3GPP TSG-SA4 Meeting #26
Tdoc S4-030302

Paris, France, 5–9 May 2003

Title:
Complexity Assessment of
the AMR-WB Floating-point Source Code
Source:
VoiceAge

Document for:
Discussion and approval

Agenda Item:
6
1. Summary

This document presents a complexity analysis for the floating-point ANSI-C source code of the AMR-WB codec specified in TS 26.204 version 5.1.0. The complexity is assessed analytically using the methology presented originally in S4-030155. The assessment covers the speech encoder and decoder including VAD/DTX. The computational complexity is expressed in weighted MOPS (wMOPS) calculated based on the worst observed frame, and the memory requirements in RAM, Table ROM and Program ROM required by the codec.

Table 1 shows the summary of the complexity assessment. The more detailed breakdown of the complexity figures is presented in the subsequent sections. All source code used in the complexity assessment and more detailed results are available by request for external verification. We propose that the values of Table 1 are adopted to be used as the reference in the verification of the design constraints set for the PSS and MMS audio codec and the AMR-WB+ codec.
Table 1. Complexity of the floating-point source code TS 26.204 version 5.1.0 of the AMR-WB codec. The values include VAD and DTX.

	
	Encoder
	Decoder
	Codec

	wMOPS
	27.45
	9.19
	36.64

	RAM [16-bit word]
	N/A
	N/A
	6528

	ROM [16-bit word]
	N/A
	N/A
	9929

	Program ROM [ops]
	5437
	3221
	8658

The following issues has to be recalled when comparing the complexity reported for the floating and fixed-point implementations of the AMR-WB codec in TS 26.204 and 26.173, respectively:

· The decoder in TS 26.204 is implemented in fixed-point arithmetic but without the ETSI basic operator library, and is bit-exact with the corresponding fixed-point specification TS 26.173.

· The encoder in TS 26.204 uses both floating and fixed-point arithmetic. The routines that are necessary for maintaining the encoder in synchrony with the decoder are implemented in fixed-point arithmetic, but without the ETSI basic operators. Other routines are in floating-point arithmetic. Some subroutines and tables are available in both representations increasing Program ROM and Table ROM.

· The programming styles differ affecting computational complexity and particularly Program ROM. The floating-point source code uses, for example, loop unrolling.
· The complexity assessment methods differ affecting both computational and memory complexity. The method applied to the floating-point source code cannot take into account the complexity overhead caused by variables and operations that require a 32-bit representation for sufficient accuracy. On the other hand, this method counts loops, some address pointer operations and function calls that are excluded in the fixed-point complexity evaluation.
2. Methodology and results
2.1. wMOPS and Program ROM

The computational complexity and Program ROM are estimated using the ANSI-C library of complexity counters introduced in S4-30301. This library was distributed on April 16, 2003 to all organizations that had declared their intent to submit a candidate codec to the PSS and MMS audio codec selection. The source code in TS 26.204 version 5.1.0 instrumented with complexity counters is available by request for external verification.

The computational complexity is obtained by processing the concatenated test vectors specified in TS 26.174 separately with each codec mode and calculating a wMOPS value based on the worst observed frame. The test vectors were chosen for this exercise because they are available for all interested parties. The test vectors have been designed to provide the best possible coverage of the codec algorithm for bit exactness verification of implementations. Therefore it can be expected that a reasonable estimate for the worst observed frame is obtained, although the concatenated test vectors include only 10773 frames. Program ROM was estimated with a single audio input file obtained by repeating the concatenated test vectors nine times, once for each mode. This is necessary to get the broadest coverage of the source code.
Table 2a presents the computational complexity individually for all speech codec modes. The corresponding figures for the fixed-point specification TS 26.173 are shown in Table 2b for comparison.
Table 2a. Worst Observed Frame (WOF) complexity in wMOPS for the different speech codec modes estimated based on the floating-point source code TS 26.204 version 5.1.0 of the AMR-WB codec. The values include VAD and DTX.

	Mode
	23.85
	23.05
	19.85
	18.25
	15.85
	14.25
	12.65
	8.85
	6.60
	WOF

	Encoder
	26.01
	27.45
	27.36
	26.74
	25.99
	25.76
	23.85
	20.72
	19.08
	27.45

	Decoder
	8.54
	7.95
	7.80
	7.81
	7.70
	7.64
	7.68
	8.37
	9.19
	9.19

	Total
	34.55
	35.40
	35.16
	34.55
	33.69
	33.40
	31.53
	29.09
	28.27
	36.64

Table 2b. Theoretical Worst Case (TWC) complexity in wMOPS for the different speech codec modes according to TR 26.976 “Performance characterization of the Adaptive Multi-rate Wideband (AMR-WB) speech codec.” The Worst Observed Frame (WOF) complexity of the codec was reported to be 36.13 wMOPS. The values include VAD and DTX.

	Mode
	23.85
	23.05
	19.85
	18.25
	15.85
	14.25
	12.65
	8.85
	6.60
	TWC

	Encoder
	29.07
	30.84
	31.14
	30.22
	29.41
	29.24
	26.91
	23.59
	20.46
	31.14

	Decoder
	6.90
	6.89
	6.83
	6.82
	6.79
	6.76
	6.73
	7.47
	7.83
	7.83

	Total
	35.97
	37.73
	37.97
	37.04
	36.20
	36.00
	33.64
	31.06
	28.29
	38.97

It should be noted, however, that the methology used for the floating-point source code cannot give an exact correspondence with Table 2b. Although the weights assigned to arithmetic operations reflect those of the ETSI basic operator set, the methology counts also loops, function calls, and some address pointer operations. At the same time, the methodology cannot take into account the complexity overhead resulting from the variables and operations that require 32-bit representation in fixed-point arithmetic for sufficient accuracy.

The decoder specified TS 26.204 is implemented in fixed-point arithmetic but without the ETSI basic operator set. Because of the fixed-point arithmetic, normalization and scaling of variables are used frequently increasing the complexity count compared to a native floating-point algorithm. This factor combined with the inclusion of loops, function calls and some address pointer arithmetic in the count results in systematically higher computational complexity compared to the decoder figures in Table 2b. The encoder in TS 26.204 uses dominantly floating-point arithmetic, but some modules are in fixed-point arithmetic to maintain synchrony with the decoder. Because the computationally most complex routines such as the fixed-codebook search are in floating-point arithmetic, the encoder figures of Table 2a are systematically lower than those of Table 2b.
Table 3 presents Program ROM estimated from the floating-point source code. The estimate is significantly higher than that of the fixed-point source code. This is because of the reasons discussed above: some encoder routines are included both in floating and fixed-point arithmetic. Loop unrolling used extensively in the floating-point source code increases the code size further. In addition to different design choices taken in the floating and fixed-point implementations, the estimation methods differ. The estimates shown for the floating-point source code include for example loops, function calls, and some address pointer operations not taken into account in the estimation based on the fixed-point point source code.

Table 3. Program ROM in ETSI basic operators for the fixed-point source code as reported in TR 26.976, and in weighted operations for the floating-point source code.
	
	Fixed-point
[basic-op]
	Floating-point
[weighted-op]

	Encoder + VAD + DTX
	N/A
	5437

	Decoder + DTX
	N/A
	3221

	Codec + VAD + DTX
	3889
	8658

2.2. RAM

RAM is counted in 16-bit words. This is based on the assumption that a 16-bit integer representation provides a sufficient accuracy for all variables when implemented in fixed-point arithmetic on a 16-bit DSP regardless of the data types used in the floating-point source code. The total size of RAM is a sum of Static and Scratch RAM. Static RAM includes only those variables and arrays that are defined with the static declaration, excluding as an exception the static RAM arrays that are used like constant tables. These static RAM arrays are included in Table ROM. Scratch memory which can be shared by different routines is counted only once.

Since the fixed-point source code of the AMR-WB codec in TS 26.173 does not include any static variables, static arrays, or dynamic arrays in a 32-bit integer representation, and both the fixed and floating-point implementations use identical arrays of same length, the RAM figures given in the characterization report of the AMR-WB codec TR 26.976 apply to the floating-point implementation.
Table 4. RAM in 16-bit words according to TR 26.976 “Performance characterization of the Adaptive Multi-rate Wideband (AMR-WB) speech codec.” The same values apply to the floating-point source code of the AMR-WB codec in TS 26.204.
	
	Static
	Scratch

	Encoder + VAD + DTX
	1381
	4389

	Decoder + DTX
	758
	

	Total
	2139
	4389

	
	6528

2.3. Table ROM

Table ROM is counted in 16-bit words. This is based on the assumption that a 16-bit integer representation provides a sufficient accuracy for tables when implemented in fixed-point arithmetic on a 16-bit DSP regardless of the data types used in the floating-point source code. Tables used in multiple codec modes are counted only once.

Because of the encoder in TS 26.204 uses both floating and fixed-point arithmetic, some tables are included twice, once in both representations. The duplication is not necessary for implementing a completely functional bit-compatible encoder as it can be avoided, for example, by scaling table entries to an appropriate representation when used. Alternatively, the encoder could be implemented completely in floating-point arithmetic. Therefore each table is counted only once in the Table ROM analysis.
Since fixed-point source code of the encoder does not include tables in 32-bit integer representation, and both the fixed and floating-point source codes use identical tables of same size, both encoder implementations use the same amount of Table ROM. The same reasoning is valid for the decoder. Therefore the Table ROM value given in the characterization report TR 26.976 for the codec applies also to the floating-point source code of TS 26.204. Note that TR 26.976 gives a value only for the codec without a breakdown between encoder and decoder.
Table 4. Table ROM in 16-bit words according to TR 26.976 “Performance characterization of the Adaptive Multi-rate Wideband (AMR-WB) speech codec.” The same values apply to the floating-point source code of the AMR-WB codec in TS 26.204.
	Encoder + VAD + DTX
	N/A

	Decoder + DTX
	N/A

	Codec + VAD + DTX
	9929

3. Conclusion
This contribution presented the complexity assessment of the floating-point source code of the AMR-WB codec specified in TS 26.204. We propose that the reported values are adopted to be used as the reference in the verification of the design constraints set for the PSS and MMS audio codec and the AMR-WB+ codec.
� Contact: Vesa Ruoppila

VoiceAge Corporation

750 chemin Lucerne Suite 250, Montreal (QC) H3R 2H6, Canada

+1 514 7374940 x269 tel, +1 514 9082037 fax

vesar@voiceage.com

2(4)

