocation.

Table 3: Supported Voice Allocation Functionality
Description Mobile DLS instrument data
DLS Static Voice Allocation No
Default channel priority order 10, 1-9, 11-16
SP-MIDI channel priority order is always applied to
SP-MIDI content

Yes

Note stealing algorithm Manufacture dependent

1.4.6 Bank Select and Program Change
The Mobile DLS device must support MIDI Bank Select and Program Change messages as the method of
selecting the instrument to be played on a MIDI channel. The Bank Select address space consists of 16,384 banks,
represented by the MIDI Controller Change MSB and LSB Messages (controllers 0 and 32, respectively), with
each bank supporting up to 128 instruments, for a total address space of over 2 million instruments.
The device does not take any direct action upon receipt of Bank Select messages, but saves the state for future
reference. Upon receipt of a Program Change message, the device should refer back to the previously received
Bank Select values to decode the correct instrument to be played. The Bank Select LSB and MSB are concatenated
as 8-bit bytes to form ulBank as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0Bank Select MSB Bank Select LSB

16
00D

3031

Content authors must send Bank Select MSB, Bank Select LSB, and Program Change messages in that order to
insure that the correct instrument is selected. Bit 31 is informative and indicates a drum instrument. A MIDI
channel that references to ulBank with MSB 0x79, via Bank Select and Program Change, shall be treated as a
melodic channel using the default melodic bank on the device. A Mobile DLS MIDI channel that references to
ulBank with MSB 0x78, via a Bank Select and Program Change, shall be treated as a drum channel using the
default drum bank on the device.
The Mobile DLS device shall provide a General MIDI or General MIDI 2 instrument set. The GM or GM2
percussion programs shall appear at bank select MSB=0x78 LSB=0x00, Program 0x00. If a GM instrument set
(as specified in [4]) is used, the melodic programs shall appear at bank select MSB=0x79 LSB=0x00. If a GM2
instrument set is used, the melodic programs shall appear at bank select MSB=0x79, LSB=0x00 through 0x09, as
specified in [5].
Any custom program(s) from Mobile DLS content files may use the same bank and program number(s) as any of
the Mobile DLS device's built-in GM/GM2 programs; if so, they will temporarily override the corresponding built-
in programs until they are unloaded.

1.4.7 Phase-Locked Samples

Mobile DLS device does not need to support Phase-Locked Samples.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 10 November 2003

1.5 Digital Audio Engine
The digital audio engine consists of the Digital Oscillator, the Digitally Controlled Filter, and the Digitally
Controlled Amplifier.

1.5.1 Digital Oscillator
The Digital Oscillator takes as its input an audio sample data in either 8-bit or 16-bit PCM format, and plays it
back at a rate controlled by the articulation data. It must perform interpolation on the sample data in order to
convert it from the sample rate at which it was recorded to the output sample rate, applying any pitch translation
required by the articulation data.
The sample data can be 16-bit two's complement or 8-bit offset two's complement (often referred to as 8-bit
unsigned data, with zero represented as 0x80). This complies with the both the RIFF WAVE PCM format and
common practice on the Macintosh. To convert between offset two's and standard two's complement (signed 8 bit,
-128 to +127), XOR each byte of the source sample value with 0x80. The sample defines whether it is to be played
once through or looped. If looped, the sample supports one looped region, as defined by a pair of fixed sample data
point indices. The loop start specifies the first sample data point in the loop, while the loop length specifies the
number of samples in the loop. There is no fractional component to the loop points.
Mobile DLS supports the Forward Loop type as shown in Figure 3 and the Loop and Release type shown in
Figure 4.

Transient Loop

Loop Start

Loop Length

Figure 3: Forward Loop

In the Forward Loop, the device begins playback at the start of the sample. Upon reaching the end of the loop as
defined by the loop length, the device returns to the start of the loop. Playback continues in this fashion until the
end of the release segment of the envelope.
In the Loop and Release loop, the device begins playback as in the simple loop form. However, at the time that the
MIDI Note-off event is received, the device does not return to the beginning of the loop, instead playing straight to
the end of the sample. It is very important that the device not jump directly to the release segment, but continue
playing from wherever it may be in the loop straight through to the end of the sample, thus maintaining continuity
in the samples.

Transient Loop

Loop Start

Loop Length

Release

Figure 4: Loop and Release

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 11 November 2003

The sample structure defines the MIDI note number, fine tune, and sample rate of the recorded sample, providing
all the information required for the digital oscillator to pitch shift the sample appropriately for the intended pitch.
The Digital Oscillator must be capable of pitch shifting the sample with a range of up two octaves and down four
octaves. This pitch shift is the sum total of all tuning parameters, including sample fine tune and MIDI pitch bend.

Table 4: Supported Digital Oscillator Functionality
Description Mobile DLS instrument data
Loop type Forward Loop and Loop and Release
Waveform data format RIFF WAVE PCM format

1.5.2 Digitally Controlled Filter
The input to the Digitally Controlled Filter is the audio data stream produced by the Digital Oscillator. The input
samples contained in the audio data stream are then filtered as required by the articulation data. The filter is
defined to be a 12 dB/octave cutoff slope lowpass digital filter with a transfer function of the form:

This transfer function represents a single complex pole pair located within the unit circle at radius r and angle θ
where:

b1 = -2 r cosθ
b2 = r2
K = g (1 + b1 + b2)

where g is a gain factor which depends on the intended resonance. This is done in order to keep the perceived
loudness approximately constant. Otherwise, the addition of resonance will make the sound louder. As the
resonance is increased, g is decreased as follows:

where the resonance is expressed in decibels. Another way to look at this is that the DC gain of the filter is
attenuated by a factor equal to half the decibels of the resonance value. When g is expressed in decibels, the
relationship between g and resonance is:

For example, if the specified resonance is 20 dB, gdB is –10 dB. Since g is multiplicative to the numerator of the
transfer function, it is equivalent to apply it after the filter by summing g with the other gain sources for the signal.
However, it is desirable to perform this within the filter when bit-width becomes a limiting factor to headroom
within the filter delay memory.

Such filters can either express a non-resonant lowpass filter with a frequency response similar to:

2
2

1
11

)(−− ++
=

zbzb
KzH

4010
resonance

g
−

=

2
resonancegdB

−
=

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 12 November 2003

-40

-30

-20

-10

0

10

Log Frequency Normalized to Pi (Fn)

Magnitude in dB

Figure 5: Low Pass Filter

or a filter with a marked resonant peak with a response similar to:

Figure 6: Filter Resonance

The filter will be characterized by a resonance specified in 32-bit gain units (dB/655360), which will represent the
ratio of the gain at the top of the resonant peak to the gain at DC. A filter with a specified resonance of 0 will not
have any resonant peak. It is illegal to specify a negative gain value for resonance. The default resonance value is
0.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 13 November 2003

10-2 10-1 100

-40

-30

-20

-10

0

10

20

Figure 7: Filter Cutoff Frequency

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 14 November 2003

The filter will be characterized by a cutoff frequency in 32-bit absolute pitch units. This frequency is the
frequency of the point of intersection of the DC gain line of the filter (a horizontal line on the frequency response)
with the asymptotic cutoff line of the filter (a downward sloping line at 12 dB/octave). Because of the deviation
from asymptotic behavior near the Nyquist frequency, this asymptotic cutoff line will be the line drawn at –12
dB/octave passing through the point one octave below the Nyquist frequency on the filter frequency response.
This method is used rather than the standard –3 dB point because this makes the filter cutoff frequency less
sensitive to the height of the resonant peak. Note that in most cases, when calculated in this manner, the difference
between the cutoff frequency and the center frequency of the resonant peak (when resonance is present) is very
small. A generalized line in gain-frequency space at –12 dB/octave is defined by the following equation:

In order to find the line that intersects the filter response curve at the Nyquist/2, one must solve for A:

where Fs≡sample frequency and hfilter(Fs/4) is the gain of the filter at the Nyquist/2. The filter cutoff frequency is
the intersection of that line and the DC gain of the filter:

So, θ can thus be expressed as a function of Fc and r:

The resonance of the filter is given by the following expression:

where r and θ are the radius and angle of the poles of the filter. Note that this is decibels, not absolute gain units.
Given this relationship, the radius can be calculated as a function of resonance and θ as shown in the following
equation:

where resonance is specified in decibels. The derivation of these equations is left as an algebraic exercise for the
reader.

2
12

−
− = Afh dB

16
)4/(2

sfilters FhF
A =















++

+−
=

4 42

2

)2cos(21
cos21

4 rr
rrFF s

c
θ

θ

() () ()
() 














−

−−+++−
= 44

22444224

2562
125612161

arccos
sc

cscs

FFr
rFrFFrF

θ









−

+−
=

θ
θ
sin)1(

cos21log20 2

2

10 r
rrresonance

1sin10
110sincos

20/

10/

+
−+

=
θ

θθ
resonance

resonance

r

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 15 November 2003

1.5.3 Digitally Controlled Amplifier
The final module in the signal path is the digitally controlled amplifier (DCA). It modulates the amplitude of the
digital oscillator signal, responding to controls from the articulation section, of which the amplitude envelope is
probably the most important.
For the purposes of this document, the maximum output of the DCA is assumed to be 0 dB or unity gain, though as
a practical matter, some attenuation may be required prior to summing all the oscillator outputs together to form
the final synthesizer output. Therefore, all changes in the DCA are measured in dB units of gain from the 0 dB
reference point, and all units of dB in this document refer to voltage, rather than power. Positive units of gain
represent an increase in output voltage, and negative units represent a decrease in output voltage. The MIDI pan
signal is fed through a transform that converts to left and right amplitude signals. These signals are fed separately
into the DCA to generate stereo output from the monophonic signal entering the DCA.
The gain of the DCA can be varied dynamically through the use of modulators. Since the steps in the input sources
can be rather severe, the designer must ensure that audible artifacts, such as "zipper" noise, are minimized by
filtering the control source. This can be accomplished by interpolating between control events such as MIDI
controller sources.

1.6 Articulation Modules and Connections
The Articulation modules include two low frequency oscillators (LFOs), two envelope generators, and a number of
MIDI controller inputs. A configuration is defined by connecting this base set of modules and setting the controls
for each one.

1.6.1 Signal Flow
The Control Logic module translates MIDI note and sustain events into region/sample choice and associated
control signals, including Key (the note number), Velocity (note emphasis), and Gate. Gate defines the start and
end times of the note, and is used to trigger modulators, such as the LFO and envelope generators. Gate is also
used to control the loop status in the digital oscillator for Loop and Release samples.
The digital oscillator unit plays the sample. It is primarily controlled by the Pitch Sum node, which accumulates
signals from modulation sources to deliver the final pitch for the instrument.
The output samples of the digital oscillator flow into the digital filter. The cutoff frequency and the resonance
characterize the operation of the filter.
The digitally controlled amplifier takes the output samples of the digital filter. It is controlled by two signals: the
Volume Sum node, which accumulates signals from modulation sources to deliver the final volume of the
instrument; and the MIDI pan signal, which sets the stereo position of the stereo digital output.
Control signals from MIDI modulation sources, such as Volume and Pitch Bend, flow through connections which
use their gain values and transforms to define the range of the control. The Volume Sum node (DST_GAIN) can
be viewed as a summing node if signals are represented in dB, or as a multiplier if signals are represented in linear
units. 0 dB is defined as the maximum output level at the Volume summing node (DST_GAIN).

1.6.2 Connection Block
Each connection can be viewed as a block that defines the usSource, lScale, usControl, optional usTransform, and
usDestination.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 16 November 2003

NormusSource

NormusControl

lScale

Transform Σ

Figure 8: Mobile DLS Connection Block

Each external source goes through a normalization block that scales and applies certain types of transforms to the
signal. Further transforms may be applied at a later stage. The normalization block scales the incoming values to a
range of -1 to +1 for a bipolar transfer function, or 0 to 1 for unipolar transforms. The output of the transform may
also be inverted at this stage.
All connections to a single destination are summed together to produce the final input for that destination. The
pseudo-code for a connection block is as follows:

usDestination = usDestination + usTransform(Norm(usSource) *
(Norm(usControl) * lScale))

Controlled Scaled Source connection blocks use the usControl input to modulate or control the scaled usSource
input routed to the usDestination. A Controlled Scaled Source connection consists of usDestination, lScale,
usSource, usControl and an optional usTransform. The result is a signal that is modulated by both the usSource
input and the usControl input. An example of this is the LFO Mod Wheel to Pitch connection block, which allows
the Modulation controller (CC1) to determine the amount of LFO output applied to usDestination DST_PITCH,
which is the frequency of the digital oscillator.
Any unconnected inputs are seen as a full scale signal, so that the output of the normalization block is either +1
(for non-inverted signals) or -1 (for inverted signals). With no input connected to usControl, the connection block
takes on the simpler form of a Scaled Source, where lScale sets the amount of modulation that flows from the
source input to the destination.
Scaled Source connection blocks scale the usSource input routed to usDestination. A Source Scale connection
block consists of usDestination, lScale, usSource, and an optional usTransform. The usControl input is set to
SRC_NONE. The result is a signal that is modulated by the usSource input and applied to the usDestination. An
example of this is the EG2 to Pitch connection block, the amount of modulation applied to pitch from the Pitch
Envelope to usDestination DST_PITCH.
With no input on either usSource or usControl, the connection block takes on the simplest form of a Scaled
Connection, which is a bias applied to the destination. As examples, Scaled Connections are used to alter the
playback frequency, to set the initial gain of the digital amplifier, or to set the initial cutoff frequency or resonance
of the filter.

1.6.3 Default, Global, and Local Articulation Data
The Mobile DLS specification defines default connections, which determine the behavior of the instrument in the
absence of specific articulation data. An important concept of DLS is that each combination of usSource,
usControl and usDestination defines a unique connection for that region. In the absence of articulation data for a
specific connection, the default values for that connection will be used. If the articulation data contains such a
connection, it takes precedence over the default values for that connection only. Duplicate connections within a
single region are not allowed, and the behavior of the device is undefined under those circumstances. Note that

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 17 November 2003

Mobile DLS devices do not give any preference to <art2-ck> chunks over <art1-ck> chunks, they are treated
identically.
For example, if a region contains an <art1-ck> chunk and an <art2-ck> chunk, and the EG1 Release Time is set to
different values in the two articulation chunks, the actual release time is indeterminate for Mobile DLS devices. To
avoid this condition, the <art1-ck> should be guarded by a <cdl-ck> conditional chunk that excludes devices that
support DLS-2 . This conditional chunk will cause the Mobile DLS device to ignore the <art1-ck> and read only
the <art2-ck>.
Global articulation data defines the behavior of any regions that do not have applicable local articulation data,
either because the local articulation data does not exist or the device fails to meet the conditional criteria. In the
event that no applicable local articulation data exists, the instrument behavior for that region is defined by the
global articulation data. If local articulation data does exist that meets the conditional criteria of the device, the
local data will override all global articulation data. In other words, global articulation data, and its implied default
connections, must be treated as a monolithic block of data: used as a whole; or discarded in favor of local
articulation data. This is in contrast to default articulation data, which is overridden on a connection by connection
basis, both at the global and local level. This is an important distinction to understand and forms the basis for the
parsing code.

1.6.4 Controller Theory
All control signals in the DLS synthesizer model are normalized to a range from -1 to 1. They may also go through
an optional series of input transforms. Internal sources are assumed to generate their outputs already normalized.

The following equations all assume that the controller input signal "Input" and the controller range "Range" are
non-negative integers. They also assume that the controller input minimum value is zero and the controller input
maximum value is “MaxValue”. If necessary, the following saturation operation is recommended in order to
ensure the upper bound of the controller input signal:

if (input > MaxValue)
 input = MaxValue;

For linear or switch input transforms “MaxValue” is equal to “Range – 1”, whereas for concave or convex input
transforms the controller input signal is saturated at a “MaxValue” equal to “Range*(127/128)”. This difference
in “MaxValue” for concave and convex transforms ensures that the output values of each one of them are equal
between the two cases: (i) when a 7-bit controller is used, and (ii) when a 14-bit controller with 7 least significant
bits equal to zero is used.

For example, MIDI controllers are assumed to have input values from 0 to 127 with a range of 128. On the other
hand, the pitch bend controller, whose range is 16,384, is assumed to have input values from 0 to 16,383 for linear
or switch transforms, and from 0 to 16,256 for concave or convex input transforms. For example, the formula for
normalizing the Modulation controller CC1 for linear, unipolar output is as follows:

Output = CC1 / 128

Another example, normalizing the Pitch Wheel for bipolar linear output is as follows:

Output = 2 * (PitchWheel / 16384) - 1

1.6.5 Transforms
In many cases, the input data to a module must be transformed into units that can be accepted by that module. For
example, the linear output of an envelope generator needs to be converted into a format compatible with the DCA,
typically an exponential transform. Likewise, the link between a MIDI volume input and the DCA must undergo a
similar transform. To accomplish this, the connection mechanism allows for an optional transform to be defined
for every connection. Only the transforms specified in the Default Routing Modulation Table 5 are required for

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 18 November 2003

Mobile DLS devices , thus all the specified connections are fixed. However, different routing is allowed within
articulation list chunks that are marked with proprietary conditional chunks to allow manufacturers to support
specific features in their own Mobile DLS devices.

1.6.5.1 Invert
The Invert flag inverts the polarity of the controller signal when set. For MIDI controllers, this operation must be
performed before the controller input is normalized, in order to reflect the asymmetry of the MIDI controllers. The
inversion algorithm is defined as follows

if (invertFlag)
 input = MaxValue – input;

1.6.5.2 Bipolar
The Bipolar flag maps the controller input signal to a range of -1 to +1. For non-linear input transforms, this
introduces a slight complication, as the non-linearity must be mirrored in both the positive and negative quadrants.
Thus, for concave and convex input transforms the following algorithm can be used to perform the bipolar
mapping:

if (bipolarFlag)
{
 value = (2 * input) - MaxValue;
 output = sgn(value) * InputTransform(abs(value));
}
else
 output = InputTransform(input);

On the other hand, for linear and switch input transforms, the algorithm is:

if (bipolarFlag)
{
 value = InputTransform(input);
 output = (2 * value) - 1;
}
else
 output = InputTransform(input);

1.6.5.3 Input Transforms
The Input Transform maps all controller signals to a range of 0 to 1. The various transforms and their
associated equations are as follows:

Linear: Input values map linearly as defined by the following equation:

Output = Input / Range

Concave: Input values are mapped in a concave fashion as defined by the following equation:

For Input > (1.0 – 10
-12/5

)*MaxValue,
 Output = 1.0
For Input ≤ (1.0 – 10

-12/5
)*MaxValue,

 Output = –(5/12)*log10(1.0 – Input/ MaxValue)

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 19 November 2003

Convex: Input values are mapped in a convex fashion as defined by the following equation:

For Input < (10
-12/5

)*MaxValue,
 Output = 0.0
For Input >= (10

-12/5
)*MaxValue,

 Output = 1.0 + (5/12)*log10(Input/MaxValue)

Switch: Input values are mapped to either zero or one as follows:

For Input values < Range / 2, Output = 0
For Input values ≥ Range / 2, Output = 1

Supported input transforms are shown in Figure 11.

Figure 9: Input Transforms

1.6.5.4 History of the Concave Transform

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 20 November 2003

The Concave Transform was created to maintain compatibility with existing General MIDI implementations. Its
name comes from the shape of the curve when graphed as a linear volume output. In DLS Level 1, it was defined
as a series of fixed connections from MIDI controllers 7 and 11, and velocity, to attenuation in dB using the
following formula:

attendB = 20 x log10(127
2
 / Input

2
)

To map this fixed transform onto the flexible routing model found in DLS Level 2, it is necessary to adjust the
output of the transform so that it produces the desired curve in the range 0 to 1, such that when scaled at 96 dB and
applied to the DST_GAIN summing node, it produces the same output curve as that of the DLS Level 1 and GM
devices.
Due to these changes, in this specification, convex transform corresponds to the theoretical definition of the
concave function and concave transform corresponds to the theoretical definition of the convex function.

In DLS2.1, the scaling factor of 5/12 was derived from the 96 dB scaling factor, as shown here:

The attenuation formula from DLS1.0:

20*log10((127/Input)
2
)

is equal to:
40*log10(127/Input)

Dividing by 96 to scale back to a range of 0–1:

(40/96)*log10(127/Input)
reduces to the equivalent:

(5/12)*log10(127/Input)

Since this was attenuation, and DLS2 uses gain, we invert the input, so it becomes:

(5/12)*log10(127/(MaxValue – Input))

The lScale values for connections to DST_GAIN are intended to be negative numbers. For example, the default
lScale value for velocity to gain is –96dB. And the input transform is defined to be inverted concave. So the
default velocity to gain calculation is:

gain = -96 * (5/12)*log10(127/(127 – (127 – velocity)))

Selecting a velocity of 127 produces 0dB of gain:

gain = -96*(5/12)*log10(127/(127 – (127 – 127))) = 0dB

Selecting a velocity of 0 produces -96dB of gain – it forces the inverted concave transform to equal 1.0
because the input is equal to MaxValue:

gain = -96*(5/12)*log10(127/(127 – (127 – 0)))
gain = -96*1.0 = -96dB

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 21 November 2003

It should be noted that 96dB is an approximation of 16-bit dynamic range. The true value is 20*log10(65536), or
96.3296dB. However, the approximation cancels out when re-linearizing the final output to gain, only producing a
difference when the output is saturated to 1.0.

The concave transform in DLS2.1 has some problems. First, it was defined using Range, when the intended
implementation used MaxValue. Second, the output is greater than 1.0 before the input reaches MaxValue when
applied to a 14-bit controller. Third, when the 7 least significant bits of a 14-bit controller are zero, the output
values do not equal the output values using a 7-bit controller.

The first and third problems are addressed by using (127/128)*Range instead of Range. The second problem is
addressed by the modified saturation threshold equation.

1.6.5.4 Output Transforms
There are no output transforms defined in the Mobile DLS. The bits in the output transform field must all be set
to zero for compatibility with future versions of DLS.

1.7 Generators
Each oscillator has two low frequency oscillator generators and two envelope generators. Each generator has a set
of controls to determine its behavior.

1.7.1 Low Frequency Oscillator
The LFO generates a periodic waveform that is used to modulate the pitch or volume of the instrument. The LFO
waveform may be either a triangle or sine wave.

1.7.1.1 Frequency
The frequency control sets the wave frequency between 0.1 Hz and 20 Hz in absolute Pitch Cents.

1.7.1.2 Start Delay Time
The LFO starts after a preset delay time from 10 milliseconds to 10 seconds in Time Cents. The device is not
allowed to produce any artifacts when the LFO starts after a delay. If the device cannot synchronize the LFO phase
to the end of the delay cycle, it is recommended that the LFO output be ramped up to full scale over a one cycle
period to eliminate the possibility of introducing a DC offset into the output path.

1.7.2 Envelope Generator
The envelope generator creates a six-segment envelope. The segments correspond to the attack, decay, sustain, and
release phases of the traditional analog ADSR (Attack, Decay, Sustain, Release) design, plus two additional
phases: Delay and Hold. The following diagram shows the relationship between the various envelope phases and
the output levels.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 22 November 2003

dB
 o

r
Pi

tc
h

C
en

ts

Time

Volume Envelope (dB)
Pitch or Filter Envelope (Pitch Cents)

0%

100%

AttackDelay Hold Decay Sustain Release

Figure 10: Envelope
Upon receiving a Note-On event, the envelope enters the Delay phase, and the output of the envelope generator
remains at zero throughout this phase. At the completion of the Delay phase, the envelope generator begins the
Attack phase, where it transitions from zero to full scale in linear fashion. After the Attack phase, the generator
enters the Hold phase, where the output holds at full scale for the specified time. After the Hold phase, the
generator enters the Decay phase, where it falls to the Sustain Level in an exponential decay fashion.
Upon reaching the Sustain Level, the generator remains at this level until a Note-Off event (or a Note-On event
with a velocity of 0) is received. Upon receiving a Note-Off event, and regardless of the previous state, the
generator enters the Release phase, with the output falling in an exponential fashion from its current level until it
reaches the pre-determined zero level again (typically -96 dB).
Decay and Release Time Constants are actually rates defined as the time for the signal to decay from full scale to -
96 dB, at which point it is assumed that most implementations will make an abrupt transition to infinite
attenuation.
IMPORTANT: The following envelope diagrams show all envelope segments with linear slopes. The Decay and
Release segments are actually exponential decay functions, but are shown linear in these diagrams as a
simplification.

1.7.2.1 EG Delay Time
The delay time determines the amount of time in Time Cents from Note-On until the Attack segment begins.
Nominally, this time will be set to zero so that no delay in the envelope occurs. If it is not zero, then the envelope
generator should hold its output to zero for the specified delay time, then begin the attack segment. Note that the
digital oscillator still begins playing the sample at the time the Note-On is received, so this only has the effect of
cutting off the start of the sample.

EG Delay Time

1.7.2.2 EG Attack Time
The attack time determines how long the attack segment lasts from the end of the Delay Time until the envelope
hits peak level. When the output of the envelope is applied to gain, the Attack segment affects the output of the

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 23 November 2003

oscillator in a linear fashion with respect to amplitude. This requires a slightly more complex coupling to the
DCA, since the envelope output will undergo a different transform during the attack segment than during all other
segments.
When the envelope output is applied to any other destination, the effect is linear with respect to the units used at
that particular destination. For example, when applied to pitch, the envelope will always affect the pitch of the
oscillator in a linear fashion with respect to units in Pitch Cents, which is exponential with regard to frequency.
The filter cutoff Fc will likewise be affected in a linear fashion with respect to Pitch Cents, or exponential with
regard to frequency.
If the attack time is set to zero, the envelope generator should immediately go to peak output. Likewise, any
controls to which the envelope is routed should also go to full output. For example, if the attack time of the
Volume EG is set to zero, the amplitude of the DCA at the time the first sample is output must be at full scale so
that any transients in the sample are faithfully reproduced.

EG Attack Time

1.7.2.3 EG Velocity to Attack Scaling
The MIDI velocity scales the duration of the attack segment. Since all times are described in Time Cents, which
are logarithmic units, the effect of adding values in Time Cents is multiplicative in actual time. The formula is as
follows:
 Attack_Timetimecents = Nominal_Attack_Timetimecents + (Velocity / 128) * Attack_Scalartimecents

Where Nominal_Attack_Time is the attack time constant set by the articulation data, Velocity is the MIDI Note-On
velocity, and Attack_Scalar is the lScale value from the EG Velocity to Attack Time connection.

1.7.2.4 EG Hold Time
After the attack phase, the envelope generator enters the optional Hold phase. If the Hold Time is set to zero, then
the generator should proceed directly to the Decay Phase. If the Hold Time is not zero, the generator must hold the
generator output level at full scale for the specified time. The Hold Time is specified in Time Cents.

EG Hold Time

1.7.2.5 EG Decay Time
The decay time determines the duration of the decay segment. Because the decay segment is an exponential decay
function, it is not possible to express the decay function purely in terms of time. Instead, Decay Time is expressed
as the amount of time it takes for the signal to decay from full scale to -96 dB in Time Cents.
Since the Sustain Level sets the end point of the Decay segment, the exact duration of the Decay segment will be
determined both by the Decay Time, and the Sustain Level. In effect, the Decay Time can be thought of as setting
the inverse of the decay rate, as opposed to an absolute time. The dashed line in the following figure indicates how
the Decay Time value is actually determined.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 24 November 2003

EG Decay Time

1.7.2.6 Decay Scaling
The MIDI note number scales the duration of the decay segment. For example, increasing the note number could
decrease the duration of the decay, just as a piano note decays slower for lower notes and faster for higher notes.
The formula is as follows:

Decay_Timetimecents = Nominal_Decay_Timetimecents + (Note_Number / 128) * Decay_Scalartimecents

Where Nominal_Decay_Time is the decay time constant set by the articulation data, Note_Number is the MIDI
note number, and Decay_Scalar is the lScale value from the Mod EG Note to Decay connection.

1.7.2.7 EG Sustain Level
The Decay segment ends when the Sustain Level is reached and the note sustains at this level until the Note-Off
event (or Note-On event with a velocity of 0) is received. Raising the Sustain Level will shorten the Decay
segment and lengthen the Release segment, while lowering it will have the opposite effect. Sustain is defined as a
percentage of the envelope peak in 0.1% increments. Note that Sustain Level is in ordinal units, the actual range is
determined by the lScale setting of the connection and the unit type is determined by the units used by the
destination node. Thus the sustain level as applied to CONN_DST_GAIN is in Gain units (dB), and similarly
when applied to CONN_DST_PITCH or CONN_DST_FILTER_CUTOFF is in Pitch Cents.

EG Sustain Level

1.7.2.8 EG Release Time
The release time constant determines the duration of the release segment. Like the Decay time, the Release
segment is an exponential decay measured as the time it takes to decay from full scale to –96 dB. Just as with the
Decay segment, the actual time is dependent on the Sustain Level, or in the case of a Note-Off (or Note-On with a
velocity of 0) before the Sustain Level is reached, then the actual time is dependent on the level at the time the
Note-Off (or Note-On with a velocity of 0) is received.

EG Release Time

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 25 November 2003

1.7.2.9 EG Shutdown Time
The shutdown time constant determines the duration of the release segment when a note-exclusive or key-
exclusive event occurs. It behaves identically to the EG Release Time constant, but is only invoked when an
exclusive event causes the shutdown of an oscillator.

1.7.3 Key Number Generator
The Key Number Generator provides a mechanism for modifying the region selection process. It exists for Mobile
DLS instruments primarily as a means to accommodate the behavior of the RPN2 Coarse Tuning Parameter. The
function is fixed and this connection should not appear in a Mobile DLS file except in a proprietary conditional
chunk. Because the Key Number generator affects region selection, input connections to the Key Number
Generator are only valid at the global articulation level in the instrument LIST chunk.
The Key Number Generator has a single input DST_KEYNUMBER and a single output SRC_KEYNUMBER.
The default input connections route the MIDI note number and RPN2 to DST_KEYNUMBER, allowing for
modification of region selection.
The default output connection routes the Key Number Generator to Pitch. There is an implied connection from the
output of the Key Number Generator to the control input that selects the correct region. The Key Number to Pitch
output connection is allowed at both global and local articulation levels.

1.8 Performance Controllers
MIDI Controllers can be used to modify synthesis parameters in real-time to add depth to a performance. The
following MIDI controllers are supported:

1.8.1 Note Number
The MIDI Note Number normally determines the playback frequency of the instrument. The default connection is
to map an Equal Temperament 12-tone (ET-12) scale to the keyboard, such that the difference between each key is
an ET-12 semitone. However, it is sometimes useful to change the default key scaling so that the pitch does not
change across the keyboard. The Mobile DLS Device architecture allows the Note Number to Pitch connection to
be specified with a lScale of zero, which means that the Note Number will have no effect on the pitch. Other
values may be used for lScale to modify the tuning for quarter-tones or other useful increments.

1.8.2 Volume
MIDI Volume Controller events (MIDI Controller 7) are connected by default to the DST_GAIN summing node
to modify the output volume, and are mapped through the Concave Transform.

1.8.3 Expression
MIDI Expression Controller events (MIDI Controller 11) are connected by default to the DST_GAIN summing
node to modify the output volume, and are mapped through the Concave Transform.

1.8.4 Velocity
MIDI Note-on Velocity is connected by default to the DST_GAIN summing node to modify the output volume
and is mapped through the Concave Transform. The connection may be scaled as either –96 dB, which matches
the curve of a typical GM device and is the default setting, or 0 dB, which means that Velocity has no effect on the
output. The latter is used to simulate organs, harpsichords, and other instruments that do not respond to velocity.

1.8.5 Pan
Only devices that have stereo output are required to support channel panning. Mobile DLS devices are not
required to support the panning of individual notes.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 26 November 2003

After normalization, the MIDI Pan event (MIDI Controller 10) is nominally fed directly to the digitally controlled
amplifier where it is used to set the pan position in the stereo field. An equal power equation is used to define the
distribution from left to right. DST_PAN is the destination for pan control sources, and is measured in percentage
units with a minimum value of –50% and a maximum value of 50%. After all inputs to DST_PAN have been
summed, the value should be limited to the range +/-50%. The equation for individual channel gain in dB is given
by the following formula:

 Left Channel Gaindb = 20 log10 (cos (π / 2 * (DST_PAN + 50%)))

 Right Channel Gaindb = 20 log10 (sin (π / 2 * (DST_PAN + 50%)))
Note that for values of –50% and 50%, one of the two stereo channels will have a gain of negative infinity,
meaning that channel should be fully attenuated, while the other will have a gain of 0 dB. The following is a graph
of the left and right channel outputs plotted against values of the DST_PAN node:

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

-50.00% -25.00% 0.00% 25.00% 50.00%

DST_PAN

Left
Right

Figure 11: Pan Curve

Mobile DLS device must support active panning of a signal within the stereo field without sound artifacts, which
will require smoothing filters to the DCA inputs to prevent zipper noise in most implementations. The exact form
of these filters is up to the implementer, however there must be no perceptible control lag in the response to MIDI
Controller 10 events.
Due to asymmetry in the MIDI controllers, it is impossible to pan a sound to full right unless the lScale value
applied to DST_PAN is larger than 50%. For this reason, the default connection from CC10 to DST_PAN is
50.8%. When the value of CC10 is 64 the sound will be placed exactly in the center, while values of 0 or 1 will
attenuate the right channel completely and a value of 127 will attenuate the left channel completely.

1.8.6 MIDI Controller 1 (Modulation)
The Modulation controller (CC1) may be used to set LFO depth, with separate level assignments for LFO pitch
modulation and LFO volume modulation, or filter cutoff frequency modulation.

1.8.7 Channel Pressure
Channel Pressure may be used to set LFO depth, with separate level assignments for LFO pitch modulation, LFO
volume modulation, or filter cutoff frequency modulation.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 27 November 2003

1.8.8 Pitch Bend
The MIDI Pitch Bend event is routed directly to the pitch summing node, and scaled by RPN 0. Registered
Parameter Number data entry can be used to set the pitch range.

1.8.9 MIDI Controller 64 (Sustain)
Sustain Pedal MIDI events (MIDI Controller 64) go directly to the control logic, which uses them in conjunction
with note on and off events to determine which notes are on.

1.8.10 MIDI Controller 91 (Reverb)
Mobile DLS devices do not need to support Reverb, but if supported the following reverb control must be
implemented. MIDI Controller 91 events are routed by default to the Reverb effects sends. This determines the
amplitude of signal fed to the reverb effects unit. Note that the units for DST_REVERB are in percentage of
amplitude, not in dB units.

1.8.11 MIDI Controller 93 (Chorus)
Mobile DLS devices do not need to support Chorus, but if supported the following chorus control must be
implemented. MIDI Controller 93 events are routed by default to the Chorus effects sends. This determines the
amplitude of signal fed to the chorus effects unit. Note that the units for DST_CHORUS are in percentage of
amplitude, not in dB units.

1.8.12 Registered Parameter Numbers (RPN)
Registered Parameter Numbers (RPNs) for remote data entry are supported, as per the General MIDI specification.
The parameters include Fine Tune, Pitch Bend Range, and Coarse Tuning.

1.8.12.1 RPN 0 (Pitch Bend Range)
RPN0 (Pitch Bend Range) is used to alter the range of the pitch bend wheel. The Mobile DLS Device must support
a maximum pitch bend range of at least +/- 12 semitones.

1.8.12.2 RPN 1 (Fine Tuning)
RPN1 (Fine Tuning) is used to alter the pitch in fine increments of less than a semitone. The control operates in
1/8192 semitone increments and has a range of –8192/8192 to +8191/8192. The Mobile DLS Device must have a
minimum resolution of 1 cent (1/100th of a semitone) with accuracy of no less than plus or minus 1/2 cent. The
default setting is 0, which does not alter the pitch.
Mobile DLS devices do not have to support the use of Fine Tuning on GM drum instruments.

1.8.12.3 RPN 2 (Coarse Tuning)
RPN2 (Coarse Tuning) is used to transpose by semitones. Coarse Tuning alters the MIDI note number before the
articulation data, region, and sample selections are made by the Control Logic. This placement prevents unwanted
timbre shifts in instruments that have been multisampled. The default setting is 0, which does not alter the pitch.
To accomplish this, the MIDI note number and RPN2 controller inputs are summed together in a block called the
Key Number Generator. The output of the Key Number Generator is used to drive the region selection logic as
well as set the base frequency of the oscillator prior to any modulations.
Mobile DLS devices do not have to support the use of Coarse Tuning on GM drum instruments.

1.8.13 Registered Parameter Number Data Entry
The Mobile DLS Device is required to support the Data Entry MSB and Data Entry LSB Controllers (MIDI
Controllers 6 and 38, respectively), but is not required to support the Data Increment and Data Decrement
Controllers (MIDI Controllers 96 and 97, respectively).

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 28 November 2003

The following protocol should be used to set RPN values, where n is the MIDI channel number, ww is the RPN
MSB, xx is the RPN LSB, yy is the Data MSB, and zz is the Data MSB (all values are in hexidecimal).

 Bn 65 ww // Send RPN MSB
 Bn 64 xx // Send RPN LSB
 Bn 06 yy // Send RPN Data MSB
 Bn 26 zz // Send RPN Data LSB
 Bn 65 7F // Clear RPN MSB
 Bn 64 7F // Clear RPN LSB

The last two messages set the RPN to an invalid parameter number, thus preventing an inadvertent change to an
RPN value by a subsequent RPN Data MSB or LSB message. If a number of RPN values need to be set, the
messages to clear the RPN MSB and LSB may be left to the end of the sequence of messages to reduce the
overhead. Note that only the first “Bn” status byte is necessary due to running status, but all are shown here for
clarity.

1.9 Channel Mode Messages
The Mobile DLS Device must also support the following Channel Mode messages:

1.9.1 Reset All Controllers (MIDI Controller 121)
The Reset All Controllers message makes use of the data byte to allow for multiple levels of functionality. There
are currently two data byte values defined. When the data byte is 0, the device will reset all controllers to their
default values except the following controllers:
• Volume (Controller 7)
• Expression (Controller 11)
• Pan Control (Controller 10)

When the data byte is 127, the device will reset all controllers to their power-on default values (see Section 1.11
below). This should include all MIDI controllers and RPNs. It is left to the discretion of the device designer
whether to reset any NRPNs used by the device. However, the behavior must be documented.

1.9.2 All Notes Off (MIDI Controller 123)
This message performs a Note-Off event for all notes on the specified MIDI channel. If the Sustain Pedal (MIDI
Controller 64) is active, the notes should continue to sustain until a Sustain Pedal release event is sent.

1.9.3 All Sound Off (MIDI Controller 120)
The Mobile DLS device must respond to an All Sound Off message by silencing all notes, that are currently
sounding on the specified MIDI channel. Upon receiving the message, all notes should be turned off, and the
output set to zero as quickly as possible. Envelopes may be ramped to prevent clicks or pops in the output. This is
a panic message, and intended to be used under user control to silence the device in adverse situations. It is not a
replacement for sending individual Note-Off events.

1.9.4 Other Channel Mode Messages
It is not required that the Mobile DLS device support the Omni Off, Omni On, Mono On, and Poly On messages,
which are MIDI Controller numbers 124 through 127 respectively. If a device does not respond to any of these
messages, it should treat them as All Notes Off messages. In all cases, the device response must be documented.

1.10 Active Sensing (0xFE)
The Mobile DLS device is not required to respond to Active Sensing messages.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 29 November 2003

1.11 Power-on Default Values
The device must reset the following control values during power-on, upon receiving the DLS Device On message,
and when a Reset All Controllers message is received with data byte 127.

• Volume (default = 100) • Expression (default = 127)
• Pan Control (default = 64) • Modulation (default = 0)
• Pitch Bend (default = 0, no pitch change) • Sustain Pedal (default = 0)
• CC100 RPN LSB (default = 127) • CC101 RPN MSB (default = 127)
• CC91 Reverb Send (default = 40) (if supported) • CC93 Chorus Send (default = 0) (if supported)
• Channel Pressure (default = 0) • RPN0 Pitch Bend Range (default = 2)
• RPN1 Fine Tuning (default = 0) • RPN2 Coarse Tuning (default = 0)
• Default channel priority order (10, 1-9, 11-16) • Bank address:

(Channel 10: Bank Select MSB=0x78, LSB=0x00,
Program Change=0x00);
Other channels: MSB=0x79, LSB=0x00, Program
Change=0x00)

1.12 Articulation Architecture
This section defines the set of modules that must be supported and it itemizes a list of required connections
between the nodes of these modules. These connections define the flow of signals between modules and ultimately
to the digital oscillator, DCF, and DCA to control the pitch and volume of a note as it plays.

1.13 Modulation Routing
The Mobile DLS synthesizer supports the connection blocks listed in Table 5. Each connection lists the usSource,
usControl, usDestination, and associated input transforms. The output transform for each of these connections is
always TRN_NONE.
The articulation configuration is designed to expand into future specification levels in two ways. First, each
module defines a base level set of controls and connectors. Most modules will expand as more controls and
connections are added in the future. Secondly, the number of connection blocks will also grow as more articulation
modules, control inputs, and required connections are added.

1.13.1 Default Connections
Certain default connections are assumed in the absence of specific data in the instrument. These default
connections help reduce the amount of data required to define an instrument, because the default values are
generally usable. They also facilitate the development of new instruments, because in the absence of any other
articulation data, the default values will produce sound at the expected musical pitch. The sound developer may
then further refine the instrument from the default values to suit his or her taste. Table 6 shows the Minimum,
Maximum and Unit values for each connection block of the Mobile DLS synthesis architecture.

M
O

BI
LE

 D
LS

(D

R
A

FT
 S

PE
C

IF
IC

A
TI

O
N

 F
O

R
 3

G
PP

 R
EV

IE
W

 O
N

LY
)

V
er

si
on

 0
.9

91

PA
G

E
30

N

ov
em

be
r 2

00
3

Ta
bl

e
5:

 M
od

ul
at

io
n

R
ou

tin
g

Th
is

 ta
bl

e
co

nt
ai

ns
 a

ll
th

e
le

ga
l c

on
ne

ct
io

ns
 f

or
 a

 M
ob

il
e

D
L

S
 S

yn
th

es
iz

er
 w

ith
 fi

xe
d

ro
ut

in
g

ar
ch

ite
ct

ur
e.

 T
he

 "
B

"
co

lu
m

n
in

di
ca

te
s

w
he

th
er

 th
e

pa
rti

cu
la

r
so

ur
ce

 c
on

ne
ct

io
n

is
 B

ip
ol

ar
, a

nd
 th

e
"I

" c
ol

um
n

in
di

ca
te

s w
he

th
er

 it
 is

 In
ve

rte
d

(th
es

e
ar

e
th

e
Bi

po
la

r a
nd

 In
ve

rt
bi

ts
 in

 th
e

Co
nn

ec
tio

n
Bl

oc
k)

.
(*

) T
o

im
pr

ov
e

re
ad

ab
ili

ty
 o

f t
hi

s t
ab

le
, t

he
 "

CO
N

N
_"

 p
re

fix
 h

as
 b

ee
n

om
itt

ed
 fr

om
 th

es
e

co
lu

m
ns

.
 A

rt
ic

ul
at

or
 N

am
e

U
sS

ou
rc

e
(*

)
B

I

T
ra

ns
fo

rm

U
sC

on
tr

ol
 (*

)
B

I

T
ra

ns
fo

rm

U
sD

es
tin

at
io

n
(*

)
M

od
ul

at
or

 L
FO

M

od
 L

FO
 F

re
qu

en
cy

SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_L

FO
_F

R
EQ

M

od
 L

FO
 S

ta
rt

D
el

ay

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_L
FO

_D
EL

A
Y

V

ib
ra

to
 L

FO

V
ib

 L
FO

 F
re

qu
en

cy

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_V
IB

_F
R

EQ

V
ib

 L
FO

 S
ta

rt
D

el
ay

SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_V

IB
_D

EL
A

Y

V
ol

um
e

EG

V
ol

 E
G

 D
el

ay
 T

im
e

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
D

EL
A

Y
TI

M
E

V
ol

 E
G

 A
tta

ck
 T

im
e

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
A

TT
A

C
K

TI
M

E
V

ol
 E

G
 H

ol
d

Ti
m

e
SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
1_

H
O

LD
TI

M
E

V
ol

 E
G

 D
ec

ay
 T

im
e

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
D

EC
A

Y
TI

M
E

V
ol

 E
G

 S
us

ta
in

 L
ev

el

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
SU

ST
A

IN
LE

V
EL

V

ol
 E

G
 R

el
ea

se
 T

im
e

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
R

EL
EA

SE
TI

M
E

V
ol

 E
G

 S
hu

td
ow

n
Ti

m
e

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
SH

U
TD

O
W

N
TI

M
E

V
ol

 E
G

 V
el

oc
ity

 to
 A

tta
ck

SR

C
_K

EY
O

N
V

EL
O

C
IT

Y

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
A

TT
A

C
K

TI
M

E
V

ol
 E

G
 K

ey
 to

 D
ec

ay

SR
C

_K
EY

N
U

M
B

ER

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
D

EC
A

Y
TI

M
E

V
ol

 E
G

 K
ey

 to
 H

ol
d

SR
C

_K
EY

N
U

M
B

ER

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

1_
H

O
LD

TI
M

E
M

od
ul

at
or

 E
G

M

od
 E

G
 D

el
ay

 T
im

e
SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

D
EL

A
Y

TI
M

E
M

od
 E

G
 A

tta
ck

 T
im

e
SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

A
TT

A
C

K
TI

M
E

M
od

 E
G

 H
ol

d
Ti

m
e

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_E
G

2_
H

O
LD

TI
M

E
M

od
 E

G
 D

ec
ay

 T
im

e
SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

D
EC

A
Y

TI
M

E
M

od
 E

G
 S

us
ta

in
 L

ev
el

SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

SU
ST

A
IN

LE
V

EL

M
od

 E
G

 R
el

ea
se

 T
im

e
SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

R
EL

EA
SE

TI
M

E
M

od
 E

G
 V

el
oc

ity
 to

 A
tta

ck

SR
C

_K
EY

O
N

V
EL

O
C

IT
Y

F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

A
TT

A
C

K
TI

M
E

M
O

BI
LE

 D
LS

(D

R
A

FT
 S

PE
C

IF
IC

A
TI

O
N

 F
O

R
 3

G
PP

 R
EV

IE
W

 O
N

LY
)

V
er

si
on

 0
.9

91

PA
G

E
31

N

ov
em

be
r 2

00
3

 A
rt

ic
ul

at
or

 N
am

e
U

sS
ou

rc
e

(*
)

B
I

T
ra

ns
fo

rm

U
sC

on
tr

ol
 (*

)
B

I
T

ra
ns

fo
rm

U

sD
es

tin
at

io
n

(*
)

M
od

 E
G

 K
ey

 to
 D

ec
ay

SR

C
_K

EY
N

U
M

B
ER

F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

D
EC

A
Y

TI
M

E
M

od
 E

G
 K

ey
 to

 H
ol

d
SR

C
_K

EY
N

U
M

B
ER

F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_E

G
2_

H
O

LD
TI

M
E

K
ey

 N
um

be
r

G
en

er
at

or

M
ID

I N
ot

e
to

 K
ey

SR

C
_M

ID
IN

O
TE

F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_K

EY
N

U
M

B
ER

R

PN
2

to
 K

ey

SR
C

_R
PN

2
T

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_K

EY
N

U
M

B
ER

Fi

lte
r

In
iti

al
 F

c
SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_F

IL
TE

R
_C

U
TO

FF

In
iti

al
 Q

SR

C
_N

O
N

E
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_F

IL
TE

R
_Q

M

od
 L

FO
 to

 F
c

SR
C

_L
FO

T

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_F

IL
TE

R
_C

U
TO

FF

M
od

 L
FO

 C
C

1
to

 F
c

SR
C

_L
FO

T

F
Li

ne
ar

SR

C
_C

C
1

F
F

Li
ne

ar

D
ST

_F
IL

TE
R

_C
U

TO
FF

M

od
 L

FO
 C

ha
nn

el
 P

re
ss

ur
e

to

F c

SR
C

_L
FO

T

F
Li

ne
ar

SR

C
_C

H
A

N
N

EL

PR
ES

SU
R

E
F

F
Li

ne
ar

D

ST
_F

IL
TE

R
_C

U
TO

FF

M
od

 E
G

 to
 F

c
SR

C
_

EG
2

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_F
IL

TE
R

_C
U

TO
FF

V

el
oc

ity
 to

 F
c

SR
C

_K
EY

O
N

V
EL

O
C

IT
Y

F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_F

IL
TE

R
_C

U
TO

FF

K
ey

 N
um

be
r t

o
F c

SR

C
_

K
EY

N
U

M
B

ER

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_F
IL

TE
R

_C
U

TO
FF

G

ai
n

V
ol

 E
G

 to
 G

ai
n

SR
C

_E
G

1
F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_G

A
IN

M

od
 L

FO
 to

 G
ai

n
(v

2.
1)

SR

C
_L

FO

T
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_G
A

IN

M
od

 L
FO

 C
C

1
to

 G
ai

n.
 (v

2.
1)

SR

C
_L

FO

T
F

Li
ne

ar

SR
C

_C
C

1
F

F
Li

ne
ar

D

ST
_G

A
IN

M

od
 L

FO
 C

ha
nn

el
 P

re
ss

ur
e

to

G
ai

n
SR

C
_L

FO

F
T

Li
ne

ar

SR
C

_C
H

A
N

N
EL

PR

ES
SU

R
E

F
F

Li
ne

ar

D
ST

_G
A

IN

V
el

oc
ity

 to
 G

ai
n

SR
C

_K
EY

O
N

V
EL

O
C

IT
Y

F

T
C

on
ca

ve

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_G
A

IN

M
ID

I C
C

7
to

 G
ai

n
SR

C
_C

C
7

F
T

C
on

ca
ve

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_G

A
IN

M

ID
I C

C
11

 to
 G

ai
n

SR
C

_C
C

11

F
T

C
on

ca
ve

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_G

A
IN

Pi

tc
h

Tu
ni

ng

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_P
IT

C
H

Pi

tc
h

W
he

el
 R

PN
0

to
 P

itc
h

SR
C

_P
IT

C
H

W
H

EE
L

T
F

Li
ne

ar

SR
C

_R
PN

0
F

F
Li

ne
ar

D

ST
_P

IT
C

H

K
ey

 N
um

be
r t

o
Pi

tc
h

SR
C

_K
EY

N
U

M
B

ER

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_P
IT

C
H

R

PN
1

to
 P

itc
h

SR
C

_R
PN

1
T

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_P

IT
C

H

V
ib

 L
FO

 to
 P

itc
h

SR
C

_V
IB

R
A

TO

T
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_P
IT

C
H

V

ib
 L

FO
 C

C
1

to
 P

itc
h

SR
C

_
V

IB
R

A
TO

T

F
Li

ne
ar

SR

C
_C

C
1

F
F

Li
ne

ar

D
ST

_P
IT

C
H

M
O

BI
LE

 D
LS

(D

R
A

FT
 S

PE
C

IF
IC

A
TI

O
N

 F
O

R
 3

G
PP

 R
EV

IE
W

 O
N

LY
)

V
er

si
on

 0
.9

91

PA
G

E
32

N

ov
em

be
r 2

00
3

 A
rt

ic
ul

at
or

 N
am

e
U

sS
ou

rc
e

(*
)

B
I

T
ra

ns
fo

rm

U
sC

on
tr

ol
 (*

)
B

I
T

ra
ns

fo
rm

U

sD
es

tin
at

io
n

(*
)

V
ib

 L
FO

 C
ha

nn
el

 P
re

ss
ur

e
to

Pi

tc
h

SR
C

_V
IB

R
A

TO

T
F

Li
ne

ar

SR
C

_C
H

A
N

N
EL

PR

ES
SU

R
E

F
F

Li
ne

ar

D
ST

_
PI

TC
H

M
od

 L
FO

 to
 P

itc
h

SR
C

_L
FO

T

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_P

IT
C

H

M
od

 L
FO

 C
C

1
to

 P
itc

h
SR

C
_L

FO

T
F

Li
ne

ar

SR
C

_C
C

1
F

F
Li

ne
ar

D

ST
_P

IT
C

H

M
od

 L
FO

 C
ha

nn
el

 P
re

ss
ur

e
to

Pi

tc
h

SR
C

_
LF

O

T
F

Li
ne

ar

SR
C

_C
H

A
N

N
EL

PR

ES
SU

R
E

F
F

Li
ne

ar

D
ST

_
PI

TC
H

M
od

 E
G

 to
 P

itc
h

SR
C

_E
G

2
T

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_P

IT
C

H

O
ut

pu
t

D
ef

au
lt

Pa
n

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_P
A

N

M
ID

I C
C

10
 to

 P
an

SR

C
_C

C
10

T

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_P

A
N

C

C
91

 to
 R

ev
er

b
Se

nd

SR
C

_C
C

91

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_R
EV

ER
B

D

ef
au

lt
R

ev
er

b
Se

nd

SR
C

_N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_R
EV

ER
B

C

C
93

 to
 C

ho
ru

s S
en

d
SR

C
_C

C
93

F

F
Li

ne
ar

SR

C
_N

O
N

E
F

F
Li

ne
ar

D

ST
_C

H
O

R
U

S
D

ef
au

lt
C

ho
ru

s S
en

d
SR

C
_

N
O

N
E

F
F

Li
ne

ar

SR
C

_N
O

N
E

F
F

Li
ne

ar

D
ST

_C
H

O
R

U
S

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 33 November 2003

Table 6: Default Connection Blocks

Mobile DLS Synthesizer Default, Minimum, Maximum and Unit Values for Connection Blocks
Unspecified connection blocks in a connection block list shall be set to the default value shown here by the

Mobile DLS synthesis engine.

Articulator Default Value Min Value Max Value Units
Modulator LFO
Mod LFO Frequency 5 Hz 0.1 Hz 20 Hz Absolute Pitch
Mod LFO Start Delay 10 msecs 10 msecs 10 secs Absolute Time
Vibrato LFO
Vibrato LFO Frequency 5 Hz 0.1 Hz 20 Hz Absolute Pitch
Vibrato LFO Start Delay 10 msecs 10 msecs 10 secs Absolute Time
Vol EG
Vol EG Delay Time 0 secs 0 secs 40 secs Absolute Time
Vol EG Attack Time 0 secs 0 secs 40 secs Absolute Time
Vol EG Hold Time 0 secs 0 secs 40 secs Absolute Time
Vol EG Decay Time 0 secs 0 secs 40 secs Absolute Time
Vol EG Sustain Level 100 % 0% 100% Percent
Vol EG Release Time 0 secs 0 secs 40 secs Absolute Time
Vol EG Shutdown Time 15 msecs 0 secs 40 secs Absolute Time
Vol EG Velocity to Attack 0 Time Cents 0 Time Cents 6,000 Time Cents Relative Time Cents
Vol EG Key to Decay 0 Time Cents 0 Time Cents 6,000 Time Cents Relative Time Cents
Vol EG Key to Hold 0 Time Cents 0 Time Cents 6,000 Time Cents Relative Time Cents
Modulator EG
Mod EG Delay Time 0 secs 0 secs 40 secs Absolute Time
Mod EG Attack Time 0 secs 0 secs 40 secs Absolute Time
Mod EG Hold Time 0 secs 0 secs 40 secs Absolute Time
Mod EG Decay Time 0 secs 0 secs 40 secs Absolute Time
Mod EG Sustain Level 100% 0% 100% Percent
Mod EG Release Time 0 secs 0 secs 40 secs Absolute Time
Mod EG Velocity to Attack 0 Time Cents 0 Time Cents 6,000 Time Cents Relative Time Cents
Mod EG Key to Decay 0 Time Cents 0 Time Cents 6,000 Time Cents Relative Time Cents
Mod EG Key to Hold 0 Time Cents 0 Time Cents 6,000 Time Cents Relative Time Cents
Key Number Generator
MIDI Note to Key 12,800 cents 12,800 cents 12,800 cents Relative Pitch
RPN2 to Key 6,400 cents 0 cents 6,400 cents Relative Pitch

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 34 November 2003

Articulator Default Value Min Value Max Value Units
Filter
Initial Fc 0x7FFFFFFFh 5535 cents 11921 cents Absolute Pitch
Initial Q 0 dB 0 dB 22.5 dB Relative Gain
Mod LFO to Fc 0 cents -12800 cents 12800 cents Relative Pitch
Mod LFO CC1 to Fc 0 cents -12800 cents 12800 cents Relative Pitch
Mod LFO Channel Press. to Fc 0 cents -12800 cents 12800 cents Relative Pitch
Mod EG to Fc 0 cents -12800 cents 12800 cents Relative Pitch
Velocity to Fc 0 cents -12800 cents 12800 cents Relative Pitch
Key Number to Fc 0 cents -12800 cents 12800 cents Relative Pitch
Gain
Mod LFO to Gain 0 dB 0 dB 12 dB Relative Gain
Mod LFO CC1 to Gain. 0 dB 0 dB 12 dB Relative Gain
Mod LFO Chan. Press. to Gain. 0 dB 0 dB 12 dB Relative Gain
Velocity to Gain -96 dB 0 dB -96 dB Relative Gain
MIDI CC7 to Gain -96 dB -96 dB -96 dB Relative Gain
MIDI CC11 to Gain -96 dB -96 dB -96 dB Relative Gain
Pitch
Tuning 0 cents -1,200 cents 1,200 cents Relative Pitch
Pitch Wheel RPN0 to Pitch 12,800 cents 12,800 cents 12,800 cents Relative Pitch
Key Number to Pitch 12,800 cents 0 cents 12,800 cents Relative Pitch
RPN1 to Pitch 100 cents 0 cents 100 cents Relative Pitch
Vib LFO to Pitch 0 cents -1,200 cents 1,200 cents Relative Pitch
Vib LFO CC1 to Pitch 0 cents -1,200 cents 1,200 cents Relative Pitch
Vib LFO Chan. Press. to Pitch 0 cents -1,200 cents 1,200 cents Relative Pitch
Mod LFO to Pitch 0 cents -1,200 cents 1,200 cents Relative Pitch
Mod LFO CC1 to Pitch 0 cents -1,200 cents 1,200 cents Relative Pitch
Mod LFO Chan. Press. to Pitch 0 cents -1,200 cents 1,200 cents Relative Pitch
Mod EG to Pitch 0 cents -1,200 cents 1,200 cents Relative Pitch
Output
Default Pan 0% -50% 50% 0.1% units
MIDI CC10 to Pan 50.8% -50.8% 50.8% 0.1% units
Default CC91 to Reverb Send 100% 0% 100% 0.1% units
Default Reverb Send 0% 0% 100% 0.1% units
Default CC93 to Chorus Send 100% 0% 100% 0.1% units
Default Chorus Send 0% 0% 100% 0.1% units

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 35 November 2003

1.14 Data Format Definitions
The DLS device parameters are described in the following units:

1.14.1 Absolute Pitch
A signed, 32-bit unit for expressing Absolute Pitch in an exponential form to facilitate modulation in a musical
fashion. The formula for converting frequency in Hertz to the DLS Absolute Pitch Unit is as follows:

 Absolute Pitch = (1200 * log2 (f / 440) + 6900) * 65536
Where f is the frequency of interest. Each absolute pitch unit represents 1/65536 cents.

1.14.2 Relative Pitch
A signed, 32-bit unit for expressing Absolute Pitch in an exponential form to facilitate modulation in a musical
fashion. The formula for converting frequency in Hertz to the DLS Absolute Pitch Unit is as follows:

 Relative Pitch = 1200 * log2 (f / F) * 65536
Where F is the reference frequency and f is the frequency of interest. Each relative pitch unit represents 1/65536
cents.

1.14.3 Absolute Time
A signed, 32-bit unit for expressing absolute time in an exponential form to facilitate modulation in a musical
fashion. The formula for converting time in seconds to the DLS Absolute Time Unit is as follows:
 Absolute Time = 1200 * log2 (timesecs) * 65536
Since it is impossible to represent zero in this format, the value 80000000h has been chosen to denote an absolute
zero. When the value 80000000h is applied to a destination, that destination cannot be modified by other sources;
it will always be zero.

1.14.4 Gain
A signed, 32-bit unit for expressing relative signal strengths in an exponential form to facilitate modulation in a
musical fashion. Gain is calculated by the following formula:
 Gain Units = 200 * log10 (v / V) * 65536
Where V is the reference signal and v is the signal of interest. Positive values indicate gain, while negative values
indicate attenuation. Each unit of gain represents 1/655360 dB. All references to gain or units of gain in this
document refer to amplitude and not power.

1.14.5 Sample Frequency
A 32-bit unsigned integer, with the frequency specified in 1/1000th of Hertz.

1.14.6 Instrument
The instrument header determines the number of regions in an instrument, as well as its bank and program
numbers. Each region contains at minimum a <rgnh-ck> region header chunk and a <wlnk-ck> wave link chunk. It
may also optionally contain a <wsmp-ck> wave sample chunk, and a <lar2-ck> local articulation chunk.
cRegions Specifies the count of regions for this instrument.
Locale Specifies the MIDI locale (Bank and Program Change) for this instrument.

1.14.7 Region
The Region is used by the Control Logic to decide which sample to use. Each region provides velocity and note
ranges to match against an incoming note. If these match, the sample is chosen for performance with the

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 36 November 2003

articulation and loop data selected by the region. The Region chunk also contains the Wave Link chunk, and may
contain local articulation.
RangeKey Specifies the note range for this region.
RangeVelocity Specifies the velocity range for this region.
fusOptions Specifies flag options for the synthesis of this region. The only flag defined at this time

is the Self Non Exclusive flag. See Note Exclusivity section for more detail.
usKeyGroup Specifies the key group for a drum instrument. Key group values allow multiple regions

within a drum instrument to belong to the same "key group." If a synthesis engine is
instructed to play a note with a key group setting and any other notes are currently
playing with this same key group, the synthesis engine should turn off all notes with the
same key group value as soon as possible. Valid values are:

 0 No Key group
 1-15 Key groups 1 to 15.
 All Others Reserved
usLayer Optional field for grouping regions into layers. This is intended to facilitate the user

interface for editing programs and has no bearing on the synthesis of the sound.
Programs may detect the existence of the usLayer field by examining the size of the
<rghn-ck>. Programs that ignore usLayer must still preserve its value when writing data
to a file.

1.14.8 Wave Link
The Wave Link contains the link to the sample data. This is isolated from the region to allow for synthesis
methods other than wavetable synthesis. The sample data is indexed through the Pool Table and the other fields
provide the information to phase-lock multiple samples together to create stereo or even surround-sound images.
ulChannel Specifies the channel placement of the sample. This is used to place mono sounds

within a stereo pair or for multi-track placement. Each bit position within the ulChannel
field specifies a channel placement with bit 0 specifying a mono sample or the left
channel of a stereo sample. Bit 1 specifies the right channel of a stereo sample.

ulTableIndex Specifies the 0 based index of the cue entry in the wave pool table.

1.14.9 Articulation
The Articulation data specifies a number of flexible connections for routing signals in the synthesizer. The
Mobile DLS Device Architecture places a restriction on which connections are valid for different DLS instrument
levels. The chunk specifies the number of connections, followed by a list of connections.
cConnectionBlocks Specifies the number (count) of ConnectionBlocks that are contained in the articulator

chunk.
usSource Specifies the source for the connection.
usControl Specifies the control for the connection.
usDestination Specifies the destination for the connection
usTransform Specifies the transform used for the connection.
lScale Specifies the scaling value used for the connection.

1.14.10 Wave Sample
The Wave Sample chunk contains the low level parameters for playing a sample. Normally it is contained within
the Wave chunk itself, but may also be used at the Region level to override loop points or other parameters.
usUnityNote Specifies the MIDI note which will replay the sample at original pitch. This value

ranges from 0 to 127 (a value of 60 represents Middle C, as defined by the MIDI
specification).

sFineTune Specifies the tuning offset from the usUnityNote in 16 bit relative pitch.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 37 November 2003

lGain Specifies the gain to be applied to this sample in 32 bit relative gain units. This is used
primarily to balance multi-sample splits.

fulOptions Specifies flag options for the digital audio sample. Flags are defined for disabling 16 bit
to 8-bit truncation of samples and compression of samples by the driver.

cSampleLoops Specifies the number (count) of loop records that are contained in the wave sample
chunk. One-shot sounds will have the cSampleLoops field set to 0.

ulLoopType Specifies the loop type.
ulLoopStart Specifies the start point of the loop in samples as an absolute offset from the beginning

of the data in the 'data' chunk of the sample.
ulLoopLength Specifies the length of the loop in samples.

1.15 Tolerances
Discussions so far have been restricted primarily to the idealized synthesizer. While reducing this synthesizer to a
practical working model, certain compromises will undoubtedly be made as a result of design tradeoffs. The
purpose of this section is to lay out guidelines for allowable variances from the ideal synthesizer to accommodate
tradeoffs made in the design process.

1.15.1 Digital Oscillator
The Digital Oscillator must have a minimum frequency resolution of 1 cent, +/-0.25 cents within the allowable
pitch shift range of +2/-4 octaves.

1.15.2 Digitally Controlled Filter
In realizing a practical filter from the ideal filter model, it is necessary to make certain compromises in the
implementation. In order to accommodate variances in implementation, the actual filter response is permitted to
vary from the ideal filter response described in this document as follows:

• A minimum of 16 discrete resonance values must be supported spanning the range from 0 dB to 22.5 dB. The

discrete resonance values will be approximately linearly spaced (in dB) across that range. This corresponds to
a step size of 1.5 dB. Up to 1.5 dB of error is tolerated for any resonance specified within the range 0 dB to
22.5 dB.

• When the cutoff frequency of a filter is swept with constant resonance, it is typical in many implementations
for the actual height of the resonant peak to vary. A deviation of less than 3 dB per octave of sweep is
required. Note that this is not achieved by simply varying the pole angle. The radius must be varied with the
pole angle to achieve a deviation of less than 3 dB. The specified resonance in these cases is valid at 1 kHz
and must be within 1.5 dB of the specified value.

• The maximum required resonance is 22.5 dB. Resonance may be specified greater than 22.5 dB but support is
not guaranteed by all platforms. When the specified resonance is greater than that supported by a device, it
will be rendered as the maximum resonance supported.

• The gain at DC must be within +/-0.75 dB of the ideal as specified by this document. The gain at all other
frequencies must be within +/-1.5 dB of the ideal as specified by this document, with Fc of the ideal
normalized to the actual Fc implemented by the filter.

• In most implementations, the actual cutoff frequency according to this specification will not exactly
correspond to the specified frequency. A deviation of no more than one semitone is required to allow for
tracking filters that are attempting to accentuate a particular harmonic.

• When sweeping the filter cutoff, a minimum of 120 discrete cutoff frequencies per octave must be supported.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 38 November 2003

The worst case spacing between any two adjacent discrete values must be no more than 0.1 semitones. Filter
stability may be an issue when sweeping the filter cutoff, especially when the step sizes are large. Filters
should remain stable with time varying coefficients at a rate of 0.1 semitones per 2 milliseconds when swept
from 200Hz to 1200Hz at 0dB, 12dB, and 22.5dB resonance. Theoretical proof may not be possible, so
stability should be subjectively evaluated using a 100Hz square wave at -3dB full scale.

• The cutoff frequency according to this specification is not well defined as the resonance frequency approaches
one octave below the Nyquist frequency, corresponding to a pole angle of PI/2 radians. In fact, at a pole angle
of PI/3 radians and a radius of 0.9, the resonance frequency calculated by this method is almost exactly equal
to Nyquist/2, even though the resonant peak is at Nyquist/3. Also, using these parameters, the calculated
cutoff frequency intersects the filter response curve at 0 dB. As the pole angle is increased, filters specified in
this manner change from low-pass to a simple resonator with no attenuation, and finally to a high-pass
characteristic (actually only providing high frequency gain). In view of these facts, and that second order
filters of this type will not have dramatic effect on the sound in this case, cutoff frequencies when calculated
according to this specification are only required up to 1/6th of the sample rate Fs. Higher cutoff frequencies
may be specified, but support is not guaranteed by all platforms. Mobile DLS device requirements support
lower output sample frequencies compared to DLS2.1. Due to this difference Mobile DLS synthesizers
supporting lower output sampling rates may have to play instruments where filter cutoff is within the range
from Fs/6 to Fs/2. Therefore, it is required that the filter implementation may not introduce disturbing
processing artifacts when the filter cutoff is sweeping beyond the maximum cutoff frequency Fs/6. When the
specified cutoff frequency is greater than that supported by a device, it will be rendered as the maximum
cutoff frequency supported. The one exception to this rule is that when the specified cutoff frequency is
greater than the Nyquist frequency, the filter will have a flat passband characteristic, regardless of the
specified resonance. In other words, the filter will be off in this case. It is recommended to content developers
that they specify the maximum value, or 0x7FFFFFFF, for filter cutoff when no low pass filter is desired, but
devices will respond as defined in this text.

• Cutoff frequencies must be supported within the range Fs / 240 to Fs / 6, where Fs is the output sample rate of
the device.

1.15.3 Digitally Controlled Amplifier
The Digitally Controlled Amplifier must have a minimum amplitude resolution of 1 dB, +/-0.25 dB from unity
gain down to –85 dB in response to external controls and generators. These controls should feed an internal ramp
generator that interpolates between control events. The internal resolution of the ramp generator must be no less
than 0.0025 dB to prevent zipper noise from generators or external controls.

1.15.4 LFO Generator
The LFO generators must be accurate to within 10% of the specified frequency (averaged over 100 cycles) with
jitter of no more than 10 milliseconds. Delay times must be accurate to within +/-10 milliseconds.

1.15.5 Envelope Generator
The Envelope Generators must be accurate to within 0.5 dB. Timing must be accurate to within +/-10
milliseconds.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 39 November 2003

1.16 DLS System Exclusive Messages
The following messages are used to control the behavior of the DLS device.

Turn DLS On:
 F0 7E < device ID > 0A 01 F7
 F0 7E Universal Non-Real Time SysEx header
 < device ID > ID of target device (suggest using 7F: Broadcast)
 0A sub-ID #1 = DLS message
 01 sub-ID #2 = DLS On
 F7 EOX

Turn DLS Off:
 F0 7E < device ID > 0A 02 F7
 F0 7E Universal Non-Real Time SysEx header
 < device ID > ID of target device (suggest using 7F: Broadcast)
 0A sub-ID #1 = DLS message
 02 sub-ID #2 = DLS Off
 F7 EOX

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 41 November 2003

2. DLS File RIFF Structure
2.1 RIFF Format
DLS instruments are stored in a RIFF form of type 'DLS '. The subchunks of this form are the ‘cdl ‘, ‘vers’, ‘dlid’
'colh', 'ptbl', ‘ and 'LIST' chunks. There are three top-level LIST chunks: the <lins-list> instrument list chunk
contains <ins-list> instrument subchunks; and the <wvpl-list> wave pool chunk contains <wave-list> subchunks
(similar to wave files), and the optional <INFO-list> info list chunk contains information about the collection.
The <colh-ck> chunk defines the number of instruments in the collection. The <ptbl-ck> chunk contains a list of
reference entries to digital audio data. The <ins-list> subchunks within the <lins-list> chunk are the actual
instruments stored in this collection.
The optional chunk <cdl-ck> provides a means for restricting use to compatible devices when used at the top level.
The optional <vers-ck> provides a means for identifying the version of the file content. The <dlid-ck> provides a
means of managing resources, particularly in an Internet setting.

2.2 RIFF Structure
The following is a RIFF grammar1 that describes the downloadable instrument collection:

<DLS-form> → RIFF(‘DLS ’ // Collection
[<cdl-ck>]
[<vers-ck>]
[<dlid-ck>]
<colh-ck>
<lins-list>
<ptbl-ck>
<wvpl-list>
[<INFO-list>]

)

<wvpl-list> → LIST(‘wvpl’ <wave-list>...) // Wave Pool

<wave-list> → LIST(‘wave’ // Wave File

[<dlid-ck>]
<fmt-ck>
<data-ck>
[<wsmp-ck>]
[<INFO-list>]

)

<lins-list> → LIST(‘lins’ <ins-list>...) // List of Instruments

<ins-list> → LIST(‘ins ‘ // Instrument

[<dlid-ck>]
<insh-ck>
<lrgn-list>
[<lart-list>]
[<lar2-list>]
[<INFO-list>]

)

<lrgn-list> → LIST(‘lrgn’ <rgn-list> | <rgn2-list>...) // Region list

1 See Microsoft Windows Multimedia Programmer’s Reference

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 42 November 2003

<rgn-list> → LIST('rgn ' // L1 Region
[<cdl-ck>]
<rgnh-ck>
<wsmp-ck>
[<wlnk-ck>]
[<lart-list>]
[<lar2-list>]
[<INFO-list>]

)

<rgn2-list> → LIST('rgn2' // L2 Region
[<cdl-ck>]
<rgnh-ck>
<wsmp-ck>
[<wlnk-ck>]
[<lar2-list>]
[<INFO-list>]

)

<lart-list> → LIST(‘lart’ [<cdl-ck>], <art1-ck>...) // List of Articulators

<lar2-list> → LIST(‘lar2’ [<cdl-ck>], <art2-ck>...) // List of Articulators

<INFO-list> → LIST(‘INFO’ <info_text-ck>...)

Table 7: RIFF Definitions

RIFF Chunk Definition
<colh-ck> A DLS collection header as defined later in this document.
<dlid-ck> A globally unique identifier chunk as defined later in this document.
<cdl-ck> A conditional chunk as defined later in this document.
<insh-ck> An instrument header chunk as defined later in this document.
<rgnh-ck> A region header chunk as defined later in this document.
<art1-ck> A DLS-1 articulator data chunk as defined later in this document.
<art2-ck> A DLS-2 articulator data chunk as defined later in this document.
<wlnk-ck> A wave link chunk as defined later in this document.
<wsmp-ck> A wave sample chunk as defined later in this document.
<ptbl-ck> A pool table data chunk as defined later in this document.
<vers-ck> An optional version chunk as defined later in this document.
<wave-list> A DLS wave file chunk.
<info_text-ck> A text chunk within an <INFO-list> chunk as defined later in this document.

M
O

BI
LE

 D
LS

(D

R
A

FT
 S

PE
C

IF
IC

A
TI

O
N

 F
O

R
 3

G
PP

 R
EV

IE
W

 O
N

LY
)

V
er

si
on

 0
.9

91

PA
G

E
43

N

ov
em

be
r

20
03

D
LS

co
lh

lin
s

pt
bl

w
vp

l
IN

FO
dl

id
cd

l

fm
t

da
ta

IN
FO

dl
id

w
sm

p
IN

FO
dl

id
la

r2
lrg

n
in

sh
la

rt

cd
l

cd
l

cd
l

la
rt

cd
l

rg
nh

w
sm

p
w

ln
k

IN
FO

cd
l

rg
nh

w
sm

p
w

ln
k

IN
FO

la
r2

cd
l

M
an

da
to

ry
 C

hu
nk

O
pt

io
na

l C
hu

nk

M
ul

tip
le

 c
hu

nk
s

D
at

a
ar

ra
y

Ke
y

w
av

e
cu

es

lo
op

co
nn

co
nn

co
nn

co
nn

lo
op

lo
op

rg
n2

rg
n

in
s

ar
t2

ar
t1

ar
t2

ar
t1

la
r2

cd
l

co
nn

ar
t2

ve
rs

Fi
gu

re
 1

2:
 D

LS
 F

ile
 F

or
m

at

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 44 November 2003

2.3 LIST Chunk
A LIST chunk contains a list, or ordered sequence, of subchunks. A LIST chunk is defined as follows:
 LIST(<list-type> [<chunk>]...)

The <list-type> is a four-character code that identifies the contents of the list.
If an application recognizes the list type, it should know how to interpret the sequence of subchunks. However,
since a LIST chunk may contain only subchunks (after the list type), an application that does not know about a
specific list type can still walk through the sequence of subchunks.
Like chunk IDs, list types must be registered, and an all-lowercase list type has meaning relative to the form that
contains it.

2.4 <colh-ck>, Collection Header Chunk
The <colh-ck> collection header defines an instrument collection. The <colh-ck> is defined as follows:

 <colh-ck> → colh(<cInstruments:ULONG>)

Field Description
cInstruments Specifies the count of instruments in this collection, and indicates the number of <ins-ck>

instrument chunks in the ‘lins’ list. This enables the file parser to pre-allocate memory for
storage of instruments. If the cInstruments field does not match the ‘lins’ count, the DLS file
is in error. It is recommended that sound development tools allow the user to ignore this error
and correct the cInstruments field to reflect the actual number of instruments in the collection.

A <colh-ck> chunk is typically (but not necessarily) the second chunk within the enclosing <DLS-form>
collection chunk.

2.5 <dlid-ck>, DLSID Chunk
The <dlsd-ck> defines an optional globally unique identifier (DLSID) for a complete <DLS-form> or for an
element within it. A DLSID is identical to an OSF/DCE ‘UUID’ (also known as a Microsoft® ‘GUID’, ‘CLSID’,
‘IID’ or ‘FMTID’). The <dlid-ck> is defined as follows:

 <dlid-ck> → dlid(<DLSID>)

 <DLSID> → struct
 {
 ULONG ulData1;
 USHORT usData2;
 USHORT usData3;
 BYTE abData4[8];
 }

The <dlid-ck> chunk:

Field Description
DLSID Specifies a 128-bit (16 byte) integer used as a globally unique identifier for a content element.

The DCE standard specifies that the string representation for a UUID contains five fixed-length,
hyphen-delimited groups of hexadecimal digits, grouped 8-4-4-4-12, as shown:

 60DF3430-0266-11cf-BAA6-00AA003E0EED

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 45 November 2003

The <DLSID> structure:

Field Description
ulData1 Contains the binary value of the first group of the string value (8 hexadecimal digits).
usData2 Contains the binary value of the second group of the string value (4 hexadecimal digits).
usData3 Contains the binary value of the third group of the string value (4 hexadecimal digits).
abData4[8] Contains the fourth and fifth groups of the string value. Array elements 0 and 1 of hold the

fourth group (4 digits), while elements 2 through 7 hold the final group (12 digits).

The C declaration for the example DLSID would be:
 const DLSID example =
 { 0x60df3430, 0x0266, 0x11cf, { 0xba, 0xa6, 0x00, 0xaa, 0x00, 0x3e, 0x0e, 0xed } };
The actual hexadecimal byte sequence (in ascending order) would be:
 30 34 DF 60 66 22 CF 11 BA A6 00 AA 00 3E 0E ED
Byte order in the first three fields appears reversed because Intel® (little-endian) binary representation is used.
The DLSID value must be generated by computer and never manually, in order to obtain a unique value
(software for this purpose is commonly available). The DLSID must be generated using the UUID algorithm
specified by OSF DCE2, which uses a combination of the following information to generate the value:
• The current date and time
• A clock sequence and related persistent state to deal with retrograde motion of clocks
• A forcibly incremented counter to deal with high-frequency allocations
• A globally unique IEEE machine identifier, obtained from a network card. (If no network card is present, a

machine identifier may be synthesized from highly variable machine states and stored persistently).
A DLSID uniquely designates a particular DLS resource (collection, instrument, wave file, or capability). If the
resource is modified in any way whatsoever, a new DLSID must be generated and attached to that resource.
Therefore, changing an instrument or wave file also requires changing the DLSID for the enclosing collection.
DLSIDs provide four principal benefits:

• They allow DLS Devices to detect multiply-referenced resources and share a single copy of the data.
• They allow an application to determine whether a DLS resource located on a remote network site is

already present on the local system, before downloading the resource.
• They facilitate searching for a particular resource and building special-purpose collections.
• They support error recovery. A DLS manager applet can identify and recover "orphan" resources left

in a locked state by a faulty application.
• They provide a way of uniquely identifying various capabilities of the device, which combined with

the Conditional Chunk, facilitates forward- and backward-compatibility of instrument collections.
DLSID chunks are not required in DLS files.

2 Chapter 10, "DEC/HP Network Computing Architecture Remote Procedure Call RunTime Extensions
Specification Version OSF TX1.0.11", Steven Miller, July 23 1992.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 46 November 2003

2.6 <cdl-ck>, Conditional Chunk
The <cdl-ck> conditional chunk is an optional chunk that can only be found in a list and defines the set of
conditions under which the associated chunks in the list are to be used. The <cdl-ck> is defined as follows:

 <cdl-ck> → cdl (<Operation>
 [[<Operation>]…]
)

 <Operation> → USHORT Opcode;

 -or-

 struct
 {
 USHORT Opcode;

 DLSID Query;
 }

 -or-

 struct
 {

 USHORT Opcode;
 ULONG Constant;
 }

The <cdl-ck> consists of a list of opcodes, which may optionally be followed by: a DLSID (GUID) which
represents a query to the DLS device; or by a 32-bit unsigned integer constant. The <cdl-ck> creates an
extendable, reverse-polish-notation (RPN) grammar for querying a device. On the basis of the query results, the
file parser will then either use or discard the contents of the list within which the <cdl-ck> is contained. It is
recommended, but not required, that the <cdl-ck> appear as the first subchunk in the list to allow the parser to
decide whether to parse or ignore the list contents prior to actually parsing any subchunks in the list.
In the event that a conditional chunk exists at the top level of the DLS form, and the DLS device fails the
conditional tests specified within that chunk, the entire DLS file is to be ignored. In this event, an error code
should be returned to the application code through the driver interface indicating that the device does not support
the required features set for this file. It is recommended that development tools such as sound editors allow the
user to ignore such an error and proceed with the download as a means of porting sounds from one device type to
another.
The DLS-2 (and Mobile DLS) device must support a minimum of eight (8) 32-bit words of accumulator stack for
storing temporary values. An opcode may designate an unsigned integer constant, a device query, or a math
operation. In the case of a DLS_CDL_CONST opcode, the supplied value is pushed onto the accumulator stack.
In the case of the DLS_CDL_QUERY opcode, the device is queried, and the return value is pushed onto the
accumulator stack. If the DLSID query is not supported, a FALSE value is pushed onto the stack.
In the case of the DLS_CDL_QUERY_SUPPORTED opcode, the device is queried and if it supports the query, a
TRUE value is pushed on the stack, otherwise a FALSE value is pushed on the stack. Note that the
DLS_CDL_QUERY_SUPPORTED opcode requires that interface to the device make the distinction between a
query that is unsupported, and a query that returns FALSE.
 In the case of a unary operator such as DLS_CDL_NOT, the value on the top of the stack is popped off, logically
inverted, and then pushed back on the stack. In the case of a binary operator, such as DLS_CDL_GT, the two
values on the top of the stack are popped off, compared, and the logical result is pushed onto the stack.
When the file parser reaches the end of the <cdl-ck> conditional chunk, the value on the top of the stack is
examined, and if it evaluates as logically true, the list that contains the conditional chunk is parsed. If the value is
false, the entire list is discarded.
Logical results are represented as follows: FALSE equates to all zeroes, TRUE equates to all ones. However, any
non-zero value used as a logical result will be evaluated as TRUE. Therefore the DLS_CDL_NOT opcode must
change any non-zero value to zero.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 47 November 2003

The follow table describes the opcodes that are valid in a <cdl-ck>. X is assumed to be the value at the top of the
stack, Y is assumed to be the previous value on the stack, and Z is a 32-bit constant that only follows the
DLS_CDL_CONST opcode. The results of the operation are pushed onto the stack.

Opcode Value Equivalent C Code
DLS_CDL_AND 0x0001 X = X & Y

DLS_CDL_OR 0x0002 X = X | Y

DLS_CDL_XOR 0x0003 X = X ^ Y

DLS_CDL_ADD 0x0004 X = X + Y

DLS_CDL_SUBTRACT 0x0005 X = X - Y

DLS_CDL_MULTIPLY 0x0006 X = X * Y

DLS_CDL_DIVIDE 0x0007 X = X / Y

DLS_CDL_LOGICAL_AND 0x0008 X = X && Y

DLS_CDL_LOGICAL_OR 0x0009 X = X || Y

DLS_CDL_LT 0x000A X = (X < Y)

DLS_CDL_LE 0x000B X = (X <= Y)

DLS_CDL_GT 0x000C X = (X > Y)

DLS_CDL_GE 0x000D X = (X >= Y)

DLS_CDL_EQ 0x000E X = (X == Y)

DLS_CDL_NOT 0x000F X = !X

DLS_CDL_CONST 0x0010 X = Z

DLS_CDL_QUERY 0x0011 X = Query(DLSID) (see text)

DLS_CDL_QUERY_SUPPORTED 0x0012 X = QuerySupported(DLSID) (see text)

The DLS_CDL_QUERY and DLS_CDL_QUERY_SUPPORTED opcodes are followed by a DLSID that uniquely
describes the feature to be queried. Additional DLSID's may be defined by device manufacturers using the
specified algorithm to describe features proprietary to that device. NOTE: It is important that all proprietary
DLSID’s be generated according to the proscribed algorithm to guarantee that unique ID’s are generated.
All DLS-2 (and Mobile DLS) devices must support the following queries:

DLSID Query Description
DLSID_SupportsMobileDLS Returns TRUE if device supports Mobile DLS

DLSID_SupportsMobileDLSOptionalBlocks3 Returns TRUE if device supports Mobile DLS and the voice architecture
includes DCF and Vibrato LFO.

DLSID_SupportsDLS1 Returns TRUE if device supports DLS-1
DLSID_SupportsDLS2 Returns TRUE if device supports DLS-2
DLSID_ManufacturersID Returns MIDI Manufacturers ID in low 24 bits.
DLSID_ProductID Returns Product ID (manufacturer specific)
DLSID_GMInHardware Returns TRUE if device supports General MIDI in hardware
DLSID_SampleMemorySize Returns the amount of memory available in the device in samples
DLSID_SamplePlaybackRate Returns the true sample playback rate of the device in Hertz

The numeric values for the above DLSID’s can be found in the DLS-2 Header File in this document.

3 If the device detects that the instrument can be played correctly on the available voice architecture, it is free to
ignore this conditional.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 48 November 2003

2.6.1 DLS-1 and DLS-2 Compatibility
Through the use of the Conditional Chunk, it is possible to create an instrument collection that is fully compatible
with a DLS-1 Device, while also taking advantage of features of DLS-2 Device.
Since the DLS-1 Device does not support the <cdl-ck> Conditional Chunk, but is required to ignore any chunk it
does not support, it is safe to include the <cdl-ck> chunk in an <lart-ck>chunk, <rgn-ck> chunk, or <lrgn-ck> list.
The following conditional chunk will act as a sentinel to prevent a DLS-2 device from accessing chunks intended
for a DLS-1 device, while simultaneously allowing a DLS-1 device to freely access them:

cdl(DLS_CDL_QUERY(DLSID_SupportsDLS2)
 DLS_CDL_NOT
)

The DLS-2 device will recognize the query and respond TRUE, causing the file parser to ignore the DLS-1 blocks.
Data intended for the DLS-2 can then be placed inside 'lar2' or 'rgn2' chunks and thus isolated from the DLS-1
device, which will ignore those chunks. Adding a conditional chunk that requires support for DLS-2 further
isolates the blocks from possible future incompatibilities:

cdl(DLS_CDL_QUERY(DLSID_SupportsDLS2))
)

Finally, adding the following conditional chunk at the beginning of the file will help establish the overall
compatibility of the file:

cdl(DLS_CDL_QUERY(DLSID_SupportsDLS1)
DLS_CDL_QUERY(DLSID_SupportsDLS2)

 DLS_CDL_LOGICAL_OR
)

The above chunk requires that the device support either DLS-1 or DLS-2 in order to continue processing the file.
As noted previously, development tools should have a mode that allows the user to override the conditional chunk
as a means of moving sounds between otherwise incompatible devices.
There are several methods that can be used to create files that take advantage of DLS-2 features when available
while still maintaining compatibility with DLS-1 devices. One method involves creating a completely separate set
of <rgn2-ck> chunks with data specific to the DLS-2 device, and putting a ‘NOT DLS-2’ conditional chunk on the
<rgn-ck> chunks to prevent the DLS-2 device from trying to access DLS-1 chunks. This also allows for different
samples to be played for DLS-1 and DLS-2 devices. This allows the sound designer the opportunity to take
advantage of the resonant filters in the DLS-2 device, and use a sampled filter sweep in the DLS-1 device with
slightly less satisfactory results, but still compatible.
Another method is to simply augment the DLS-1 data with DLS-2 articulation data. This can be accomplished by
putting the basic synthesis parameters into the <art1-ck> chunk, and putting only the DLS-2 extensions in the
<art2-ck> chunk.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 49 November 2003

2.7 <insh-ck>, Instrument Header Chunk
The <insh-ck> defines an instrument within a collection. The <insh-ck> is defined as follows:

 <insh-ck> → insh(
 <cRegions:ULONG>
 <Locale:MIDILOCALE>
)

The <insh-ck> chunk:

Field Description
cRegions Specifies the count of regions for this instrument.
Locale Specifies the MIDI locale for this instrument.

Additional Structure Definitions:
 typedef struct _MIDILOCALE
 {
 ULONG ulBank;
 ULONG ulInstrument;
 } MIDILOCALE, *MIDILOCALE;

Field Description
ulBank Specifies the MIDI bank location. Bits 0-6 are defined as MIDI CC32 and bits 8-14 are

defined as MIDI CC0. Bits 7 and 15-30 are reserved and should be written to zero. If the
F_INSTRUMENT_DRUMS flag (Bit 31) is equal to 1 then the instrument is a drum
instrument; if equal to 0 then the instrument is a melodic instrument. Sound engine shall
ignore Bit 31. Mobile DLS content should set the Bit 31 according to DLS 2.1.

ulInstrument Specifies the MIDI Program Change (PC) value. Bits 0-6 are defined as PC value and bits 7-
31 are reserved and should be written to zero.

An <insh-ck> instrument header is typically (but not necessarily) the second chunk within the enclosing <ins-list>
instrument chunk. Other chunks at the same nesting level include a <lrgn-list> list of regions chunk, and an
optional <lart-list> list of articulators chunk (for melodic instruments only).

2.8 <rgnh-ck>, Region Header Chunk
The <rgnh-ck> defines a region within an instrument. The <rgnh-ck> is defined as follows:
<rgnh-ck> → rgnh(

<RangeKey:RGNRANGE>
<RangeVelocity:RGNRANGE>
<fusOptions:USHORT>
<usKeyGroup:USHORT>
[<usLayer:USHORT>]

)

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 50 November 2003

The <rgnh-ck> chunk:

Field Description
RangeKey Specifies the key range for this region.
RangeVelocity Specifies the velocity range for this region.
fusOptions Specifies flag options for the synthesis of this region. Current options are:
 F_RGN_OPTION_SELFNONEXCLUSIVE
 This option specifies that if a second Note-On of the same note is received by the synthesis

engine, then the second note will be played as well as the first. This option is off by default
and the synthesis engine will force a Note-Off of the prior note if a second note is received of
the same value.

usKeyGroup Specifies the key group for a drum instrument. Key group values allow multiple regions
within a drum instrument to belong to the same "key group." If a synthesis engine is
instructed to play a note with a key group setting and any other notes are currently playing
with this same key group, then the synthesis engine should turn off all notes with the same
key group value as soon as possible. Valid values are:
 0 = no key group

 Valid key groups are 1 to 15.
 All Others Reserved

usLayer
 [Optional] Indicates the layer of this region for editing purposes. This field facilitates the organization of
overlapping regions into layers for display to the user of a DLS sound editor. For example, if a piano sound and a
string section are overlapped to create a piano/string pad, all the regions of the piano might be labeled as layer 1,
and all the regions of the string section might be labeled as layer 2. The program must read the <rgnh-ck> chunk
size to determine whether the usLayer field exists in the chunk. Programs that do not support the usLayer field
should preserve the value and write it back to the file.

 0 = no layer information
 non-zero = valid layer

Additional Structure Definitions:
typedef struct _RGNRANGE
 {

USHORT usLow; /* Low Value of Range */
USHORT usHigh; /* High Value of Range*/
} RGNRANGE, *RGNRANGE;

A <rgnh-ck> region header is typically (but not necessarily) the first chunk within the enclosing <rgn-list> region
chunk. Other chunks at the same nesting level include a <wsmp-ck> wave sample chunk, a <wlnk-ck> wave link
chunk, and an optional <lart-list> list of articulators chunk (for drum instruments only).

2.9 <art1-ck>, DLS-1 Articulator Chunk
The <art1-ck> articulator chunk specifies parameters which modify the playback of a sample used in DLS-1
downloadable instruments. The <art1-ck> chunk may exist at either the instrument level, in which case it contains
global articulation data, or at the region level, in which case it contains local articulation data. However, the DLS-
1 architecture restricts melodic instruments to only global articulation data and restricts drum instruments to only
local articulation data.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 51 November 2003

The <art1-ck> chunk is defined as follows:

 <art1-ck> → art1(
<cbSize:ULONG>
<cConnectionBlocks:ULONG>
<ConnectionBlock(s)>...

)

<ConnectionBlock> → struct

{
USHORT usSource;
USHORT usControl;
USHORT usDestination;
USHORT usTransform;
LONG lScale;

}

The <art1-ck> chunk:

Field Description
cbSize Specifies the size of the structure in bytes. This size does not include the connection

blocks. This field is needed to distinguish the amount of data in the structure versus
the list of connections and allow for additions to this structure in the future. This
cannot be determined from the chunk size.

cConnectionBlocks Specifies the number (count) of <ConnectionBlock> records that are contained in
the <art2-ck> articulator chunk. The <ConnectionBlock> records are stored
immediately following the cConnectionBlocks data field.

The <ConnectionBlock> structure:

Field Description
usSource Specifies the source for the connection.
usControl Specifies the control for the connection.
usDestination Specifies the destination for the connection
usTransform Specifies the input and output transforms used for the connection.
lScale Specifies the scaling value used for the connection.
The list of connection blocks defines both the architecture and settings for an instrument or instrument region.
Although this could be defined as a simple structure of values, the connection graph model allows for future chunk
types which will have a much greater possible number of connections, making the use of a structure unwieldy.
By using the connection graph, a single model can be used for future architectures.

Table 8 lists the defined sources, controls, destinations, and transforms of a DLS-1 synthesizer:

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 52 November 2003

Table 8: DLS-1 Sources, Controls, Destinations, and Transforms

Modulator Sources
0x0000 CONN_SRC_NONE No Source
0x0001 CONN_SRC_LFO Low Frequency Oscillator
0x0002 CONN_SRC_KEYONVELOCITY Note-On Velocity
0x0003 CONN_SRC_KEYNUMBER Note Number
0x0004 CONN_SRC_EG1 Envelope Generator 1
0x0005 CONN_SRC_EG2 Envelope Generator 2
0x0006 CONN_SRC_PITCHWHEEL Pitch Wheel

MIDI Controller Sources
0x0081 CONN_SRC_CC1 Modulation
0x0087 CONN_SRC_CC7 Channel Volume
0x008a CONN_SRC_CC10 Pan
0x008b CONN_SRC_CC11 Expression

Registered Parameter Numbers
0x0100 CONN_SRC_RPN0 RPN0 - Pitch Bend Range
0x0101 CONN_SRC_RPN1 RPN1 - Fine Tune
0x0102 CONN_SRC_RPN2 RPN2 - Coarse Tune

Generic Destinations
0x0000 CONN_DST_NONE No Destination
0x0001 CONN_DST_GAIN Gain
0x0002 CONN_DST_RESERVED Reserved – DO NOT USE
0x0003 CONN_DST_PITCH Pitch
0x0004 CONN_DST_PAN Pan
Modulator LFO Destinations
0x0104 CONN_DST_LFO_FREQUENCY LFO Frequency
0x0105 CONN_DST_LFO_STARTDELAY LFO Start Delay Time

EG Destinations
0x0206 CONN_DST_EG1_ATTACKTIME EG1 Attack Time
0x0207 CONN_DST_EG1_DECAYTIME EG1 Decay Time
0x0208 CONN_DST_EG1_RESERVED Reserved – DO NOT USE
0x0209 CONN_DST_EG1_RELEASETIME EG1 Release Time
0x020A CONN_DST_EG1_SUSTAINLEVEL EG1 Sustain Level
0x030A CONN_DST_EG2_ATTACKTIME EG2 Attack Time
0x030B CONN_DST_EG2_DECAYTIME EG2 Decay Time
0x030C CONN_DST_EG2_RESERVED Reserved – DO NOT USE
0x030D CONN_DST_EG2_RELEASETIME EG2 Release Time
0x030E CONN_DST_EG2_SUSTAINLEVEL EG2 Sustain Level

Transforms
0x0000 CONN_TRN_NONE No Transform
0x0001 CONN_TRN_CONCAVE Concave Transform

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 53 November 2003

2.10 <art2-ck>, DLS-2 Articulator Chunk
The <art2-ck> articulator chunk specifies parameters which modify the playback of a sample used in DLS-2
downloadable instruments. The <art2-ck> chunk may exist at either the instrument level, in which case it contains
global articulation data, or at the region level, in which case it contains local articulation data. The <art2-ck>
chunk is defined as follows:

 <art2-ck> → art2(
<cbSize:ULONG>
<cConnectionBlocks:ULONG>
<ConnectionBlock(s)>...

)

<ConnectionBlock> → struct

{
USHORT usSource;
USHORT usControl;
USHORT usDestination;
USHORT usTransform;
LONG lScale;

}

The <art2-ck> chunk:

Field Description
cbSize Specifies the size of the structure in bytes. This size does not include the connection

blocks. This field is needed to distinguish the amount of data in the structure versus
the list of connections and to allow for additions to this structure in the future. This
cannot be determined from the chunk size.

cConnectionBlocks Specifies the number (count) of <ConnectionBlock> records that are contained in
the <art2-ck> articulator chunk. The <ConnectionBlock> records are stored
immediately following the cConnectionBlocks data field.

The <ConnectionBlock> structure:

Field Description
usSource Specifies the source for the connection.
usControl Specifies the control for the connection.
usDestination Specifies the destination for the connection
usTransform Specifies the input and output transforms used for the connection.
lScale Specifies the scaling value used for the connection.

The usTransform field contains information that indicates the type of transforms that apply to the usSource,
usControl source inputs and the also the output transform. The fields are as follows:

UsSource:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Invert
Bipolar

Transform

UsControl:
Invert

Bipolar
Transform

Output
Transform

Figure 13: usTransform Field

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 54 November 2003

Bits 0-3 specify one of 16 possible output transforms. Bits 4-7 specify one of 16 possible transforms to apply to
the usControl input. Bits 8 and 9 specify whether the usControl input should be inverted and/or bipolar. Bits 10-13
specify one of 16 possible transforms to apply to the usSource input. Bit 14 and 15 specify whether the usSource
input should be inverted and/or bipolar.

The list of connection blocks defines both the architecture and settings for an instrument or instrument region.
Although this could be defined as a simple structure of values, the connection graph model allows for future chunk
types which will have a much greater possible number of connections, making the use of a structure unwieldy.
By using the connection graph, a single model can be used for future architectures.
Table 9 lists the defined sources, controls, destinations, and transforms of a DLS synthesizer.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 55 November 2003

Table 9: DLS-2 Sources, Controls, Destinations, and Transforms

Modulator Sources
0x0000 CONN_SRC_NONE No Source
0x0001 CONN_SRC_LFO Low Frequency Oscillator
0x0002 CONN_SRC_KEYONVELOCITY Note-On Velocity
0x0003 CONN_SRC_KEYNUMBER Note Number
0x0004 CONN_SRC_EG1 Envelope Generator 1
0x0005 CONN_SRC_EG2 Envelope Generator 2
0x0006 CONN_SRC_PITCHWHEEL Pitch Wheel
0x0007 CONN_SRC_POLYPRESSURE Polyphonic Pressure
0x0008 CONN_SRC_CHANNELPRESSURE Channel Pressure
0x0009 CONN_SRC_VIBRATO Vibrato LFO

MIDI Controller Sources
0x0081 CONN_SRC_CC1 Modulation
0x0087 CONN_SRC_CC7 Channel Volume
0x008a CONN_SRC_CC10 Pan
0x008b CONN_SRC_CC11 Expression
0x00db CONN_SRC_CC91 Chorus Send
0x00dd CONN_SRC_CC93 Reverb Send

Registered Parameter Numbers
0x0100 CONN_SRC_RPN0 RPN0 - Pitch Bend Range
0x0101 CONN_SRC_RPN1 RPN1 - Fine Tune
0x0102 CONN_SRC_RPN2 RPN2 - Coarse Tune

Generic Destinations
0x0000 CONN_DST_NONE No Destination
0x0001 CONN_DST_GAIN Gain
0x0002 CONN_DST_RESERVED Reserved
0x0003 CONN_DST_PITCH Pitch
0x0004 CONN_DST_PAN Pan
0x0005 CONN_DST_KEYNUMBER Key Number Generator

Channel Output Destinations
0x0010 CONN_DST_LEFT *Left Channel Send
0x0011 CONN_DST_RIGHT *Right Channel Send
0x0012 CONN_DST_CENTER *Center Channel Send
0x0013 CONN_DST_LFE_CHANNEL *LFE Channel Send
0x0014 CONN_DST_LEFTREAR *Left Rear Channel Send
0x0015 CONN_DST_RIGHTREAR *Rt Rear Channel Send
0x0080 CONN_DST_CHORUS Chorus Send
0x0081 CONN_DST_REVERB Reverb Send
* Denotes optional 6-channel output

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 56 November 2003

Modulator LFO Destinations
0x0104 CONN_DST_LFO_FREQUENCY LFO Frequency
0x0105 CONN_DST_LFO_STARTDELAY LFO Start Delay Time

Vibrato LFO Destinations
0x0114 CONN_DST_VIB_FREQUENCY Vibrato Frequency
0x0115 CONN_DST_VIB_STARTDELAY Vibrato Start Delay

EG Destinations
0x0206 CONN_DST_EG1_ATTACKTIME EG1 Attack Time
0x0207 CONN_DST_EG1_DECAYTIME EG1 Decay Time
0x0208 CONN_DST_EG1_RESERVED EG1 Reserved
0x0209 CONN_DST_EG1_RELEASETIME EG1 Release Time
0x020A CONN_DST_EG1_SUSTAINLEVEL EG1 Sustain Level
0x020B CONN_DST_EG1_DELAYTIME EG1 Delay Time
0x020C CONN_DST_EG1_HOLDTIME EG1 Hold Time
0x020D CONN_DST_EG1_SHUTDOWNTIME EG1 Shutdown Time
0x030A CONN_DST_EG2_ATTACKTIME EG2 Attack Time
0x030B CONN_DST_EG2_DECAYTIME EG2 Decay Time
0x030C CONN_DST_EG2_RESERVED EG2 Reserved
0x030D CONN_DST_EG2_RELEASETIME EG2 Release Time
0x030E CONN_DST_EG2_SUSTAINLEVEL EG2 Sustain Level
0x030F CONN_DST_EG2_DELAYTIME EG2 Delay Time
0x0310 CONN_DST_EG2_HOLDTIME EG2 Hold Time

Filter Destinations
0x0500 CONN_DST_FILTER_CUTOFF Filter Cutoff Frequency
0x0501 CONN_DST_FILTER_Q Filter Resonance

Transforms
0x0000 CONN_TRN_NONE No Transform
0x0001 CONN_TRN_CONCAVE Concave Transform
0x0002 CONN_TRN_CONVEX Convex Transform
0x0003 CONN_TRN_SWITCH Switch Transform

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 57 November 2003

2.11 <wlnk-ck>, Wave Link Chunk
The <wlnk-ck> specifies where the wave data can be found for an instrument region in a DLS stream. The <wlnk-
ck> is defined as follows:

 <wlnk-ck> → wlnk(
<fusOptions:USHORT>
<usPhaseGroup:USHORT>
<ulChannel:ULONG>
<ulTableIndex:ULONG>

)

The <wlnk-ck> chunk:

Field Description
fusOptions Specifies flag options for this wave link. All bits not defined must be set to 0. The define

flags are as follows:
 F_WAVELINK_PHASE_MASTER 0x0001
 Specifies that this link is the master in a group of phase locked wave links.
 F_WAVELINK_MULTICHANNEL 0x0002
 Indicates that the ulChannel field provides the channel steering information and all the

channel steering data in the articulation chunk should be ignored.
usPhaseGroup Specifies a group number for samples which are phase locked. All waves in a set of wave

links with the same group are phase locked and follow the wave in the group with the
F_WAVELINK_PHASE_MASTER flag set. If a wave is not a member of a phase locked
group, this value should be set to 0.

ulChannel Specifies the channel placement of the sample. This is used to place mono sounds within a
stereo pair or for multi-track placement. Each bit position within the ulChannel field specifies
a channel placement with bit 0 specifying a mono sample or the left channel of a stereo file.
Bit assignments are as follows:

0 Left (or mono)
1 Right Channel
2 Center
3 Low Frequency Energy
4 Surround Left
5 Surround Right
6 Left of Center
7 Right of Center
8 Surround Center
9 Side Left
10 Side Right
11 Top
12 Top Front Left
13 Top Front Center
14 Top Front Right
15 Top Rear Left
16 Top Rear Center
17 Top Rear Right
18-31 Reserved (DO NOT USE)

ulTableIndex Specifies the 0 based index of the cue entry in the wave pool table.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 58 November 2003

To create a group of phase-locked samples, the usPhaseGroup field of each <wlnk-ck> chunk must be set to the
same value, which must be non-zero. Additionally, the F_WAVELINK_PHASE_MASTER bit must be set in one,
and only one, of the <wlnk-ck> chunks, which will act as the master for all phase-locked samples.
When using phase-locked samples, all oscillators take their frequency from the oscillator associated with the
phase-master sample. All parameters that can affect the frequency of a slaved oscillator must be ignored. This
includes any connections with ulDestination set to DST_PITCH, as well as sample rate and fine tuning parameters
in the <wsmp-ck> chunk. All slaved oscillators must play back at the frequency of the master oscillator and must
retain sample lock to within plus or minus one half-sample at the device sample output rate.
When the F_WAVELINK_MULTICHANNEL bit is set, the channel assignment of a given sample is fixed,
overriding any parameters in the articulation data. This allows for steering of data to specific speaker locations
without regard to pan controls or other sends. When the F_WAVELINK_MULTICHANNEL bit is zero, channel
assignment is not fixed, allowing for dynamic assignment of the channel via articulation data. Multichannel mode
is optional, and DLS-2 devices need not support it. Content intended to be cross-platform compatible must not use
the multichannel mode, unless the <wlnk-ck> is guarded through the use of a conditional chunk to protect it from
DLS-2 devices that may not support multichannel playback.

2.12 <wsmp-ck>, Wave Sample Chunk
The <wsmp-ck> wave sample chunk describes the minimum necessary information needed to allow a synthesis
engine to use a <wave-list> wave file chunk. The <wsmp-ck> is defined as follows:

 <wsmp-ck> → wsmp(
<cbSize:ULONG>
<usUnityNote:USHORT>
<sFineTune:SHORT>
<lGain:LONG>
<fulOptions:ULONG>
<cSampleLoops:ULONG>
<wavesample-loop>...

)

<wavesample-loop> → struct

{
ULONG cbSize;
ULONG ulLoopType;
ULONG ulLoopStart;
ULONG ulLoopLength;

}

The <wsmp-ck> chunk:

Field Description
cbSize Specifies the size of the structure in bytes. This size does not include the loop records. This

field is needed to distinguish the amount of data in the structure versus the list of loops and
allow for additions to this structure in the future. This cannot be determined from the chunk
size.

usUnityNote Specifies the MIDI note which will replay the sample at original pitch. This value ranges
from 0 to 127 (a value of 60 represents Middle C, as defined by the MIDI specification).

sFineTune Specifies the tuning offset from the usUnityNote in 16 bit relative pitch.
lGain Specifies the gain to be applied to this sample in 32 bit relative gain units.
fulOptions Specifies flag options for the digital audio sample. Current options are:

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 59 November 2003

F_WSMP_NO_TRUNCATION 0x0001
 This option specifies that a synthesis engine is not allowed to truncate the bit depth of the

sample if it cannot synthesize at the bit depth of the digital audio. If the NO_TRUNCATION
bit is set, the device is not allowed to truncate the data to a bit depth less than that of the
original sample. Note that, if truncation is disallowed, the wave may take up more memory in
the device and thus may fail to download due to memory constraints. If the bit is clear, the
synthesis engine may truncate the bit depth, if required.

 F_WSMP_NO_COMPRESSION 0x0002
 This option specifies that a synthesis engine is not allowed to use compression in its internal

synthesis engine for the digital audio sample. If the NO_COMPRESSION bit is set, the
device is not allowed to compress the data. Note that, if compression is disallowed, the wave
may take up more memory in the device and thus may fail to download due to memory
constraints. If the bit is clear, the synthesis engine may compress the digital audio samples,
if required.

cSampleLoops Specifies the number (count) of <wavesample-loop> records that are contained in the
<wsmp-ck> chunk. The <wavesample-loop> records are stored immediately following the
cSampleLoops data field. One shot sounds will have the cSampleLoops field set to 0.
Looped sounds will have the cSampleLoops field set to 1. Values greater than 1 are not yet
defined at this time.

The <wavesample-loop> structure:

Field Description
cbSize Specifies the size of the structure in bytes.
ulLoopType Specifies the loop type:
 WLOOP_TYPE_FORWARD 0x0000 Forward Loop
 WLOOP_TYPE_RELEASE 0x0001 Loop and Release
ulLoopStart Specifies the start point of the loop in samples as an absolute offset from the beginning of the

data in the <data-ck> subchunk of the <wave-list> wave file chunk.
ulLoopLength Specifies the length of the loop in samples.

2.13 <ptbl-ck>, Pool Table Chunk
The <ptbl-ck> pool table chunk contains a list of cross-reference entries to digital audio data within the wave pool.
The <ptbl-ck> is defined as follows:

 <ptbl-ck> → ptbl(
<cbSize:ULONG>
<cCues:ULONG>
<poolcues(s)>...

)

 <poolcue> → struct

 {
ULONG ulOffset;

 }

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 60 November 2003

The <ptbl-ck> chunk:

Field Description
cbSize Specifies the size of the structure in bytes. This size does not include the poolcue records.

This field is needed to distinguish the amount of data in the structure versus the list of cues
and allow for additions to this structure in the future. This cannot be determined from the
chunk size.

cCues Specifies the number (count) of <poolcue> records that are contained in the <ptbl-ck> chunk.
The <poolcue> records are stored immediately following the cCues data field.

ulOffset Specifies the absolute offset in bytes from the beginning of the wave pool data to the correct
entry in the wave pool.

 By using an offset to the data of each pool entry, a synthesis engine does not have to walk
from the beginning of the list to find any given set of wave data but can immediately seek to
the correct location in the wave pool chunk. Additions and deletions of entries in the wave
pool need only modify the pool table as opposed to modifying every <wave-link> in the
instrument chunks.

2.14 <vers-ck>, Version Chunk
The <vers-ck> defines an optional version stamp within a collection. The version stamp is intended primarily as a
mechanism for managing DLS resources, in particular when installing DLS files. It indicates the version of the
contents of the file, not the DLS specification level. A setup program reads the version chunk in a previously
installed DLS file to identify whether it should install a newer file over it. The version stamp follows the same four
number format as the version stamps used in executable code (.exe and .dll files). It is left to the discretion of the
DLS file author to assign a version number scheme to a file.
The <vers-ck> is defined as follows:

 <vers -ck> → vers(
<dwVersionMS:DWORD>
<dwVersionLS:DWORD >

)

The <vers -ck> chunk:

Field Description
dwVersionMS Specifies the high-order 32 bits of the binary version number for the file. The value of this

member is used with the value of the dwVersionLS member to form a 64-bit version number.
This 32 bit value can be further broken down with HIWORD(dwVersionMS) and
LOWORD(dwVersionMS) to get two 16 bit values (version info is actually 4 16 bit values.

dwVersionLS Specifies the low-order 32 bits of the binary version number for the file. The value of this
member is used with the dwVersionMS value to form a 64-bit version number. Use
HIWORD(dwVersionLS) and LOWORD(dwVersionLS) to extract the sixteen bit values.

The version chunk is essentially borrowed from the dwFileVersionMS and dwFileVersionLS fields in the
Microsoft® VS_FIXEDFILEINFO structure which is used to store version information in .exe and .dll files. As
such, the version can be broken down into four segments: the high and low words of the MS and the high and low
words of the LS. For example, "VERSION 3,10,0,61" is translated into: dwVersionMS = 0x0003000a and
dwVersionLS = 0x0000003d.
A <vers-ck> version chunk is typically (but not necessarily) near the top of the enclosing DLS chunk so it can be
quickly found by installation software.

2.15 <INFO-list>, INFO List Chunk
The INFO list is a registered global form type that can store information that helps identify the contents of the
chunk. This information is useful but does not affect the way a program interprets the file; examples are copyright

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 61 November 2003

information and comments. An INFO list is a LIST chunk with list type INFO. The following shows a sample
INFO list chunk:

 < INFO-list > → LIST(‘INFO’ [<info_text-ck>]...)

Example:

 < INFO-list > → LIST('INFO'

 INAM("Distorted Tuba"Z)
 ICMT("The tuba meets Eddie Van Halen"Z)

)

An INFO list should contain only the following chunks. New chunks may be defined, but an application should
ignore any chunk it doesn't understand. The chunks listed below may only appear in an INFO list. Each chunk
contains a ZSTR, or null-terminated text string.
The <info_text-ck> chunks include:

Chunk ID Description
IARL Archival Location. Indicates where the subject of the file is archived.
IART Artist. Lists the artist of the original subject of the file. For example, Les Paul.
ICMS Commissioned. Lists the name of the person or organization that commissioned the subject of

the file. For example, Pope Julian II.
ICMT Comments. Provides general comments about the file or the subject of the file. If the

comment is several sentences long, end each sentence with a period. Do not include newline
characters.

ICOP Copyright. Records the copyright information for the file. For example, Copyright
Encyclopedia International 1991. If there are multiple copyrights, separate them by a
semicolon followed by a space.

ICRD Creation date. Specifies the date the subject of the file was created. List dates in year-month-
day format, padding one-digit months and days with a zero on the left. For example, 1553-05-
03 for May 3, 1553.

IENG Engineer. Stores the name of the engineer who worked on the file. If there are multiple
engineers, separate the names by a semicolon and a blank. For example, Smith, John; Adams,
Joe.

IGNR Genre. Describes the original work, such as, jazz, classical, rock, techno, rave, neo british pop
grunge metal, etc.

IKEY Keywords. Provides a list of keywords that refer to the file or subject of the file. Separate
multiple keywords with a semicolon and a blank. For example, FX; death; murder.

IMED Medium. Describes the original subject of the file, such as, record, CD, and so forth.
INAM Name. Stores the title of the subject of the file, such as, Seattle From Above.
IPRD Product. Specifies the name of the title the file was originally intended for, such as World

Ruler V.
ISBJ Subject. Describes the contents of the file, such as Music of the New World Order.
ISFT Software. Identifies the name of the software package used to create the file, such as Sonic

Foundry Sound Forge.
ISRC Source. Identifies the name of the person or organization who supplied the original subject of

the file. For example, Trey Research.
ISRF Source Form. Identifies the original form of the material that was digitized, such as record,

sampling CD, TV sound track, and so forth. This is not necessarily the same as IMED.
ITCH Technician. Identifies the technician who sampled the subject file. For example, Smith, John.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 62 November 2003

2.16 DLS Wave File Format

The <wave-list> wave file chunk is defined as follows. Programs must expect (and ignore) any unknown
chunks encountered, as with all RIFF forms. However, <fmt-ck> must always occur before <data-ck>, and
both <fmt-ck> and <data-ck> chunks are mandatory in a <wave-file>.
A <wave-list> is similar to an embedded wave file, as would be generated by a wave editing program. These
wave file chunks are referenced from the <rgn-list> chunks inside each <ins-list> chunk, and accessed via the
<poolcue> entries in the <ptbl-ck> pool table chunk. The <wave-list> data is equivalent to that found in a normal
<WAVE-form> WAV file, with two exceptions. First, the initial three DWORD values in a normal <WAVE-
form> WAV file (which are ‘RIFF’ [size] ‘WAVE’) are replaced with a <wave-list> chunk header (‘LIST’ [size]
‘wave’). Second, an optional <dlid-ck> is inserted as the first element following the <wave-list> chunk header, in
order to provide a globally unique identifier for the <wave-list> wave file data.
DLS does not require the use of <fact-ck>, <cue-ck>, <playlist-ck> or <assoc-data-list> chunks; therefore, they
are intentionally left out of the specification.

 <wave-list> → LIST(‘wave’ // note: ‘wave’ is lower case

[<dlid-ck>]
<fmt-ck>
[<wsmp-ck>]
[<fact-ck>]
[<cue-ck>]
[<playlist-ck>]
[<assoc-data-list>]
[<INFO-list>]
<data-ck>

)

2.16.1 Format Chunk <fmt-ck>
The WAVE format chunk <fmt-ck> specifies the format of the <wave-data>. The <fmt-ck> is defined as follows:

<fmt-ck> → fmt (<common-fields>
<format-specific-fields>

)

 <common-fields> → struct {
WORD wFormatTag;
WORD wChannels;
DWORD dwSamplesPerSec;
DWORD dwAvgBytesPerSec;
WORD wBlockAlign;

 }

<format-specific-fields> → <PCM-format-specific>
OR

 <WAVE-format-extensible-specific>

 <PCM-format-specific> → struct {

 WORD wBitsPerSample;
 }

<WAVE-format-extensible-specific>

 → struct {
WORD wBitsPerSample;
WORD cbSize;

 union {

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 63 November 2003

 WORD wValidBitsPerSample;
 WORD wSamplesPerBlock;
 WORD wReserved;
 }
DWORD dwChannelMask;

GUID SubFormat;
}

The <common-fields> struct:

Field Description
wFormatTag A number indicating which format specific field to use (<PCM-format-specific> or

<WAVE-format-extensible-specific>).
If the number is WAVE_FORMAT_EXTENSIBLE (0xFFFE), the data following the
<common-fields> is in the form detailed in <WAVE-format-extensible-specific>,
above; if it is any other number, the data following the <common-fields> is in the form
detailed in <PCM-format-specific>, above. In the case of <PCM-format-specific>, the
number indicates the encoding of the waveform data. The format
WAVE_FORMAT_PCM (0x0001) is defined to be Microsoft Pulse Code Modulation
(PCM) format. The MMA will maintain a registry of supported wFormatTags. In the
case of <WAVE-format-extensible-specific>, see the description below.

wChannels The number of channels represented in the waveform data, such as 1 for mono or 2 for
stereo. DLS-1 supports only mono data (value = "1").

dwSamplesPerSec The sampling rate (in samples per second) at which each channel should be played.

dwAvgBytesPerSec The average number of bytes per second at which the waveform data should

transferred. Playback software can estimate the buffer size using this value.

wBlockAlign The block alignment (in bytes) of the waveform data. Playback software needs to

process a multiple of wBlockAlign bytes of data at a time, so the value of
wBlockAlign can be used for buffer alignment.

The <PCM-format-specific> struct:

Field Description
wBitsPerSample Specifies the number of bits of data used to represent each sample of each channel. If

there are multiple channels, the sample size is the same for each channel. Mobile DLS
supports only 8 or 16 bit samples. If this field is not needed, then it should be set to
zero.

The <WAVE-format-extensible-specific> struct:

Field Description
wBitsPerSample Specifies the number of bits of data used to represent each sample of each channel. If

there are multiple channels, the sample size is the same for each channel. Mobile DLS
supports only 8 or 16 bit samples. If this field is not needed, then it should be set to
zero.

cbSize Specifies the size in bytes of the extra information in the <WAVE-format-extensible-
specific> structure not including the size of wBitsPerSample and cbSize. cbSize must
always be set to at least 22.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 64 November 2003

wValidBitsPerSample Specifies how many bits are used per sample. If the wValidBitsPerSample is less than
wBitsPerSample, then the actual PCM data is aligned left and all extra bits are at the
least significant part of the word.

wSamplesPerBlock Specifies how many samples are stored in one compressed block. wSamplesPerBlock
is used for formats with fixed number of samples per block. If wSamplesPerBlock is
zero, a variable amount of samples is contained in each block of compressed audio
data.

wReserved If neither wValidBitsPerSample or wSamplesPerBlock apply to the audio data being
described by the <WAVE-format-extensible-specific> structure, set the wReserved
field to zero.

dwChannelMask The field dwChannelMask indicates which channels are present in the multi-channel
stream.

SubFormat The SubFormat field is set to the GUID that specifies the type of encoded waveform
data described by the <WAVE-format-extensible-specific> structure. The MMA will
maintain a registry of supported GUIDs.

2.16.2 Data Chunk <data-ck>

The <data-ck> contains the waveform data. It is defined as follows:

<data-ck> → data(<wave-data>)

The <data-ck> chunk:

Field Description
<wave-data> This is the waveform data encoded in the form described above in <common-fields>,

wFormatTag and <WAVE-format-extensible-specific>, SubFormat. For PCM encoded
waveform data, see Data Packing for WAVE_FORMAT_PCM Files and Data Format
of the WAVE_FORMAT_PCM Samples sections.

2.16.3 Data Packing for WAVE_FORMAT_PCM Files
In a single-channel <wave-file>, samples are stored consecutively. For stereo <wave-file>, channel 0 represents
the left channel, and channel 1 represents the right channel. The speaker position mapping for more than two
channels is currently undefined. In multiple-channel <wave-file>, samples are interleaved. Only channel 0 is
supported for DLS-1 and DLS-2. Stereo file format are shown for completeness.

The following diagrams show the data packing for a 8-bit mono and stereo WAVE files:

2.16.4 Data Packing for 8-Bit Mono PCM
Sample 1 Sample 2 Sample 3 Sample 4
Channel 0 Channel 0 Channel 0 Channel 0

2.16.5 Data Packing for 8-Bit Stereo PCM
Sample 1 Sample 1 Sample 2 Sample 2
Channel 0 Channel 1 Channel 0 Channel 0
(left) (right) (left) (right)

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 65 November 2003

The following diagrams show the data packing for 16-bit mono and stereo WAVE files:

2.16.6 Data Packing for 16-Bit Mono PCM
Sample 1 Sample 1 Sample 2 Sample 2
Channel 0 Channel 0 Channel 0 Channel 0
low-order high-order low-order high-order
byte Byte byte byte

2.16.7 Data Packing for 16-Bit Stereo PCM
Sample 1 Sample 1 Sample 1 Sample 1
Channel 0 Channel 0 Channel 1 Channel 1
(left) (left) (right) (right)
low-order high-order low-order high-order
byte Byte byte byte

2.16.8 Data Format of the WAVE_FORMAT_PCM Samples

The data format and maximum and minimums values for PCM waveform samples of various sizes are as follows:

Sample Size Data Format Maximum Value Minimum Value Midpoint Value
8 bit Unsigned 255 (0xFF) 0 128 (0x80)
16 bit Signed 32767 (0x7FFF) -32768 (0x8000) 0

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 66 November 2003

2.17 Instrument Object Hierarchy
The following charts show how the instrument object hierarchies described in the DLS Device Architecture
specification correspond to particular chunks within the <DLS-form> file.

Object Hierarchy: DLS-1 Melodic Instrument Corresponding <DLS-form> chunks
Melodic Instrument--- <ins-list> instrument, <insh-ck> instrument header,

<INFO-list>
 Global <lart-list> list of articulators
 Connection Blocks ----------------------------- <art1-ck> articulator
 Region (1..16) <lrgn-list> list of regions, holding <rgn-list> region

chunks
 Wave Link --------------------------------------- <wlnk-ck> wave link
 Wave Sample------------------------------------ <wsmp-ck> wave sample
 Wave File -- <wave-list> wave file
 Wave Sample (optional) ------------- <wsmp-ck> wave sample
 Wave Data ------------------------------ <data-ck>

Object Hierarchy: DLS-1 Drum Kit Corresponding <DLS-form> chunks
Drum Kit-- <ins-list> instrument, <insh-ck> instrument header,

<INFO-list>
 Region (1..128) --- <lrgn-list> list of regions, holding <rgn-list> region

chunks
 Wave Link --------------------------------------- <wlnk-ck> wave link
 Wave Sample------------------------------------ <wsmp-ck> wave sample
 Wave File -- <wave-list> wave file
 Wave Sample (optional) ------------- <wsmp-ck> wave sample
 Wave Data ------------------------------ <data-ck>
 Region Articulation ------------------------------------- <lart-list> list of articulators
 Connection Blocks ----------------------------- <art1-ck> articulator

Object Hierarchy: DLS-2 Instrument Corresponding <DLS-form> chunks
Instrument-- <ins-list> instrument, <insh-ck> instrument header,

<INFO-list>
 Global <lart-list>,<lar2-list> list of articulators
 Connection Blocks ----------------------------- <art1-ck>,<art2-ck> articulator
 Region (1..n) <lrgn-list> list of <rgn-list>,<rgn2-list> region

chunks
 Wave Link --------------------------------------- <wlnk-ck> wave link
 Wave Sample------------------------------------ <wsmp-ck> wave sample
 Wave File -- <wave-list> wave file
 Wave Sample (optional) ------------- <wsmp-ck> wave sample
 Wave Data ------------------------------ <data-ck>
 Region Articulation ------------------------------------- <lart-list>,<lar2-list> list of articulators
 Connection Blocks ----------------------------- <art1-ck>,<art2-ck> articulator

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 67 November 2003

2.18 Proprietary Chunk IDs
In addition to the use of Conditional Chunks for adding proprietary features, manufacturers of DLS devices may
embed product-specific data into a DLS file using a Proprietary Chunk ID. These IDs are assigned exclusively by
the MMA, in order to prevent any potential error or conflicts between manufacturers accidentally using the same
ID. Manufacturers wishing to obtain their own Proprietary Chunk ID should visit the MMA web site
(www.midi.org) or contact the MMA for an application form.

Proprietary Chunk IDs work as follows:
• The ID is alpha-numeric and 4 bytes in length.
• The first three digits are assigned by the MMA. Manufacturers may receive three digits of their own choosing,

if available and approved by the MMA. (Some choices are reserved).
• The fourth digit is assigned by the manufacturer, and should indicate a specific product (or product group with

consistent features).
• Allowable characters are A-Z and 0-9, supporting 36 different products or product groups.
• Manufacturers needing more variations may apply for an additional ID.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 68 November 2003

2.19 File Examples
2.19.1 Generic DLS-1 File

This instrument collection contains two instruments, an ocean surf sound and a flute instrument. The ocean
surf is loaded in bank 1 instrument 1 and responds across the whole key range. The flute sound is loaded in
bank 1 instrument 2 and consists of two regions with one region for keys from 0-63 and one region for keys
from 64-127.

RIFF ‘DLS ’
 <vers> (1,0,0,23)
 LIST ‘INFO’
 inam “Demo Collection with Ocean Surf and Flute”
 icop “Copyright  1996 MIDI Manufacturers Association”
 <dlid> (globally unique identifier for entire collection)
 <colh> (2 Instruments in this collection)
 LIST ‘lins’
 LIST ‘ins ’
 LIST ‘INFO’
 inam “Ocean Surf”
 <dlid> (globally unique identifier for “Ocean Surf” instrument)
 <insh> (1 Region, location bank 5600h instrument 1)
 LIST ‘lrgn’
 LIST ‘rgn ‘
 <rgnh> (responds to all keys from 0-127, velocities from 0-127)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #1 (index = 0) in the Pool Table)
 LIST ‘lart’
 <art1> (specifies the DLS-1 articulation for this instrument)
 LIST ‘ins ’
 LIST ‘INFO’
 inam “My Flute”
 <dlid> (globally unique identifier for “My Flute” instrument)
 <insh> (2 Regions, location bank 5600h instrument 2)
 LIST ‘lrgn’
 LIST ‘rgn ‘
 <rgnh> (responds to all keys from 0-63, velocities from 0-127)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #2 (index= 1) in the Pool Table)
 LIST ‘rgn ‘
 <rgnh> (responds to all keys from 64-127, velocities from 0-127)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #3 (index = 2) in the Pool Table)
 LIST ‘lart’

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 69 November 2003

 <art1> (specifies the DLS-1 articulation for this instrument)
 <ptbl> [3 entries, [0,offset to surf][1,offset to flute lower][2,offset to flute upper]]
 LIST ‘wvpl’
 LIST ‘wave’ (Ocean surf sound)
 <dlid> (globally unique identifier for “Ocean Surf” wave file)
 LIST ‘wave’ (Flute for lower half of keyboard)
 <dlid> (globally unique identifier for lower-register flute wave file)
 LIST ‘wave’ (Flute for upper half of keyboard)
 <dlid> (globally unique identifier for upper-register flute wave file)

2.19.2 DLS-1 File With 3rd Party Extensions
The following example shows the exact same file but with additional Proprietary Chunks embedded for
a more complex synthesis engine. The file is still compatible with DLS-1. The additional chunks
embedded in this case are all assigned to manufacturer ID “MMA”, and used as follows:

<MMAX> A third party effect chunk which contains parameters for overall effects which can be applied

to a full collection of instruments.

<MMA1> A third party articulation chunk which specifies parameters which can be applied to each

instrument in a collection, or each region within an instrument, depending on where the
chunk is located in the DLS file structure. Since the chunk appears at different locations, the
same ID may be used.

<MMA2> Another third party articulation chunk but intended for a different DLS device from

manufacturer “MMA”. Since this is the second proprietary chunk to be used at the same
level, it must have a unique ID.

RIFF ‘DLS ’
 LIST ‘INFO’
 inam “Demo Collection with Ocean Surf and Flute”
 icop “Copyright  1996 MIDI Manufacturers Association”
 <dlid> (globally unique identifier for entire collection)
 <colh> (2 Instruments in this collection)
 LIST ‘lins’
 LIST ‘ins ’
 LIST ‘INFO’
 inam “Ocean Surf”
 <dlid> (globally unique identifier for “Ocean Surf” instrument)
 <insh> (1 Region, location bank 5600h instrument 1)
 LIST ‘lrgn’
 LIST ‘rgn ‘
 <rgnh> (responds to all keys from 0-127, velocities from 0-127)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #1 (index = 0) in the Pool Table)
 LIST ‘lart’

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 70 November 2003

 <MMA1> (specifies 3rd party region level articulation)
 LIST ‘lart’
 <art1> (specifies the DLS-1 articulation for this instrument)
 <MMA1> (specifies 3rd party instrument level articulation)
 LIST ‘ins ’
 LIST ‘INFO’
 inam “My Flute”
 <dlid> (globally unique identifier for “My Flute” instrument)
 <insh> (2 Regions, location bank 5600h instrument 2)
 LIST ‘lrgn’
 LIST ‘rgn ‘
 <rgnh> (responds to all keys from 0-63, velocities from 0-127)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #2 (index = 1) in the Pool Table)
 LIST ‘lart’
 <MMA2> (specifies 3rd party region level articulation device)
 LIST ‘rgn ‘
 <rgnh> (responds to all keys from 64-127, velocities from 0-127)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #3 (index = 2) in the Pool Table)
 LIST ‘lart’
 <MMA1> (specifies 3rd party region level articulation)
 LIST ‘lart’
 <art1> (specifies the DLS-1 articulation for this instrument)
 <MMA1> (specifies 3rd party instrument level articulation)
 <ptbl> [3 entries, [0,offset to surf][1,offset to flute lower][2,offset to flute upper]]
 LIST ‘wvpl’
 LIST ‘wave’ (Ocean surf sound)
 <dlid> (globally unique identifier for “Ocean Surf” wave file)
 LIST ‘wave’ (Flute for lower half of keyboard)
 <dlid> (globally unique identifier for lower-register flute wave file)
 LIST ‘wave’ (Flute for upper half of keyboard)
 <dlid> (globally unique identifier for upper-register flute wave file)
 <MMAX> (specifies 3rd party effects for the complete collection)

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 71 November 2003

2.19.3 Generic DLS-2 File
This instrument collection contains a Strings and Bell layer instrument. The strings stretch from MIDI note
21 to 108, and contain two velocity splits, while the bell layer plays only from MIDI note 60 to 108.

RIFF ‘DLS ’
 <vers> (2,1,3,15)
 LIST ‘INFO’
 inam “Demo Strings plus Bell Pad”
 icop “Copyright  1998 MIDI Manufacturers Association”
 <dlid> (globally unique identifier for entire collection)
 <colh> (1 Instrument in this collection)
 LIST ‘lins’
 LIST ‘ins ’
 LIST ‘INFO’
 inam “Strings plus Bell Pad”
 <dlid> (globally unique identifier for “Strings plus Bell Pad” instrument)
 <insh> (3 Regions, location bank 0100h instrument 1)
 LIST ‘lar2’
 <art2> (specifies the DLS-2 articulation for this instrument)
 LIST ‘lrgn’
 LIST ‘rgn2‘
 <rgnh> (responds to all keys from 21-108, velocities from 0-63)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #1 (index = 0) in the Pool Table)
 LIST ‘lar2’
 <art2> (specifies the DLS-2 articulation for this region)
 LIST ‘rgn2‘
 <rgnh> (responds to all keys from 21-108, velocities from 64-127)
 <wsmp> (specifies loop points and midi root note)
 <wlnk> (specifies Wave #1 (index = 0) in the Pool Table)
 LIST ‘lar2’
 <art2> (specifies the DLS-2 articulation for this region)
 <ptbl> [3 entries, [0,offset to strings vel 0-63][1, offset to strings vel 64-127][2,offset to bell]]
 LIST ‘wvpl’
 LIST ‘wave’ (String velocity layer 0-63)
 <dlid> (globally unique identifier for “Strings” layer 0-63 wave file)
 LIST ‘wave’ (String velocity layer 64-127)
 <dlid> (globally unique identifier for “Strings” layer 64-127 wave file)
 LIST ‘wave’ (Bell sample for layer)
 <dlid> (globally unique identifier for “Bell” layer wave file)

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 72 November 2003

3. Compatibility Notes
3.1 Coding Requirements and Recommendations
When writing code to read and write DLS files, it is imperative that the programmer takes into account the
following:

• Since this is an expandable format, DLS file parsers must be able to ignore and correctly skip unrecognized

chunks in a DLS file. This is standard practice for RIFF files but is extremely important with the DLS format
since one of its purposes is to allow manufacturers to embed proprietary chunks which exploit advanced
features of their synthesis engines.

• Ordering of chunks within the file format should not be assumed. For instance, a programmer should not
assume that within a <rgn-list> instrument region, chunks will always appear in the order of <rgnh-
ck>,<wsmp-ck>,<wlnk-ck>, <lart-list>. They may actually appear in any order within the list.

• If a <wsmp-ck> does not exist in a region list, the synthesis engine will use the <wsmp-ck> found in the
referenced wave data. If a <wsmp-ck> exists in a region list, its values are used instead of any found in the
referenced wave data. If a <wsmp-ck> exists in neither the region list nor the referenced data, then default
values are used. These are One shot Sound, with a MIDI Unity note of 60 (Middle C), no attenuation, and no
fine tune.

• Connections that are implied by the DLS device architecture must not be written to the DLS file. Implied
connections include: MIDI Note to Key, RPN2 to Key, MIDI Controller 7 to Gain, MIDI Controller 11 to
Gain, MIDI Controller 10 to Pan, EG1 to Attenuation, Pitch Wheel RPN0 to Pitch.

• Applications modifying the voice allocation mode should reset the DLS device to the default (static MIDI
channel priority) upon exiting to insure predictable polyphony.

3.2 DLS-1 and DLS-2 Compatibility
The following restrictions are placed upon the file format and must be followed for DLS-1 and DLS-2
compatibility:

• For the <wlnk-ck> wave link the only allowed type for the ulChannel field is

WAVELINK_CHANNEL_LEFT. This means that for a DLS-1 file only mono sound data is allowed.
fusOptions, usPhase Group and other values for ulChannel other than ulChannel =
WAVELINK_CHANNEL_LEFT should be set to default values since these fields are optional and are not
required to be supported in DLS-1.

• For the embedded wave files <wave-list> within the <wvpl-list> the only data format allowed is
WAVE_FORMAT_PCM. The files also must be 8 or 16 bit mono files. This means that only mono files
which are 8 or 16 bit PCM data are allowed for DLS-1 and DLS-2. See Section 5 for more details on the wave
format.

• For the <rgnh-ck> the allowed key groupings for the ulKeyGroup field are 0 for no key grouping and 1-15
for key groupings. This means there are 15 allowable key groupings within an instrument.

• Some DLS devices support playback rates of only 22.05 kHz. To prevent samples from aliasing on these
devices, it is recommended that samples for these devices be restricted to 22.05 kHz or below.

• 0dB is the defined as the maximum output level at the Volume summing node (DST_GAIN, known as
DST_ATTENUATION in DLS-1). If a sound designer exceeds 0dB, the output level will be clipped to 0dB.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 73 November 2003

3.3 DLS-1 Compatibility
The following restrictions are placed upon the file format and must be followed for DLS-1 compatibility.
Additional information on how to code a mixed DLS-1 and DLS-2 file may be found in the section on Conditional
Chunks.

• For the <lrgn-list> a maximum of 16 regions can exist for any given melodic instrument and 128 regions for a
drum instrument.

• The RangeVelocity field is not supported by the DLS-1 specification, so all regions' RangeVelocity fields for a
DLS-1 collection should be set to 0 for the usLow field and 127 for the usHigh field.

• DLS-1 regions are not allowed to overlap. This means that “splits” are supported by DLS-1 but “layers” are
not. Therefore, an instrument's regions RangeKey field can not overlap.

• DLS-1 melodic instruments may have a single articulation data list <lart-list> at the instrument level, which is
the global articulation data for all regions.

• DLS-1 drum instruments may have local articulation data lists <lart-list> for each region, but may not have
global articulation data at the instrument level.

• To detect whether a given instrument is a drum or melodic instrument, a program should check the instrument
header's ulBank field bit 31. If ulBank bit 31 is equal to 1, then the instrument is a drum instrument. If
ulBank bit 31 is equal to 0, then the instrument is a melodic instrument. The distinction between drum and
melodic instruments will cease to exist in a future revision of the DLS specification.

• For the <art1-ck> the ulDefaultPan field is only used when specifying articulation data for regions of Drum
instruments. For melodic instruments this value should not be specified in the connection list.

• While all DLS-1 devices will support the full +2/-4 octave transposition range, certain DLS-1 devices have
other limits on the transposition range. This limitation is imposed by available memory bandwidth and is
determined by the number of voices playing and the amount of transposition occurring on each voice. The
following formula may be applied to ensure that problems are not encountered with such devices: For each
active voice, divide the playback frequency by the frequency at which the sample was recorded. The sum of
the ratios of all active voices must be less than or equal to 36. For example, if you have 24 voices playing and
each sample is being transposed up 7 semitones (~1.5 times the original frequency), the sum is 24 * 1.5 = 36.
However, if one of those voices was transposing up an octave (2 times the original frequency), the sum would
be 23 * 1.5 + 2 = 36.5, which would exceed the limitation of some DLS-1 devices. Note that when calculating
the transposition, you must consider the transposition that occurs as the sample is transposed from its root key,
tuning fields in the sample header and articulation data, the Fine Tuning RPN, and any effects from Pitch
Bend.

• DLS-1 Devices do not support the use of the Coarse Tuning RPN on MIDI Channel 10.

3.4 Mod LFO to Gain Change (DLS 2.1)
Due to ambiguities in the DLS-1 specification, there were discrepancies in the implementation of the Mod LFO to
Gain connection. The majority of DLS-1 synthesizers that have been deployed implement this connection as
bipolar, non-inverted. However, the initial release of the DLS-2 specification requires a unipolar, inverted
connection for Mod LFO to Gain, as well as for the Mod LFO CC1 to Gain and Mod LFO Channel Pressure to
Gain connections. At the time of this writing, there has been no significant deployment of DLS-2 synthesizers,
therefore, to facilitate backward compatibility, the DLS-2 specification has been revised to reflect the practices
established by the majority of DLS-1 synthesizers. The DLS-2.1 implementation of Mod LFO to Gain will result
in an increase of signal amplitude during the initial phase of the LFO, assuming a positive lScale value.

3.5 DLSID Integrity
The following requirements must be observed to maintain the integrity of DLSID Globally Unique Identifiers:

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 74 November 2003

Support for DLSID Identifiers is optional, not required. However, a DLS implementation which does not support
the use of DLSID Identifiers or the generation of new DLSID values must still observe several requirements.
First, such implementations must be prepared to ignore and skip over any DLSIDs found within a DLS file, just as
if the <dlid-ck> DLSID were an unrecognized chunk. Second, if such an implementation modifies a DLS file, it
must remove any <dlid-ck> chunk found within the top-level <DLS-form> and any additional <dlid-ck> chunks
found within the modified portions of the DLS file.
Leaving the unchanged <dlid-ck> chunks within the modified file would violate the DLSID “uniqueness” rule.
Finally, when exporting a DLS wave file from a <DLS-form> collection to a raw <WAVE-form> wave file, any
embedded <dlid-ck> chunks should be stripped out.

For implementations which do support the use of <dlid> DLSID chunks:

If an object has a DLSID associated with it, a new DLSID value must be generated whenever the associated object
is modified. This includes changes to an <INFO-list> chunk. If an internal object, such as an instrument or wave
is changed, one must change the DLSID for both the object (instrument or wave) and the enclosing <DLS-form>
collection Note that if <vers-ck> version chunks and <dlid-ck> identifiers are both used in the same file,
changing the <vers-ck> requires a concurrent change to all associated <dlid-ck> values.

A DLS-aware utility which is importing a DLS object from one <DLS-form> collection into another <DLS-form>
collection should not change the DLSID of the object being copied. In other words, if one is copying a <ins-list>
or <wave-list> chunk from one <DLS-form> into another, one should not change the <dlid-ck> within the
<ins-list> or <wave-list>, since this data is not being changed. Of course, one must change the collection DISID
(the top-level <dlid-ck> within the target <DLS-form>), because importing an object into the collection changes
that collection.

Wave files need special handling, since they are often generated or processed by applications which are not aware
of DLSID chunks. A raw wave file is a stand-alone <WAVE-form> file, distinguished by the initial sequence
'RIFF'[size]'WAVE'. A DLS wave file is an embedded <wave-list> chunk, normally kept inside a <DLS-form>
collection, distinguished by the initial sequence 'LIST'[size]'wave' (upper case vs. lower case is significant).

When importing a raw <WAVE-form> wave file into a <DLS-form> collection, generate and insert a new
<dlid-ck> for the wave file (replacing any pre-existing <dlid-ck> within the raw wave file).

When exporting a DLS wave file from a <DLS-form> collection to a raw <WAVE-form> wave file, the embedded
<dlid-ck> should be stripped out.

FROM TO Comment
<DLS-form> <DLS-form> Keep DLSID for instrument or wave file (data is unchanged)

Change DLSID for target <DLS-form>
<WAVE-form>
(raw wave file)

<DLS-form> Remove pre-existing DLSID from raw wave file, if any
Generate new DLSID for wave file object within DLS collection.

<DLS-form> <WAVE-form> Remove DLSID during export

It is recommended that each <dlid-ck> DLSID chunk should be placed as the first chunk within the enclosing
LIST or FORM chunk, in order to facilitate searching. However, this ordering should not be assumed.

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 75 November 2003

4. DLS Header Files
The following header files include defines and structures for DLS-1 and DLS-2 synthesizers. The DLS-2 header
file augments the DLS-1 header file, and both must be included in any DLS-2 synthesizer implementation.

4.1 DLS-1 Header File

/*

 dls.h

 Description:

 Interface defines and structures for the Instrument Collection Form
 RIFF DLS.

 Written by Sonic Foundry 1996. Released for public use.

*/

#ifndef _INC_DLS
#define _INC_DLS

/*

 Layout of an instrument collection:

 RIFF [] 'DLS ' [colh,INSTLIST,WAVEPOOL,INFOLIST]

 INSTLIST
 LIST [] 'lins'
 LIST [] 'ins ' [insh,RGNLIST,ARTLIST,INFOLIST]
 LIST [] 'ins ' [insh,RGNLIST,ARTLIST,INFOLIST]
 LIST [] 'ins ' [insh,RGNLIST,ARTLIST,INFOLIST]

 RGNLIST
 LIST [] 'lrgn'
 LIST [] 'rgn ' [rgnh,wsmp,wlnk,ARTLIST]
 LIST [] 'rgn ' [rgnh,wsmp,wlnk,ARTLIST]
 LIST [] 'rgn ' [rgnh,wsmp,wlnk,ARTLIST]

 ARTLIST
 LIST [] 'lart'
 'art1' level 1 Articulation connection graph
 'art2' level 2 Articulation connection graph
 '3rd1' Possible 3rd party articulation structure 1
 '3rd2' Possible 3rd party articulation structure 2 and so on

 WAVEPOOL
 ptbl [] [pool table]
 LIST [] 'wvpl'
 [path],
 [path],
 LIST [] 'wave',RIFFWAVE
 LIST [] 'wave',RIFFWAVE
 LIST [] 'wave',RIFFWAVE
 LIST [] 'wave',RIFFWAVE
 LIST [] 'wave',RIFFWAVE

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 76 November 2003

 INFOLIST
 LIST [] 'INFO'
 'icmt' 'One of those crazy comments.'
 'icop' 'Copyright (C) 1996 Sonic Foundry'

*/

/*
 FOURCC's used in the DLS file
*/

#define FOURCC_DLS mmioFOURCC('D','L','S',' ')
#define FOURCC_COLH mmioFOURCC('c','o','l','h')
#define FOURCC_WVPL mmioFOURCC('w','v','p','l')
#define FOURCC_PTBL mmioFOURCC('p','t','b','l')
#define FOURCC_PATH mmioFOURCC('p','a','t','h')
#define FOURCC_wave mmioFOURCC('W','A','V','E')
#define FOURCC_LINS mmioFOURCC('l','i','n','s')
#define FOURCC_INS mmioFOURCC('i','n','s',' ')
#define FOURCC_INSH mmioFOURCC('i','n','s','h')
#define FOURCC_LRGN mmioFOURCC('l','r','g','n')
#define FOURCC_RGN mmioFOURCC('r','g','n',' ')
#define FOURCC_RGNH mmioFOURCC('r','g','n','h')
#define FOURCC_LART mmioFOURCC('l','a','r','t')
#define FOURCC_ART1 mmioFOURCC('a','r','t','1')
#define FOURCC_WLNK mmioFOURCC('w','l','n','k')
#define FOURCC_WSMP mmioFOURCC('w','s','m','p')
#define FOURCC_VERS mmioFOURCC('v','e','r','s')

/*
 Articulation connection graph definitions
*/

/* Generic Sources */
#define CONN_SRC_NONE 0x0000
#define CONN_SRC_LFO 0x0001
#define CONN_SRC_KEYONVELOCITY 0x0002
#define CONN_SRC_KEYNUMBER 0x0003
#define CONN_SRC_EG1 0x0004
#define CONN_SRC_EG2 0x0005
#define CONN_SRC_PITCHWHEEL 0x0006

/* Midi Controllers 0-127 */
#define CONN_SRC_CC1 0x0081
#define CONN_SRC_CC7 0x0087
#define CONN_SRC_CC10 0x008a
#define CONN_SRC_CC11 0x008b

/* Registered Parameter Numbers */
#define CONN_SRC_RPN0 0x0100
#define CONN_SRC_RPN1 0x0101
#define CONN_SRC_RPN2 0x0102

/* Generic Destinations */
#define CONN_DST_NONE 0x0000
#define CONN_DST_ATTENUATION 0x0001
#define CONN_DST_RESERVED 0x0002
#define CONN_DST_PITCH 0x0003
#define CONN_DST_PAN 0x0004

/* LFO Destinations */
#define CONN_DST_LFO_FREQUENCY 0x0104

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 77 November 2003

#define CONN_DST_LFO_STARTDELAY 0x0105

/* EG1 Destinations */
#define CONN_DST_EG1_ATTACKTIME 0x0206
#define CONN_DST_EG1_DECAYTIME 0x0207
#define CONN_DST_EG1_RESERVED 0x0208
#define CONN_DST_EG1_RELEASETIME 0x0209
#define CONN_DST_EG1_SUSTAINLEVEL 0x020a

/* EG2 Destinations */
#define CONN_DST_EG2_ATTACKTIME 0x030a
#define CONN_DST_EG2_DECAYTIME 0x030b
#define CONN_DST_EG2_RESERVED 0x030c
#define CONN_DST_EG2_RELEASETIME 0x030d
#define CONN_DST_EG2_SUSTAINLEVEL 0x030e

#define CONN_TRN_NONE 0x0000
#define CONN_TRN_CONCAVE 0x0001

typedef struct _DLSVERSION {
 DWORD dwVersionMS;
 DWORD dwVersionLS;
}DLSVERSION, FAR *LPDLSVERSION;

typedef struct _CONNECTION {
 USHORT usSource;
 USHORT usControl;
 USHORT usDestination;
 USHORT usTransform;
 LONG lScale;
 }CONNECTION, FAR *LPCONNECTION;

/* Level 1 Articulation Data */

typedef struct _CONNECTIONLIST {
 ULONG cbSize; /* size of the connection list structure */
 ULONG cConnections; /* count of connections in the list */
 } CONNECTIONLIST, FAR *LPCONNECTIONLIST;

/*
 Generic type defines for regions and instruments
*/

typedef struct _RGNRANGE {
 USHORT usLow;
 USHORT usHigh;
}RGNRANGE, FAR * LPRGNRANGE;

#define F_INSTRUMENT_DRUMS 0x80000000

typedef struct _MIDILOCALE {
 ULONG ulBank;
 ULONG ulInstrument;
}MIDILOCALE, FAR *LPMIDILOCALE;

/*
 Header structures found in an DLS file for collection, instruments, and
 regions.
*/

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 78 November 2003

#define F_RGN_OPTION_SELFNONEXCLUSIVE 0x0001

typedef struct _RGNHEADER {
 RGNRANGE RangeKey; /* Key range */
 RGNRANGE RangeVelocity; /* Velocity Range */
 USHORT fusOptions; /* Synthesis options for this range */
 USHORT usKeyGroup; /* Key grouping for non simultaneous play
 0 = no group, 1 up is group
 for Level 1 only groups 1-15 are allowed */
}RGNHEADER, FAR *LPRGNHEADER;

typedef struct _INSTHEADER {
 ULONG cRegions; /* Count of regions in this instrument */
 MIDILOCALE Locale; /* Intended MIDI locale of this instrument */
}INSTHEADER, FAR *LPINSTHEADER;

typedef struct _DLSHEADER {
 ULONG cInstruments; /* Count of instruments in the collection */
}DLSHEADER, FAR *LPDLSHEADER;

/*
 definitions for the Wave link structure
*/

/***** For level 1 only WAVELINK_CHANNEL_MONO is valid ****
 ulChannel allows for up to 32 channels of audio with each bit position
 specifiying a channel of playback */

#define WAVELINK_CHANNEL_LEFT 0x0001l
#define WAVELINK_CHANNEL_RIGHT 0x0002l

#define F_WAVELINK_PHASE_MASTER 0x0001

typedef struct _WAVELINK { /* any paths or links are stored right after struct */
 USHORT fusOptions; /* options flags for this wave */
 USHORT usPhaseGroup; /* Phase grouping for locking channels */
 ULONG ulChannel; /* channel placement */
 ULONG ulTableIndex; /* index into the wave pool table, 0 based */
}WAVELINK, FAR *LPWAVELINK;

#define POOL_CUE_NULL 0xffffffffl

typedef struct _POOLCUE {
 ULONG ulEntryIndex; /* Index entry in the list */
 ULONG ulOffset; /* Offset to the entry in the list */
}POOLCUE, FAR *LPPOOLCUE;

typedef struct _POOLTABLE {
 ULONG cbSize; /* size of the pool table structure */
 ULONG cCues; /* count of cues in the list */
 } POOLTABLE, FAR *LPPOOLTABLE;

/*
 Structures for the "wsmp" chunk
*/

#define F_WSMP_NO_TRUNCATION 0x0001l
#define F_WSMP_NO_COMPRESSION 0x0002l

typedef struct _rwsmp {
 ULONG cbSize;
 USHORT usUnityNote; /* MIDI Unity Playback Note */
 SHORT sFineTune; /* Fine Tune in log tuning */

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 79 November 2003

 LONG lAttenuation; /* Overall Attenuation to be applied to data */
 ULONG fulOptions; /* Flag options */
 ULONG cSampleLoops; /* Count of Sample loops, 0 loops is one shot */
 } WSMPL, FAR *LPWSMPL;

/* This loop type is a normal forward playing loop which is continually
 played until the envelope reaches an off threshold in the release
 portion of the volume envelope */

#define WLOOP_TYPE_FORWARD 0

typedef struct _rloop {
 ULONG cbSize;
 ULONG ulType; /* Loop Type */
 ULONG ulStart; /* Start of loop in samples */
 ULONG ulLength; /* Length of loop in samples */
} WLOOP, FAR *LPWLOOP;

#endif /* _INC_DLS */

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 80 November 2003

4.2 DLS-2 Header File
/*

 dls2.h

 Description:
 Interface defines and structures for the DLS2 extensions of DLS.

 Written by Microsoft 1998. Released for public use.

*/

#ifndef _INC_DLS2
#define _INC_DLS2

/*
 FOURCC's used in the DLS2 file, in addition to DLS1 chunks
*/

#define FOURCC_RGN2 mmioFOURCC('r','g','n','2')
#define FOURCC_LAR2 mmioFOURCC('l','a','r','2')
#define FOURCC_ART2 mmioFOURCC('a','r','t','2')
#define FOURCC_CDL mmioFOURCC('c','d','l',' ')
#define FOURCC_DLID mmioFOURCC('d','l','i','d')

/*
 Articulation connection graph definitions. These are in addition to
 the definitions in the DLS1 header.
*/

/* Generic Sources (in addition to DLS1 sources. */
#define CONN_SRC_POLYPRESSURE 0x0007 /* Polyphonic Pressure */
#define CONN_SRC_CHANNELPRESSURE 0x0008 /* Channel Pressure */
#define CONN_SRC_VIBRATO 0x0009 /* Vibrato LFO */
#define CONN_SRC_MONOPRESSURE 0x000a /* MIDI Mono pressure */

/* Midi Controllers */
#define CONN_SRC_CC91 0x00db /* Reverb Send */
#define CONN_SRC_CC93 0x00dd /* Chorus Send */

/* Generic Destinations */
#define CONN_DST_GAIN 0x0001 /* Same as CONN_DST_
ATTENUATION */
#define CONN_DST_KEYNUMBER 0x0005 /* Key Number Generator
*/

/* Audio Channel Output Destinations */
#define CONN_DST_LEFT 0x0010 /* Left Channel Send */
#define CONN_DST_RIGHT 0x0011 /* Right Channel Send */
#define CONN_DST_CENTER 0x0012 /* Center Channel Send */
#define CONN_DST_LEFTREAR 0x0013 /* Left Rear Channel Send
*/
#define CONN_DST_RIGHTREAR 0x0014 /* Right Rear Channel
Send */
#define CONN_DST_LFE_CHANNEL 0x0015 /* LFE Channel Send */
#define CONN_DST_CHORUS 0x0080 /* Chorus Send */
#define CONN_DST_REVERB 0x0081 /* Reverb Send */

/* Vibrato LFO Destinations */

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 81 November 2003

#define CONN_DST_VIB_FREQUENCY 0x0114 /* Vibrato Frequency */
#define CONN_DST_VIB_STARTDELAY 0x0115 /* Vibrato Start Delay */

/* EG1 Destinations */
#define CONN_DST_EG1_DELAYTIME 0x020B /* EG1 Delay Time */
#define CONN_DST_EG1_HOLDTIME 0x020C /* EG1 Hold Time */
#define CONN_DST_EG1_SHUTDOWNTIME 0x020D /* EG1 Shutdown Time */

/* EG2 Destinations */
#define CONN_DST_EG2_DELAYTIME 0x030F /* EG2 Delay Time */
#define CONN_DST_EG2_HOLDTIME 0x0310 /* EG2 Hold Time */

/* Filter Destinations */
#define CONN_DST_FILTER_CUTOFF 0x0500 /* Filter Cutoff
Frequency */
#define CONN_DST_FILTER_Q 0x0501 /* Filter
Resonance */

/* Transforms */
#define CONN_TRN_CONVEX 0x0002 /* Convex Transform */
#define CONN_TRN_SWITCH 0x0003 /* Switch Transform */

/* Conditional chunk operators */
#define DLS_CDL_AND 0x0001 /* X = X & Y */
#define DLS_CDL_OR 0x0002 /* X = X | Y */
#define DLS_CDL_XOR 0x0003 /* X = X ^ Y */
#define DLS_CDL_ADD 0x0004 /* X = X + Y */
#define DLS_CDL_SUBTRACT 0x0005 /* X = X - Y */
#define DLS_CDL_MULTIPLY 0x0006 /* X = X * Y */
#define DLS_CDL_DIVIDE 0x0007 /* X = X / Y */
#define DLS_CDL_LOGICAL_AND 0x0008 /* X = X && Y */
#define DLS_CDL_LOGICAL_OR 0x0009 /* X = X || Y */
#define DLS_CDL_LT 0x000A /* X = (X < Y) */
#define DLS_CDL_LE 0x000B /* X = (X <= Y) */
#define DLS_CDL_GT 0x000C /* X = (X > Y) */
#define DLS_CDL_GE 0x000D /* X = (X >= Y) */
#define DLS_CDL_EQ 0x000E /* X = (X == Y) */
#define DLS_CDL_NOT 0x000F /* X = !X */
#define DLS_CDL_CONST 0x0010 /* 32-bit constant */
#define DLS_CDL_QUERY 0x0011 /* 32-bit value returned from query
*/
#define DLS_CDL_QUERYSUPPORTED 0x0012 /* 32-bit value returned from query
*/

/*
 Loop and Release
*/

#define WLOOP_TYPE_RELEASE 1

/*
 DLSID queries for <cdl-ck>
*/

DEFINE_DLSID(DLSID_GMInHardware, 0x178f2f24, 0xc364, 0x11d1, 0xa7, 0x60, 0x00, 0x00,
0xf8, 0x75, 0xac, 0x12);
DEFINE_DLSID(DLSID_GSInHardware, 0x178f2f25, 0xc364, 0x11d1, 0xa7, 0x60, 0x00, 0x00,
0xf8, 0x75, 0xac, 0x12);
DEFINE_DLSID(DLSID_XGInHardware, 0x178f2f26, 0xc364, 0x11d1, 0xa7, 0x60, 0x00, 0x00,
0xf8, 0x75, 0xac, 0x12);

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 82 November 2003

DEFINE_DLSID(DLSID_SupportsDLS1, 0x178f2f27, 0xc364, 0x11d1, 0xa7, 0x60, 0x00, 0x00,
0xf8, 0x75, 0xac, 0x12);
DEFINE_DLSID(DLSID_SupportsDLS2, 0xf14599e5, 0x4689, 0x11d2, 0xaf, 0xa6, 0x0, 0xaa,
0x0, 0x24, 0xd8, 0xb6);
DEFINE_DLSID(DLSID_SampleMemorySize, 0x178f2f28, 0xc364, 0x11d1, 0xa7, 0x60, 0x00,
0x00, 0xf8, 0x75, 0xac, 0x12);
DEFINE_DLSID(DLSID_ManufacturersID, 0xb03e1181, 0x8095, 0x11d2, 0xa1, 0xef, 0x0,
0x60, 0x8, 0x33, 0xdb, 0xd8);
DEFINE_DLSID(DLSID_ProductID, 0xb03e1182, 0x8095, 0x11d2, 0xa1, 0xef, 0x0, 0x60, 0x8,
0x33, 0xdb, 0xd8);

DEFINE_DLSID(DLSID_SamplePlaybackRate, 0x2a91f713, 0xa4bf, 0x11d2, 0xbb, 0xdf, 0x0,
0x60, 0x8, 0x33, 0xdb, 0xd8);

#endif /* _INC_DLS2 */

MOBILE DLS
(DRAFT SPECIFICATION FOR 3GPP REVIEW ONLY)

Version 0.991 PAGE 83 November 2003

5. References
[1] The Complete MIDI 1.0 Detailed Specification, Incorporating all Recommended Practices, MIDI
Manufacturers Association, Document version 96.1, 1996.
[2] Downloadable Sounds Level 1, Version 1.1a. The MIDI Manufacturers Association, Los Angeles, CA, USA,
1999.
[3] Downloadable Sounds Level 2.1, Version 1.0. The MIDI Manufacturers Association, Los Angeles, CA, USA,
2000.
[4] General MIDI System Level 1, RP-003, in The Complete MIDI 1.0 Detailed Specification, Document Version
96.1, MIDI Manufacturers Association, Los Angeles, CA, USA
[5] General MIDI Level 2 Specification (Recommended Practice), RP-024, November 1999, MIDI Manufacturers
Association, Los Angeles, CA, USA
[6] Scalable Polyphony MIDI, RP-034, MIDI Manufacturers Association, Los Angeles, CA, USA
[7] Scalable Polyphony MIDI Device 5–24 Note Profile For 3GPP, RP-035, MIDI Manufacturers Association, Los
Angeles, CA, USA

