Page 1

3GPP TSG-SA4 Meeting #22
Tdoc (
S4-020458

Tampere, Finland, 22-26 July 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	26.234
	CR
	032
	(

rev
	1
	(

Current version:
	5.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Required RTSP header support

	
	

	Source:
(

	Ericsson

	
	

	Work item code:
(

	PSS-E
	
	Date: (

	24/07/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Currently some headers of a minimal implementation are missing.

	
	

	Summary of change:
(

	Inclusion of RTSP headers Timestamp and User-Agent.

	
	

	Consequences if
(

not approved:
	Specification not compliant with RTSP (except for the User-Agent header which is “highly recommended”).

	
	

	Clauses affected:
(

	A.2.1, G.2

	
	

	
	Y
	N
	
	

	Other specs
(

	
	N
	 Other core specifications
(

	

	affected:
	
	N
	 Test specifications
	

	
	
	N
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

A.2
RTSP

A.2.1
General

Clause 5.3.2 of the present document defines the required RTSP support in PSS clients and servers by making references to Appendix D of [5]. The current clause gives an overview of the methods (see Table A.2) and headers (see Table A.3) that are specified in the referenced Appendix D. An example of an RTSP session is also given.

Table A.2: Overview of the required RTSP method support

	Method
	Requirement for a minimal on-demand playback client according to [5].
	Requirement for a PSS client according to the present document.
	Requirement for a minimal on-demand playback server according to [5].
	Requirement for a PSS server according to the present document.

	OPTIONS
	O
	O
	Respond
	Respond

	REDIRECT
	Respond
	Respond
	O
	O

	DESCRIBE
	O
	Generate
	O
	Respond

	SETUP
	Generate
	Generate
	Respond
	Respond

	PLAY
	Generate
	Generate
	Respond
	Respond

	PAUSE
	Generate
	Generate
	Respond
	Respond

	TEARDOWN
	Generate
	Generate
	Respond
	Respond

	NOTE 1: O = Support is optional

NOTE 2: 'Generate' means that the client/server is required to be able to generate the request.

NOTE 3: 'Respond' means that the client/server is required understand and be able to properly respond to the request.

Table A.3: Overview of the required RTSP header support

	Header
	Requirement for a minimal on-demand playback client according to [5].
	Requirement for a PSS client according to the present document.
	Requirement for a minimal on-demand playback server according to [5].
	Requirement for a PSS server according to the present document.

	Connection
	include/understand
	include/understand
	include/understand
	include/understand

	Content-Encoding
	understand
	understand
	include
	include

	Content-Language
	understand
	understand
	include
	include

	Content-Length
	understand
	understand
	include
	include

	Content-Type
	understand
	understand
	include
	include

	CSeq
	include/understand
	include/understand
	include/understand
	include/understand

	Location
	understand
	understand
	O
	O

	Public
	O
	O
	include
	include

	Range
	O
	include/understand
	understand
	include/understand

	Require
	O
	O
	understand
	understand

	RTP-Info
	understand
	understand
	include
	include

	Session
	include
	include
	understand
	understand

	Timestamp
	O
	O
	include/understand
	include/understand

	Transport
	include/understand
	include/understand
	include/understand
	include/understand

	User-Agent
	O
	O
	O
	O

	NOTE 1: O = Support is optional

NOTE 2: 'include' means that the client/server is required to be able to include the header in a request or response.

NOTE 3: 'understand' means that the client/server is required to be able to understand the header and respond properly if the header is received in a request or response.
NOTE 4: According to [5] the “User-Agent” header is not strictly required for a minimal RTSP client implementation, although it is highly recommended that it is included with requests. The same applies to a PSS client according to the present document.

The example below is intended to give some more understanding of how RTSP and SDP are used within the 3GPP PSS. The example assumes that the streaming client has the RTSP URL to a presentation consisting of an H.263 video sequence and AMR speech. RTSP messages sent from the client to the server are in bold and messages from the server to the client in italic. In the example the server provides aggregate control of the two streams.

EXAMPLE:

DESCRIBE rtsp://mediaserver.com/movie.test RTSP/1.0
CSeq: 1
User-Agent: TheStreamClient/1.1b2
RTSP/1.0 200 OK
CSeq: 1
Content-Type: application/sdp
Content-Length: 435

v=0
o=- 950814089 950814089 IN IP4 144.132.134.67
s=Example of aggregate control of AMR speech and H.263 video
e=foo@bar.com
c=IN IP4 0.0.0.0

b=AS:77
t=0 0
a=range:npt=0-59.3478
a=control:*

m=audio 0 RTP/AVP 97

b=AS:13
a=rtpmap:97 AMR/8000
a=fmtp:97
a=maxptime:200
a=control:streamID=0
m=video 0 RTP/AVP 98

b=AS:64
a=rtpmap:98 H263-2000/90000
a=fmtp:98 profile=3;level=10
a=control: streamID=1

SETUP rtsp://mediaserver.com/movie.test/streamID=0 RTSP/1.0
CSeq: 2
Transport: RTP/AVP/UDP;unicast;client_port=3456-3457
User-Agent: TheStreamClient/1.1b2

RTSP/1.0 200 OK
CSeq: 2
Transport: RTP/AVP/UDP;unicast;client_port=3456-3457; server_port=5678-5679
Session: dfhyrio90llk

SETUP rtsp://mediaserver.com/movie.test/streamID=1 RTSP/1.0
CSeq: 3
Transport: RTP/AVP/UDP;unicast;client_port=3458-3459
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2

RTSP/1.0 200 OK
CSeq: 3
Transport: RTP/AVP/UDP;unicast;client_port=3458-3459; server_port=5680-5681
Session: dfhyrio90llk

PLAY rtsp://mediaserver.com/movie.test RTSP/1.0
CSeq: 4
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2

RTSP/1.0 200 OK
CSeq: 4
Session: dfhyrio90llk
Range: npt=0-
RTP-Info: url= rtsp://mediaserver.com/movie.test/streamID=0; seq=9900;rtptime=4470048,
 url= rtsp://mediaserver.com/movie.test/streamID=1; seq=1004;rtptime=1070549
NOTE:
Headers can be folded onto multiple lines if the continuation line begins with a space or horizontal tab. For more information, see RFC2616 [17].
The user watches the movie for 20 seconds and then decides to fast forward to 10 seconds before the end…

PAUSE rtsp://mediaserver.com/movie.test RTSP/1.0
CSeq: 5
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2

PLAY rtsp://mediaserver.com/movie.test RTSP/1.0
CSeq: 6
Range: npt=50-59.3478
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2

RTSP/1.0 200 OK
CSeq: 5
Session: dfhyrio90llk

RTSP/1.0 200 OK
CSeq: 6
Session: dfhyrio90llk
Range: npt=50-59.3478
RTP-Info: url= rtsp://mediaserver.com/movie.test/streamID=0;
 seq=39900;rtptime=44470648,
 url= rtsp://mediaserver.com/movie.test/streamID=1;
 seq=31004;rtptime=41090349

After the movie is over the client issues a TEARDOWN to end the session…

TEARDOWN rtsp://mediaserver.com/movie.test RTSP/1.0
CSeq: 7
Session: dfhyrio90llk
User-Agent: TheStreamClient/1.1b2

RTSP/1.0 200 OK
Cseq: 7
Session: dfhyrio90llk
Connection: close

A.2.2
Implementation guidelines

A.2.2.1
Usage of persistent TCP

Considering the potentially long round-trip-delays in a packet switched streaming service over UMTS it is important to keep the number of messages exchanged between a server and a client low. The number of requests and responses exchanged is one of the factors that will determine how long it takes from the time that a user initiates PSS until the streams starts playing in a client.

RTSP methods are sent over either TCP or UDP for IP. Both client and server shall support RTSP over TCP whereas RTSP over UDP is optional. For TCP the connection can be persistent or non-persistent. A persistent connection is used for several RTSP request/response pairs whereas one connection is used per RTSP request/response pair for the non-persistent connection. In the non-persistent case each connection will start with the three-way handshake (SYN, ACK, SYN) before the RTSP request can be sent. This will increase the time for the message to be sent by one round trip delay.

For these reasons it is recommended that 3GPP PSS clients should use a persistent TCP connection, at least for the initial RTSP methods until media starts streaming.

A.2.2.2
Detecting link aliveness

In the wireless environment, connection may be lost due to fading, shadowing, loss of battery power, or turning off the terminal even though the PSS session is active. In order for the server to be able to detect the client’s aliveness, the PSS client should send “wellness” information to the PSS server for a defined interval as described in the RFC2326. There are several ways for detecting link aliveness described in the RFC2326, however, the client should be careful about issuing “PLAY method without Range header field” too close to the end of the streams, because it may conflict with pipelined PLAY requests. Below is the list of recommended ”wellness” information for the PSS clients and servers in a prioritised order.

1.
RTCP

2.
OPTIONS method with Session header field

NOTE:
Both servers and clients can initiate this OPTIONS method.

A.3
RTP

A.3.1
General

Void.

A.3.2
Implementation guidelines

A.3.2.1
Maximum RTP packet size

The RFC 1889 (RTP) [9] does not impose a maximum size on RTP packets. However, when RTP packets are sent over the radio link of a 3GPP PSS system there is an advantage in limiting the maximum size of RTP packets.

Two types of bearers can be envisioned for streaming using either acknowledged mode (AM) or unacknowledged mode (UM) RLC. The AM uses retransmissions over the radio link whereas the UM does not. In UM mode large RTP packets are more susceptible to losses over the radio link compared to small RTP packets since the loss of a segment may result in the loss of the whole packet. On the other hand in AM mode large RTP packets will result in larger delay jitter compared to small packets as there is a larger chance that more segments have to be retransmitted.

For these reasons it is recommended that the maximum size of RTP packets should be limited in size taking into account the wireless link. This will decrease the RTP packet loss rate particularly for RLC in UM. For RLC in AM the delay jitter will be reduced permitting the client to use a smaller receiving buffer. It should also be noted that too small RTP packets could result in too much overhead if IP/UDP/RTP header compression is not applied or unnecessary load at the streaming server.

In the case of transporting video in the payload of RTP packets it may be that a video frame is split into more than one RTP packet in order not to produce too large RTP packets. Then, to be able to decode packets following a lost packet in the same video frame, it is recommended that synchronisation information be inserted at the start of such RTP packets. For H.263 this implies the use of GOBs with non-empty GOB headers and in the case of MPEG-4 video the use of video packets (resynchronisation markers). If the optional Slice Structured mode (Annex K) of H.263 is in use, GOBs are replaced by slices.

A.3.2.2
Sequence number and timestamp in the presence of NPT jump

The description below is intended to give more understanding of how RTP sequence number and timestamp are specified within the 3GPP PSS in the presence of NPT jumps. The jump happens when a client sends a PLAY request to skip media.

The RFC 2326 (RTSP) [5] specifies that both RTP sequence numbers and RTP timestamps must be continuous and monotonic across jumps of NPT. Thus when a server receives a request for a skip of the media that causes a jump of NPT, it shall specify RTP sequence numbers and RTP timestamps continuously and monotonically across the skip of the media to conform to the RTSP specification. Also, the server may respond with "seq" in the RTP-Info field if this parameter is known at the time of issuing the response.

A.3.2.3
RTCP transmission interval

In RTP [9], Section 6.2, rules for the calculation of the interval between the sending of two consecutive RTCP packets, i.e. the RTCP transmission interval, are defined. These rules consist of two steps:

-
Step 1: an algorithm that calculates a transmission interval from parameters such as the session bit rate and the average RTCP packet size. This algorithm is described in [9], annex A.7.

-
Step 2: Taking the maximum of the transmission interval computed in step 1 and a mandatory fixed minimum RTCP transmission interval of 5 seconds.

Implementations conforming to this TS shall perform step 1 and may perform step 2. All other algorithms and rules of [9] stay valid and shall be followed

Following these recommendations results in regular sending of RTCP messages, where the interval between those is depending on the session bandwidth and the RTCP packet size.

A.4
Capability exchange

A.4.1
Overview

Clause A.4 provides detailed information about the structure and exchange of device capability descriptions for the PSS. It complements the normative part contained in clause 5.2 of the present document.

The functionality is sometimes referred to as capability exchange. Capability exchange in PSS uses the CC/PP [39] framework and reuse parts of the CC/PP application UAProf [40].

To facilitate server-side content negotiation for streaming, the PSS server needs to have access to a description of the specific capabilities of the mobile terminal, i.e. the device capability description. The device capability description contains a number of attributes. During the set-up of a streaming session the PSS server can use the description to provide the mobile terminal with the correct type of multimedia content. Concretely, it is envisaged that servers use information about the capabilities of the mobile terminal to decide which stream(s) to provision to the connecting terminal. For instance, the server could compare the requirements on the mobile terminal for multiple available variants of a stream with the actual capabilities of the connecting terminal to determine the best-suited stream(s) for that particular terminal. A similar mechanism could also be used for other types of content.

A device capability description contains a number of device capability attributes. In the present document they are referred to as just attributes. The current version of PSS does not include a definition of any specific user preference attributes. Therefore we use the term device capability description. However, it should be noted that even though no specific user preference attributes are included, simple tailoring to the preferences of the user could be achieved by temporarily overrides of the available attributes. E.g. if the user for a particular session only would like to receive mono sound even though the terminal is capable of stereo, this can be accomplished by providing an override for the "AudioChannels" attribute. It should also be noted that the extension mechanism defined would enable an easy introduction of specific user preference attributes in the device capability description if needed.

The term device capability profile or profile is sometimes used instead of device capability description to describe a description of device capabilities and/or user preferences. The three terms are used interchangeably in the present document.

Figure A.1 illustrates how capability exchange in PSS is performed. In the simplest case the mobile terminal informs the PSS server(s) about its identity so that the latter can retrieve the correct device capability profile(s) from the device profile server(s). For this purpose, the mobile terminal adds one or several URLs to RTSP and/or HTTP protocol data units that it sends to the PSS server(s). These URLs point to locations on one or several device profile servers from where the PSS server should retrieve the device capability profiles. This list of URLs is encapsulated in RTSP and HTTP protocol data units using additional header field(s). The list of URLs is denoted URLdesc. The mobile terminal may supplementthe URLdesc with extra attributes or overrides for attributes already defined in the profile(s) located at URLdesc. This information is denoted Profdiff. As URLdesc, Profdiff is encapsulated in RTSP and HTTP protocol data units using additional header field(s).

The device profile server in Figure A.1 is the logical entity that stores the device capability profiles. The profile needed for a certain request from a mobile terminal may be stored on one or several such servers. A terminal manufacturer or a software vendor could maintain a device profile server to provide device capability profiles for its products. It would also be possible for an operator to manage a device profile server for its subscribers and then e.g. enable the subscriber to make user specific updates to the profiles. The device profile server provides device capability profiles to the PSS server on request.

[image: image1.wmf]Mobile terminal

HTTP/RT

SP

replies and

multimedia

content

HTTP response with

device capability profile

PSS server

Matching

HTTP request for a

device capability profile

HTTP/RT

S

P

 request

including URLdesc and

optional profileDiff

headers

Device profile server

Device capability

profiles

Figure A.1: Functional components in PSS capability exchange

The PSS server is the logical entity that provides multimedia streams and other, static content (e.g. SMIL documents, images, and graphics) to the mobile terminal (see Figure A.1). A PSS application might involve multiple PSS servers, e.g. separate servers for multimedia streams and for static content. A PSS server handles the matching process. Matching is a process that takes place in the PSS servers (see Figure A.1). The device capability profile is compared with the content descriptions at the server and the best fit is delivered to the client.

A.4.2
Scope of the specification

The following bullet list describes what is considered to be within the scope of the specification for capability exchange in PSS.

-
Definition of the structure for the device capability profiles, see clause A.4.3.

-
Definition of the CC/PP vocabularies, see clause A.4.4.

-
Reference to a set of device capability attributes for multimedia content retrieval applications that have already been defined by UAProf [40]. The purpose of this reference is to point out which attributes are useful for the PSS application.

-
Definition of a set of device capability attributes specifically for PSS applications that are missing in UAProf.

-
It is important to define an extension mechanism to easily add attributes since it is not possible to cover all attributes from the beginning. The extension mechanism is described in clause A.4.5.

-
The structure of URLdesc, Profdiff and their interchange is described in clause A.4.6.

-
Protocols for the interchange of device capability profiles between the PSS server and the device profile server is defined in clause 5.2.7.

The specification does not include:

-
rules for the matching process on the PSS server. These mechanisms should be left to the implementations. For interoperability, only the format of the device capability description and its interchange is relevant.

-
definition of specific user preference attributes. It is very difficult to standardise such attributes since they are dependent on the type of personalised services one would like to offer the user. The extensible descriptions format and exchange mechanism proposed in this document provide the means to create and exchange such attributes if needed in the future. However, as explained in clause A.4.1 limited tailoring to the preferences of the user could be achieved by temporarily overridingavailable attributes in the vocabularies already defined for PSS. The vocabulary also includes some very basic user preference attributes. For example, the profile includes a list of preferred languages. Also the list of MIME types can be interpreted as user preference, e.g. leaving out audio MIME’s could mean that user does not want to receive any audio content. The available attributes are described in clause 5.2.3 of the present document.

-
requirements for caching of device capability profiles on the PSS server. In UAProf, a content server can cache the current device capability profile for a given WSP session. This feature relies on the presence of WSP sessions. Caching significantly increases the complexity of both the implementations of the mobile terminal and the server. However, HTTP is used between the PSS server and the device profile server. For this exchange, normal content caching provisions as defined by HTTP apply and the PSS server may utilise this to speed up the session set-up (see clause 5.2.7)

-
intermediate proxies. This feature is considered not relevant in the context of PSS applications.

A.4.3
The device capability profile structure

A device capability profile is a description of the capabilities of the device and possibly also the preferences of the user of that device. It can be used to guide the adaptation of content presented to the device. A device capability profile for PSS is a RDF [41] document that follows the structure of the CC/PP framework [39] and the CC/PP application UAProf [40]. The terminology of CC/PP is used in this text and therefore briefly described here.

 Attributes are used for specifying the device capabilities and user preferences. A set of attribute names, permissible values and semantics constitute a CC/PP vocabulary. A RDF schema defines a vocabulary. The syntax of the attributes is defined in the schema but also, to some extent, the semantics. A profile is an instance of a schema and contains one or more attributes from the vocabulary. Attributes in a schema are divided into components distinguished by attribute characteristics. In the CC/PP specification it is anticipated that different applications will use different vocabularies. According to the CC/PP framework a hypothetical profile might look like Figure A.2. A further illustration of how a profile might look like is given in the example in clause A.4.7.

[image: image2.wmf]

[MyPhone]

ccpp:component

[TerminalHardware]

rdf:type

prf:ColorCapable

prf:BitsPerPixel

[prf:HardwarePlatform]

”Yes”

“4”

ccpp:component

[Streaming]

rdf:type

pss:PssVersion

[pss:Streaming]

”

3

GPP

-

R5”

Figure A.2: Illustration of the profile structure

A CC/PP schema is extended through the introduction of new attribute vocabularies and a device capability profile can use attributes drawn from an arbitrary number of different vocabularies. Each vocabulary is associated with a unique XML namespace. This mechanism makes it possible to reuse attributes from other vocabularies. It should be mentioned that the prefix ccpp identifies elements of the CCPP namespace (URI http://www.w3.org/1999/02/22-rdf-syntax-ns), prf identifies elements of the UAProf namespace (URI http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330) , rdf identifies elements of the RDF namespace (URI http://www.w3.org/1999/02/22-rdf-syntax-ns) and pss identifies elements of the Streaming namespace. (URI http://www.3gpp.org/profiles/PSS/ccppschema-PSS5).

Attributes of a component can be included directly or may be specified by a reference to a CC/PP default profile. Resolving a profile that includes a reference to a default profile is time-consuming. When the PSS server receives the profile from a device profile server the final attribute values can not be determined until the default profile has been requested and received. Support for defaults is required by the CC/PP specification [39]. Due to these problems, there is a recommendation made in clause 5.2.6 to not use the CC/PP defaults element in PSS device capability profile documents.

A.4.4
CC/PP Vocabularies

A CC/PP vocabulary shall according to CC/PP and UAProf include:

-
A RDF schema for the vocabulary based on the CC/PP schema.

-
A description of the semantics/type/resolution rules/sample values for each attribute.

-
A unique namespace shall be assigned to each version of the profile schema.

Additional information that could be included in the profile schema:

-
A description about the profile schema, i.e. the purpose of the profile, how to use it, when to use it etc.

-
A description of extensibility,i.e.how to handle future extensions of the profile schema.

A device capability profile can use an arbitrary number of vocabularies and thus it is possible to reuse attributes from other vocabularies by simply referencing the corresponding namespaces. The focus of the PSS vocabulary is content formatting which overlaps the focus of the UAProf vocabulary. UAProf is specified by WAP Forum and is an architecture and vocabulary/schema for capability exchange in the WAP environment. Since there are attributes in the UAProf vocabulary suitable for streaming applications these are reused and combined with a PSS application specific streaming component. This makes the PSS vocabulary an extension vocabulary to UAProf. The CC/PP specification encourages reuse of attributes from other vocabularies. To avoid confusion, the same attribute name should not be used in different vocabularies. In clause 5.2.3.3 a number of attributes from UAProf [40] are recommended for PSS. The PSS base vocabulary is defined in clause 5.2.3.2.

A profile is allowed to instantiate a subset of the attributes in the vocabularies and no specific attributes are required but insufficient description may lead to content unable to be shown by the client.

A.4.5
Principles of extending a schema/vocabulary

The use of RDF enables an extensibility mechanism for CC/PP-based schemas that addresses the evolution of new types of devices and applications. The PSS profile schema specification is going to provide a base vocabulary but in the future new usage scenarios might have need for expressing new attributes. This is the reason why there is a need to specify how extensions of the schema will be handled. If the TSG responsible for the present document updates the base vocabulary schema a new unique namespace will be assigned to the updated schema. In another scenario the TSG may decide to add a new component containing specific user related attributes. This new component will be assigned a new namespace and it will not influence the base vocabulary in any way. If other organisations or companies make extensions this can be either as a new component or as attributes added to the existing base vocabulary component where the new attributes uses a new namespace. This ensures that third parties can define and maintain their own vocabularies independently from the PSS base vocabulary.

A.4.6
Signalling of profile information between client and server

URLdesc and Profdiff were introduced in clause A.4.1. The URLdesc is a list of URLs that point to locations on device profile servers from where the PSS server retrieves suitable device capability profiles. The Profdiff contains additional capability description information; e.g. overrides for certain attribute values. Both URLdesc and Profdiff are encapsulated in RTSP and HTTP messages using additional header fields. This can be seen in Figure A.1. In clause 9.1 of [40] three new HTTP headers are defined that can be used to implement the desired functionality: "x-wap-profile", "x-wap-profile-diff" and "x-wap-profile-warning". These headers are reused in PSS for both HTTP and RTSP.

-
The "x-wap-profile" is a request header that contains a list of absolute URLs to device capability descriptions and profile diff names. The profile diff names correspond to additional profile information in the "x-wap-profile-diff" header.

-
The "x-wap-profile-diff" is a request header that contains a subset of a device capability profile.

-
The "x-wap-profile-warning" is a response header that contains error codes explaining to what extent the server has been able to match the terminal request.

Clause 5.2.5 of the present document defines this exchange mechanism.

It is left to the mobile terminal to decide when to send x-wap-profile headers. The mobile terminal could send the "x-wap-profile" and "x-wap-profile-diff" headers with each RTSP DESCRIBE and/or with each RTSP SETUP request. Sending them in the RTSP DESCRIBE request is useful for the PSS server to be able to make a better decision which presentation description to provision to the client. Sending the "x-wap-profile" and "x-wap-profile-diff" headers with an HTTP request is useful whenever the mobile terminal requests some multimedia content that will be used in the PSS application. For example it can be sent with the request for a SMIL file and the PSS server can see to it that the mobile terminal receives a SMIL file which is optimised for the particular terminal. Clause 5.2.5 of the present document gives recommendations for when profile information should be sent.

It is up to the PSS server to retrieve the device capability profiles using the URLs in the "x-wap-profile" header. The PSS server is also responsible to merge the profiles then received. If the "x-wap-profile-diff" header is present it must also merge that information with the retrieved profiles. This functionality is defined in clause 5.2.6.

It should be noted that it is up the implementation of the mobile terminal what URLs to send in the "x-wap-profile" header. For instance, a terminal could just send one URL that points to a complete description of its capabilities. Another terminal might provide one URL that points to a description of the terminal hardware. A second URL that points to a description of a particular software version of the streaming application, and a third URL that points to the description of a hardware or software plug-in that is currently added to the standard configuration of that terminal. From this example it becomes clear that sending URLs from the mobile terminal to the server is good enough not only for static profiles but that it can also handle re-configurations of the mobile terminal such as software version changes, software plug-ins, hardware upgrades, etc.

As described above the list of URLs in the x-wap-profile header is a powerful tool to handle dynamic changes of the mobile terminal. The "x-wap-profile-diff" header could also be used to facilitate the same functionality. To use the "x-wap-profile-diff" header to e.g. send a complete profile (no URL present at all in the "x-wap-profile header") or updates as a result of e.g. a hardware plug-in is not recommended unless some compression scheme is applied over the air-interface. The reason is of course that the size of a profile may be large.

A.4.7
Example of a PSS device capability description

The following is an example of a device capability profile as it could be available from a device profile server. The XML document includes the description of the imaginary "Phone007" phone.

Instead of a single XML document the description could also be spread over several files. The PSS server would need to retrieve these profiles separately in this case and would need to merge them. For instance, this would be useful when device capabilities of this phone that are related to streaming would differ among different versions of the phone. In this case the part of the profile for streaming would be separated from the rest into its own profile document. This separation allows describing the difference in streaming capabilities by providing multiple versions of the profile document for the streaming capabilities.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

 xmlns:ccpp="http://www.w3.org/2000/07/04-ccpp"

 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330"

 xmlns:pss5="http://www.3gpp.org/profiles/PSS/ccppschema-PSS5">

 <rdf:Description rdf:about="http://www.bar.com/Phones/Phone007">

 <ccpp:component>

 <rdf:Description ID="HardwarePlatform">

 <rdf:type rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330#HardwarePlatform" />

 <prf:BitsPerPixel>4</prf:BitsPerPixel>

 <prf:ColorCapable>Yes</prf:ColorCapable>

 <prf:PixelAspectRatio>1x2</prf:PixelAspectRatio>

 <prf:PointingResolution>Pixel</prf:PointingResolution>

 <prf:Model>Phone007</prf:Model>

 <prf:Vendor>Ericsson</prf:Vendor>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description ID="SoftwarePlatform">

 <rdf:type rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330#SoftwarePlatform" />

 <prf:CcppAccept-Charset>

 <rdf:Bag>

 <rdf:li>UTF-8</rdf:li>

 <rdf:li>ISO-10646-UCS-2</rdf:li>

 </rdf:Bag>

 </prf:CcppAccept-Charset>

 <prf:CcppAccept-Encoding>

 <rdf:Bag>

 <rdf:li>base64</rdf:li>

 <rdf:li>quoted-printable</rdf:li>

 </rdf:Bag>

 </prf:CcppAccept-Encoding>

 <prf:CcppAccept-Language>

 <rdf:Seq>

 <rdf:li>en</rdf:li>

 <rdf:li>se</rdf:li>

 </rdf:Seq>

 </prf:CcppAccept-Language>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description ID="Streaming">

 <rdf:type rdf:resource=" http://www.3gpp.org/profiles/PSS/ccppschema-PSS5#Streaming" />

 <pss5:AudioChannels>Stereo</pss5:AudioChannels>

 <pss5:VideoPreDecoderBufferSize>30720</pss5:VideoPreDecoderBufferSize>

 <pss5:VideoInitialPostDecoderBufferingPeriod>0</pss5:VideoInitialPostDecoderBufferingPeriod>

<pss5:VideoDecodingByteRate>16000</pss5:VideoDecodingByteRate>

 <pss5:RenderingScreenSize>73x50</pss5:RenderingScreenSize>

<pss5:PssAccept>

 <rdf:Bag>

 <rdf:li>audio/AMR-WB;octet-alignment</rdf:li>

 <rdf:li>video/MP4V-ES</rdf:li>

 </rdf:Bag>

 </pss5:PssAccept>

 <pss5:PssAccept-Subset>

 <rdf:Bag>

 <rdf:li>JPEG-PSS</rdf:li>

 </rdf:Bag>

 </pss5:PssAccept-Subset>

 <pss5:PssVersion>3GPP-R5</pss5:PssVersion>

 <pss5:RenderingScreenSize>70x40</pss5:RenderingScreenSize>

 <pss5:SmilBaseSet>SMIL-3GPP-R4</pss5:SmilBaseSet>

 <pss5:SmilModules>

 <rdf:Bag>

 <rdf:li>BasicTransitions</rdf:li>

 <rdf:li>MulitArcTiming</rdf:li>

 </rdf:Bag>

 </pss5:SmilModules>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

Annex B (informative):
SMIL authoring guidelines

B.1
General

This is an informative annex for SMIL presentation authors. Authors can expect that PSS clients can handle the SMIL module collection defined in clause 8.2, with the restrictions defined in this Annex. When creating SMIL documents the author is recommended to consider that terminals may have small displays and simple input devices. The media types and their encoding included in the presentation should be restricted to what is described in clause 7 of the present document. Considering that many mobile devices may have limited software and hardware capabilities, the number of media to be played simultaneous should be limited. For example, many devices will not be able to handle more than one video sequence at the time.

B.2
BasicLinking

The Linking Modules define elements and attributes for navigational hyperlinking, either through user interaction or through temporal events. The BasicLinking module defines the "a" and "area" elements for basic linking:

a
Similar to the "a" element in HTML it provides a link from a media object through the href attribute (which contains the URI of the link's destination). The "a" element includes a number of attributes for defining the behaviour of the presentation when the link is followed.

area
Whereas the a element only allows a link to be associated with a complete media object, the area element allows links to be associated with spatial and/or temporal portions of a media object.

The area element may be useful for enabling services that rely on interactivity where the display size is not big enough to allow the display of links alongside a media (e.g. QCIF video) window. Instead, the user could, for example, click on a watermark logo displayed in the video window to visit the company website.

Even if the area element may be useful some mobile terminals will not be able to handle area elements that include multiple selectable regions within an area element. One reason for this could be that the terminals do not have the appropriate user interface. Such area elements should therefore be avoided. Instead it is recommended that the "a" element be used. If the "area" element is used, the SMIL presentation should also include alternative links to navigate through the presentation; i.e. the author should not create presentations that rely on that the player can handle "area" elements.

B.3
BasicLayout

The "fit" attribute defines how different media should be fitted into their respective display regions.

The rendering and layout of some objects on a small display might be difficult and all mobile devices may not support features such as scroll bars; in addition, the root-layout window may represent the full screen of the display. Therefore "fit=scroll" should not be used.

Due to hardware restrictions in mobile devices, operations such that scaling of a video sequence, or even images, may be very difficult to achieve. According to the SMIL 2.0 specification SMIL players may in these situations clip the content instead. To be sure of that the presentation is displayed as the author intended, content should be encoded in a size suitable for the targeted terminals and it is recommended to use "fit=hidden".

B.4
EventTiming

The two attributes "endEvent" and "repeatEvent" in the EventTiming module may cause problems for a mobile SMIL player. The end of a media element triggers the "endEvent". In the same way the "repeatEvent" occurs when the second and subsequent iterations of a repeated element begin playback. Both these events rely on that the SMIL player receives information about that the media element has ended. One example could be when the end of a video sequence initiates the event. If the player has not received explicit information about the duration of the video sequence, e.g. by the "dur" attribute in SMIL or by some external source as the "a=range" field in SDP. The player will have to rely on the RTCP BYE message to decide when the video sequence ends. If the RTCP BYE message is lost, the player will have problems initiate the event. For these reasons is recommended that the "endEvent" and "repeatEvent" attributes are used with care, and if used the player should be provided with some additional information about the duration of the media element that triggers the event. This additional information could e.g. be the "dur" attribute in SMIL or the "a=range" field in SDP.

The "inBoundsEvent" and "outOfBoundsEvent" attributes assume that the terminal has a pointer device for moving the focus to within a window (i.e. clicking within a window). Not all terminals will support this functionality since they do not have the appropriate user interface. Hence care should be taken in using these particular event triggers.

B.5
MetaInformation

Authors are encouraged to make use of meta data whenever providing such information to the mobile terminal appears to be useful. However, they should keep in mind that some mobile terminals will parse but not process the meta data.

Furthermore, authors should keep in mind that excessive use of meta data will substantially increase the file size of the SMIL presentation that needs to be transferred to the mobile terminal. This may result in longer set-up times.

B.6
XML entities

Entities are a mechanism to insert XML fragments inside an XML document. Entities can be internal, essentially a macro expansion, or external. Use of XML entities in SMIL presentations is not recommended, as many current XML parsers do not fully support them.

B.7
XHTML Mobile Profile

When rendering texts in a SMIL presentation, authors are able to use XHTML Mobile Profile [47] that contains thirteen modules. However, some of the modules include non-text information. When referring to an XHTML Mobile Profile document from a SMIL document, authors should use only the required XHTML Host Language modules : Structure Module, Text Module, Hypertext Module and List Module. The use of the Image Module, in particular, should not be used. Images and other non-text contents should be included in the SMIL document.

NOTE:
An XHTML file including a module which is not part of the XHTML Host Language modules may not be shown as intended. Also, an XHTML file which uses elements or attributes from the required XHTML Host Language modules and which uses elements or attributes that are not included in XHTML Basic Profile [28], may not render correctly on legacy handsets which implement only XHTML Basic. These are:

-
The start attribute on the 'ol' element in the List module

-
The value attribute on the 'li' element in the List module

-
The 'b' element in the Presentation module

-
The 'big' element in the Presentation module

-
The 'hr' element in the Presentation module

-
The 'i' element in the Presentation module

-
The 'small' element in the Presentation module

Annex C (normative):
MIME media types

C.1
MIME media type H263-2000

MIME media type name: video
MIME subtype name: H263-2000

Required parameters: None

Optional parameters:
profile: H.263 profile number, in the range 0 through 8, specifying the supported H.263 annexes/subparts.
level: Level of bitstream operation, in the range 0 through 99, specifying the level of computational complexity of the decoding process. When no profile and level parameters are specified, Baseline Profile (Profile 0) level 10 are the default values.

The profile and level specifications can be found in [23]. Note that the RTP payload format for H263-2000 is the same as for H263-1998 and is defined in [14], but additional annexes/subparts are specified along with the profiles and levels.

NOTE:
The above text will be replaced with a reference to the RFC describing the H263-2000 MIME media type as soon as this becomes available.

C.2
MIME media type sp-midi

MIME media type name: audio
MIME subtype name: sp-midi

Required parameters: none

Optional parameters: none

NOTE:
The above text will be replaced with a reference to the RFC describing the sp-midi MIME media type as soon as this becomes available.

Annex D (normative):
Support for non-ISO code streams in MP4 files

D.1
General

The purpose of this annex is to define the necessary structure for integration of the H.263, AMR and AMR-WB media specific information in an MP4 file. Clauses D.2 to D.4 give some background information about the Sample Description atom, VisualSampleEntry atom and the AudioSampleEntry atom in the MPEG-4 file format. Then, the definitions of the SampleEntry atoms for AMR, AMR-WB and H.263 are given in clauses D.5 to D.8.

AMR and AMR-WB data is stored in the stream according to the AMR and AMR-WB storage format for single channel header of Annex E [11], without the AMR magic numbers.

D.2
Sample Description atom

In an MP4 file, Sample Description Atom gives detailed information about the coding type used, and any initialisation information needed for that coding. The Sample Description Atom can be found in the MP4 Atom Structure Hierarchy shown in figure D.1.

[image: image3.wmf]Movie Atom

Track Atom

Media Atom

Media Information Atom

Sample Table Atom

Sample Description Atom

Figure D.1: MP4 Atom Structure Hierarchy

The Sample Description Atom can have one or more SampleDescriptionEntry fields. Valid Sample Description Entry atoms already defined for MP4 are AudioSampleEntry, VisualSampleEntry, HintSampleEntry and MPEGSampleEntry Atoms. The SampleDescriptionEntry Atoms for AMR and AMR-WB shall be AMRSampleEntry, and for H.263 shall be H263SampleEntry, respectively.

The format of SampleDescriptionEntry and its fields are explained as follows:

SampleDescriptionEntry
::= VisualSampleEntry |

AudioSampleEntry |

HintSampleEntry |

MpegSampleEntry

H263SampleEntry |

AMRSampleEntry

Table D.1: SampleDescriptionEntry fields

	Field
	Type
	Details
	Value

	VisualSampleEntry
	
	Entry type for visual samples defined in the MPEG-4 specification.
	

	AudioSampleEntry
	
	Entry type for audio samples defined in the MPEG-4 specification.
	

	HintSampleEntry
	
	Entry type for hint track samples defined in the MPEG-4 specification.
	

	MpegSampleEntry
	
	Entry type for MPEG related stream samples defined in the MPEG-4 specification.
	

	H263SampleEntry
	
	Entry type for H.263 visual samples defined in clause D.6 of the present document.
	

	AMRSampleEntry
	
	Entry type for AMR and AMR-WB speech samples defined in clause D.5 of the present document.
	

From the above 6 atoms, only the VisualSampleEntry, AudioSampleEntry, H263SampleEntry and AMRSampleEntry atoms are taken into consideration, since MPEG specific streams and hint tracks are out of the scope of the present document.

D.3
VisualSampleEntry atom

The VisualSampleEntry Atom is defined as follows:

VisualSampleEntry
::= AtomHeader

Reserved_6

Data-reference-index

Reserved_16

Width

Height

Reserved_4

Reserved_4

Reserved_4

Reserved_2

Reserved_32

Reserved_2

Reserved_2

ESDAtom

Table D.2: VisualSampleEntry fields

	Field
	Type
	Details
	Value

	AtomHeader.Size
	Unsigned int(32)
	
	

	AtomHeader.Type
	Unsigned int(32)
	
	'mp4v'

	Reserved_6
	Unsigned int(8) [6]
	
	0

	Data-reference-index
	Unsigned int(16)
	Index to a data reference that to use to retrieve the sample data. Data references are stored in data reference Atoms.
	

	Reserved_16
	Const unsigned int(32) [4]
	
	0

	Width
	Unsigned int(16)
	Maximum width, in pixels of the stream
	

	Height
	Unsigned int(16)
	Maximum height, in pixels of the stream
	

	Reserved_4
	Const unsigned int(32)
	
	0x00480000

	Reserved_4
	Const unsigned int(32)
	
	0x00480000

	Reserved_4
	Const unsigned int(32)
	
	0

	Reserved_2
	Const unsigned int(16)
	
	1

	Reserved_32
	Const unsigned

int(8) [32]
	
	0

	Reserved_2
	Const unsigned int(16)
	
	24

	Reserved_2
	Const int(16)
	
	-1

	ESDAtom
	
	Atom containing an elementary stream descriptor for this stream.
	

The stream type specific information is in the ESDAtom structure, which will be explained later.

This version of the VisualSampleEntry, with explicit width and height, shall be used for MPEG-4 video streams conformant to this specification.

NOTE:
width and height parameters together may be used to allocate the necessary memory in the playback device without need to analyse the video stream.

D.4
AudioSampleEntry atom

AudioSampleEntryAtom is defined as follows:

AudioSampleEntry
 ::= AtomHeader

Reserved_6

Data-reference-index

Reserved_8

Reserved_2

Reserved_2

Reserved_4

TimeScale

Reserved_2

ESDAtom

Table D.3: AudioSampleEntry fields

	Field
	Type
	Details
	Value

	AtomHeader.Size
	Unsigned int(32)
	
	

	AtomHeader.Type
	Unsigned int(32)
	
	'mp4a'

	Reserved_6
	Unsigned int(8) [6]
	
	0

	Data-reference-index
	Unsigned int(16)
	Index to a data reference that to use to retrieve the sample data. Data references are stored in data reference Atoms.
	

	Reserved_8
	Const unsigned int(32) [2]
	
	0

	Reserved_2
	Const unsigned int(16)
	
	2

	Reserved_2
	Const unsigned int(16)
	
	16

	Reserved_4
	Const unsigned int(32)
	
	0

	TimeScale
	Unsigned int(16)
	Copied from track
	

	Reserved_2
	Const unsigned int(16)
	
	0

	ESDAtom
	
	Atom containing an elementary stream descriptor for this stream.
	

The stream type specific information is in the ESDAtom structure, which will be explained later.

D.5
AMRSampleEntry atom

For narrow-band AMR, the atom type of the AMRSampleEntry Atom shall be 'samr'. For AMR wideband (AMR-WB), the atom type of the AMRSampleEntry Atom shall be 'sawb'. Each AMR or AMR-WB track shall be associated with a single AMRSampleEntry.

The AMRSampleEntry Atom is defined as follows:

AMRSampleEntry
::= AtomHeader

Reserved_6

Data-reference-index

Reserved_8

Reserved_2

Reserved_2

Reserved_4

TimeScale

Reserved_2

AMRSpecificAtom

Table D.4: AMRSampleEntry fields

	Field
	Type
	Details
	Value

	AtomHeader.Size
	Unsigned int(32)
	
	

	AtomHeader.Type
	Unsigned int(32)
	
	'samr' or ‘sawb’

	Reserved_6
	Unsigned int(8) [6]
	
	0

	Data-reference-index
	Unsigned int(16)
	Index to a data reference that to use to retrieve the sample data. Data references are stored in data reference Atoms.
	

	Reserved_8
	Const unsigned int(32) [2]
	
	0

	Reserved_2
	Const unsigned int(16)
	
	2

	Reserved_2
	Const unsigned int(16)
	
	16

	Reserved_4
	Const unsigned int(32)
	
	0

	TimeScale
	Unsigned int(16)
	Copied from media header atom of this media
	

	Reserved_2
	Const unsigned int(16)
	
	0

	AMRSpecificAtom
	
	Information specific to the decoder.
	

If one compares the AudioSampleEntry Atom - AMRSampleEntry Atom the main difference is in the replacement of the ESDAtom, which is specific to MPEG-4 systems, with an atom suitable for AMR and AMR-WB. The AMRSpecificAtom field structure is described in clause D.7.

D.6
H263SampleEntry atom

The atom type of the H263SampleEntry Atom shall be 's263'.

The H263SampleEntry Atom is defined as follows:

H263SampleEntry
::= AtomHeader

Reserved_6

Data-reference-index

Reserved_16

Width

Height

Reserved_4

Reserved_4

Reserved_4

Reserved_2

Reserved_32

Reserved_2

Reserved_2

H263SpecificAtom

Table D.5: H263SampleEntry fields

	Field
	Type
	Details
	Value

	AtomHeader.Size
	Unsigned int(32)
	
	

	AtomHeader.Type
	Unsigned int(32)
	
	's263'

	Reserved_6
	Unsigned int(8) [6]
	
	0

	Data-reference-index
	Unsigned int(16)
	Index to a data reference that to use to retrieve the sample data. Data references are stored in data reference Atoms.
	

	Reserved_16
	Const unsigned int(32) [4]
	
	0

	Width
	Unsigned int(16)
	Maximum width, in pixels of the stream
	

	Height
	Unsigned int(16)
	Maximum height, in pixels of the stream
	

	Reserved_4
	Const unsigned int(32)
	
	0x00480000

	Reserved_4
	Const unsigned int(32)
	
	0x00480000

	Reserved_4
	Const unsigned int(32)
	
	0

	Reserved_2
	Const unsigned int(16)
	
	1

	Reserved_32
	Const unsigned

int(8) [32]
	
	0

	Reserved_2
	Const unsigned int(16)
	
	24

	Reserved_2
	Const int(16)
	
	-1

	H263SpecificAtom
	
	Information specific to the H.263 decoder.
	

If one compares the VisualSampleEntry – H263SampleEntry Atom the main difference is in the replacement of the ESDAtom, which is specific to MPEG-4 systems, with an atom suitable for H.263. The H263SpecificAtom field structure for H.263 is described in clause D.8.

D.7
AMRSpecificAtom field for AMRSampleEntry atom

The AMRSpecificAtom fields for AMR and AMR-WB shall be as defined in table D.6. The AMRSpecificAtom for the AMRSampleEntry Atom shall always be included if the MP4 file contains AMR or AMR-WB media.

Table D.6: The AMRSpecificAtom fields for AMRSampleEntry

	Field
	Type
	Details
	Value

	AtomHeader.Size
	Unsigned int(32)
	
	

	AtomHeader.Type
	Unsigned int(32)
	
	‘damr’

	DecSpecificInfo
	AMRDecSpecStruc
	Structure which holds the AMR and AMR-WB Specific information
	

AtomHeader Size and Type: indicate the size and type of the AMR decoder-specific atom. The type must be ‘damr’.

DecSpecificInfo: the structure where the AMR and AMR-WB stream specific information resides.

The AMRDecSpecStruc is defined as follows:

struct AMRDecSpecStruc{

Unsigned int (32)

vendor

Unsigned int (8)

decoder_version
Unsigned int (16)

mode_set
Unsigned int (8)

mode_change_period
Unsigned int (8)

frames_per_sample
}

The definitions of AMRDecSpecStruc members are as follows:

vendor: four character code of the manufacturer of the codec, e.g. 'VXYZ'. The vendor field gives information about the vendor whose codec is used to create the encoded data. It is an informative field which may be used by the decoding end. If a manufacturer already has a four character code, it is recommended that it uses the same code in this field. Else, it is recommended that the manufacturer creates a four character code which best addresses the manufacturer’s name. It can be safely ignored.

decoder_version: version of the vendor’s decoder which can decode the encoded stream in the best (i.e. optimal) way. This field is closely tied to the vendor field. It may give advantage to the vendor which has optimal encoder-decoder version pairs. The value is set to 0 if decoder version has no importance for the vendor. It can be safely ignored.

mode_set: the active codec modes. Each bit of the mode_set parameter corresponds to one mode. The bit index of the mode is calculated according to the 4 bit FT field of the AMR or AMR-WB frame structure. The mode_set bit structure is as follows: (B15xxxxxxB8B7xxxxxxB0) where B0 (Least Significant Bit) corresponds to Mode 0, and B8 corresponds to Mode 8.

The mapping of existing AMR modes to FT is given in table 1.a in [19]. A value of 0x81FF means all modes and comfort noise frames are possibly present in an AMR stream.

The mapping of existing AMR-WB modes to FT is given in Table 1.a in TS 26.201 [37]. A value of 0x83FF means all modes and comfort noise frames are possibly present in an AMR-WB stream.

As an example, if mode_set = 0000000110010101b, only Modes 0, 2, 4, 7 and 8 are present in the stream.

mode_change_period: defines a number N, which restricts the mode changes only at a multiple of N frames. If no restriction is applied, this value should be set to 0. If mode_change_period is not 0, the following restrictions apply to it according to the frames_per_sample field:

if (mode_change_period < frames_per_sample)

frames_per_sample = k x (mode_change_period)

else if (mode_change_period > frames_per_sample)

mode_change_period = k x (frames_per_sample)

where k : integer [2, …]

If mode_change_period is equal to frames_per_sample, then the mode is the same for all frames inside one sample.

frames_per_sample: defines the number of frames to be considered as 'one sample' inside the MP4 file. This number shall be greater than 0 and less than 16. A value of 1 means each frame is treated as one sample. A value of 10 means that 10 frames (of duration 20 msec each) are put together and treated as one sample. It must be noted that, in this case, one sample duration is 20 (msec/frame) x 10 (frame) = 200 msec. For the last sample of the stream, the number of frames can be smaller than frames_per_sample, if the number of remaining frames is smaller than frames_per_sample.

NOTE:
The "hinter", for the creation of the hint tracks, can use the information given by the AMRDecSpecStruc members.

D.8
H263SpecificAtom field for H263SampleEntry atom

The H263SpecificAtom fields for H. 263 shall be as defined in table D.7. The H263SpecificAtom for the H263SampleEntry Atom shall always be included if the MP4 file contains H.263 media.

The H263SpecificAtom for H263 is composed of the following fields.

Table D.7: The H263SpecificAtom fields H263SampleEntry

	Field
	Type
	Details
	Value

	AtomHeader.Size
	Unsigned int(32)
	
	

	AtomHeader.Type
	Unsigned int(32)
	
	‘d263’

	DecSpecificInfo
	H263DecSpecStruc
	Structure which holds the H.263 Specific information
	

AtomHeader Size and Type: indicate the size and type of the H.263 decoder-specific atom. The type must be ‘d263’.

DecSpecificInfo: This is the structure where the H263 stream specific information resides.

H263DecSpecStruc is defined as follows:

struct H263DecSpecStruc{

Unsigned int (32)

vendor

Unsigned int (8)

decoder_version

Unsigned int (8)

H263_Level
Unsigned int (8)

H263_Profile
}

The definitions of H263DecSpecStruc members are as follows:

vendor: four character code of the manufacturer of the codec, e.g. 'VXYZ'. The vendor field gives information about the vendor whose codec is used to create the encoded data. It is an informative field which may be used by the decoding end. If a manufacturer already has a four character code, it is recommended that it uses the same code in this field. Else, it is recommended that the manufacturer creates a four character code which best addresses the manufacturer’s name. It can be safely ignored.

decoder_version: version of the vendor’s decoder which can decode the encoded stream in the best (i.e. optimal) way. This field is closely tied to the vendor field. It may give advantage to the vendor which has optimal encoder-decoder version pairs. . The value is set to 0 if decoder version has no importance for the vendor. It can be safely ignored.

H263_Level and H263_Profile: These two parameters define which H263 profile and level is used. These parameters are based on the MIME media type video/H263-2000. The profile and level specifications can be found in [23].

EXAMPLE 1:
H.263 Baseline = {H263_Level = 10, H263_Profile = 0}

EXAMPLE 2:
H.263 Profile 3 @ Level 10 = {H263_Level = 10 , H263_Profile = 3}

NOTE:
The "hinter", for the creation of the hint tracks, can use the information given by the H263DecSpecStruc members.

D.8a
Timed Text Format

This clause defines the format of timed text in downloaded files. In this release, timed text is downloaded, not streamed.

Operators may specify additional rules and restrictions when deploying terminals, in addition to this specification, and behavior that is optional here may be mandatory for particular deployments. In particular, the required character set is almost certainly dependent on the geography of the deployment.
D.8a.1
Unicode Support

Text in this specification uses the Unicode 3.0 [30] standard. Terminals shall correctly decode both UTF-8 and UTF-16 into the required characters. If a terminal receives a Unicode code, which it cannot display, it shall display a predictable result. It shall not treat multi-byte UTF-8 characters as a series of ASCII characters, for example.

Authors should create fully-composed Unicode; terminals are not required to handle decomposed sequences for which there is a fully-composed equivalent.

Terminals shall conform to the conformance statement in Unicode 3.0 section 3.1.

Text strings for display and font names are uniformly coded in UTF-8, or start with a UTF-16 BYTE ORDER MARK (\uFEFF) and by that indicate that the string which starts with the byte order mark is in UTF-16. Terminals shall recognise the byte-order mark in this byte order; they are not required to recognise byte-reversed UTF-16, indicated by a byte-reversed byte-order mark.

D.8a.2
Bytes, Characters, and Glyphs

This clause uses these terms carefully. Since multi-byte characters are permitted (i.e. 16-bit Unicode characters), the number of characters in a string may not be the number of bytes. Also, a byte-order-mark is not a character at all, though it occupies two bytes. So, for example, storage lengths are specified as byte-counts, whereas highlighting is specified using character offsets.

It should also be noted that in some writing systems the number of glyphs rendered might be different again. For example, in English, the characters ‘fi’ are sometimes rendered as a single ligature glyph.

In this specification, the first character is at offset 0 in the string. In records specifying both a start and end offset, the end offset shall be greater than or equal to the start offset. In cases where several offset specifications occur in sequence, the start offset of an element shall be greater than or equal to the end offset of the preceding element.

D.8a.3
Character Set Support

All terminals shall be able to render Unicode characters in these ranges:

a)
basic ASCII and Latin-1 (\u0000 to \u00FF), though not all the control characters in this range are needed;

b)
the Euro currency symbol (\u20AC)

c)
telephone and ballot symbols (\u260E through \u2612)

Support for the following characters is recommended but not required:

a)
miscellaneous technical symbols (\u2300 through \u2335)

b)
‘Zapf Dingbats’: locations \u2700 through \u27AF, and the locations where some symbols have been relocated (e.g. \u2605, Black star).

The private use characters \u0091 and \u0092, and the initial range of the private use area \uE000 through \uE0FF are reserved in this specification. For these Unicode values, and for control characters for which there is no defined graphical behaviour, the terminal shall not display any result: neither a glyph is shown nor is the current rendering position changed.

D.8a.4
Font Support

Fonts are specified in this specification by name, size, and style. There are three special names which shall be recognized by the terminal: Serif, Sans-Serif, and Monospace. It is strongly recommended that these be different fonts for the required characters from ASCII and Latin-1. For many other characters, the terminal may have a limited set or only a single font. Terminals requested to render a character where the selected font does not support that character should substitute a suitable font. This ensures that languages with only one font (e.g. Asian languages) or symbols for which there is only one form are rendered.

Fonts are requested by name, in an ordered list. Authors should normally specify one of the special names last in the list.

Terminals shall support a pixel size of 12 (on a 72dpi display, this would be a point size of 12). If a size is requested other than the size(s) supported by the terminal, the next smaller supported size should be used. If the requested size is smaller than the smallest supported size, the terminal should use the smallest supported size.

Terminals shall support unstyled text for those characters it supports. It may also support bold, italic (oblique) and bold-italic. If a style is requested which the terminal does not support, it should substitute a supported style; a character shall be rendered if the terminal has that character in any style of any font.

D.8a.5
Fonts and Metrics

Within the sample description, a complete list of the fonts used in the samples is found. This enables the terminal to pre-load them, or to decide on font substitution.

Terminals may use varying versions of the same font. For example, here is the same text rendered on two systems; it was authored on the first, where it just fitted into the text box.

EXAMPLE:

[image: image4.png]This is a string which is rendered (o the terminal

This s

String which is rendered o the termil

Authors should be aware of this possible variation, and provide text box areas with some ‘slack’ to allow for rendering variations.

D.8a.6
Colour Support

The colour of both text and background are indicated in this specification using RGB values. Terminals are not required to be able to display all colours in the RGB space. Terminals with a limited colour display, with only gray-scale display, and with only black-and-white are permissible. If a terminal has a limited colour capability it should substitute a suitable colour; dithering of text may be used but is not usually appropriate as it results in “fuzzy” display. If colour substitution is performed, the substitution shall be consistent: the same RGB colour shall result consistently in the same displayed colour. If the same colour is chosen for background and text, then the text shall be invisible (unless a style such as highlight changes its colour). If different colours are specified for the background and text, the terminal shall map these to different colours, so that the text is visible.

Colours in this specification also have an alpha or transparency value. In this specification, a transparency value of 0 indicates a fully transparent colour, and a value of 255 indicates fully opaque. Support for partial or full transparency is optional. ‘Keying’ text (text rendered on a transparent background) is done by using a background colour which is fully transparent. ‘Keying’ text over video or pictures, and support for transparency in general, can be complex and may require double-buffering, and its support is optional in the terminal. Content authors should beware that if they specify a colour which is not fully opaque, and the content is played on a terminal not supporting it, the affected area (the entire text box for a background colour) will be fully opaque and will obscure visual material behind it. Visual material with transparency is layered closer to the viewer than the material which it partially obscures.

D.8a.7
Text rendering position and composition

Text is rendered within a region (a concept derived from SMIL). There is a text box set within that region. This permits the terminal to position the text within the overall presentation, and also to render the text appropriately given the writing direction. For text written left to right, for example, the first character would be rendered at, or near, the left edge of the box, and with its baseline down from the top of the box by one baseline height (a value derived from the font and font size chosen). Similar considerations apply to the other writing directions.

Within the region, text is rendered within a text box. There is a default text box set, which can be over-ridden by a sample.

The text box is filled with the background colour; after that the text is painted in the text colour. If highlighting is requested one or both of these colours may vary.

Terminals may choose to anti-alias their text, or not.

The text region and layering are defined using structures from the ISO base media file format.

This track header box is used for text track:

aligned(8) class TrackHeaderBox

extends FullBox(‘tkhd’, version, flags){

if (version==1) {

unsigned int(64)
creation_time;

unsigned int(64)
modification_time;

unsigned int(32)
track_ID;

const unsigned int(32)
reserved = 0;

unsigned int(64)
duration;

} else { // version==0

unsigned int(32)
creation_time;

unsigned int(32)
modification_time;

unsigned int(32)
track_ID;

const unsigned int(32)
reserved = 0;

unsigned int(32)
duration;

}

const unsigned int(32)[2]
reserved = 0;

int(16) layer;

template int(16) alternate_group = 0;

template int(16)
volume = 0;

const unsigned int(16)
reserved = 0;

template int(32)[9]
matrix=

{ 0x00010000,0,0,0,0x00010000,0,tx,ty,0x40000000 };

// unity matrix

unsigned int(32) width;

unsigned int(32) height;
}

Visually composed tracks including video and text are layered using the ‘layer’ value. This compares, for example, to z-index in SMIL. More negative layer values are towards the viewer. (This definition is compatible with that in ISO/MJ2).

The region is defined by the track width and height, and translation offset. This corresponds to the SMIL region. The width and height are stored in the track header fields above. The sample description sets a text box within the region, which can be over-ridden by the samples.

The translation values are stored in the track header matrix in the following positions:

{ 0x00010000,0,0, 0,0x00010000,0, tx, ty, 0x40000000 }

These values are fixed-point 16.16 values, here restricted to be integers (the lower 16 bits of each value shall be zero). The X axis increases from left to right; the Y axis from top to bottom. (This use of the matrix is conformant with ISO/MJ2.)

So, for example, a centered region of size 200x20, positioned below a video of size 320x240, would have track_width set to 200 (widh= 0x00c80000), track_height set to 20 (height= 0x00140000), and tx = (320-200)/2 = 60, and ty=240.

Since matrices are not used on the video tracks, all video tracks are set at the coordinate origin. Figure D.2 provides an overview:

[image: image5.wmf]Display Area

Text Track

Video Track

tx

ty

(

tx, ty

)

height

width

Text Box

(

left

,

top

)

(

right

,

bottom

)

Figure D.2: Illustration of text rendering position and composition

The top and left positions of the text track is determined by the tx and ty, which are the translation values from the coordinate origin (since the video track is at the origin, this is also the offset from the video track). The default text box set in the sample description sets the rendering area unless over-ridden by a 'tbox' in the text sample. The box values are defined as the relative values from the top and left positions of the text track.

It should be noted that this only specifies the relationship of the tracks within a single 3GP (MP4) file. If a SMIL presentation lays up multiple files, their relative position is set by the SMIL regions. Each file is assigned to a region, and then within those regions the spatial relationship of the tracks is defined.

D.8a.8
Marquee Scrolling

Text can be ‘marquee’ scrolled in this specification (compare this to Internet Explorer’s marquee construction). When scrolling is performed, the terminal first calculates the position in which the text would be displayed with no scrolling requested. Then:

a)
If scroll-in is requested, the text is initially invisible, just outside the text box, and enters the box in the indicated direction, scrolling until it is in the normal position;

b)
If scroll-out is requested, the text scrolls from the normal position, in the indicated direction, until it is completely outside the text box.

The rendered text is clipped to the text box in each display position, as always. This means that it is possible to scroll a string which is longer than can fit into the text box, progressively disclosing it (for example, like a ticker-tape). Note that both scroll in and scroll out may be specified; the text scrolls continuously from its invisible initial position, through the normal position, and out to its final position.

If a scroll-delay is specified, the text stays steady in its normal position (not initial position) for the duration of the delay; so the delay is after a scroll-in but before a scroll-out. This means that the scrolling is not continuous if both are specified. So without a delay, the text is in motion for the duration of the sample. For a scroll in, it reaches its normal position at the end of the sample duration; with a delay, it reaches its normal position before the end of the sample duration, and remains in its normal position for the delay duration, which ends at the end of the sample duration. Similarly for a scroll out, the delay happens in its normal position before scrolling starts. If both scroll in, and scroll out are specified, with a delay, the text scrolls in, stays stationary at the normal position for the delay period, and then scrolls out – all within the sample duration.

The speed of scrolling is calculated so that the complete operation takes place within the duration of the sample. Therefore the scrolling has to occur within the time left after scroll-delay has been subtracted from the sample duration. Note that the time it takes to scroll a string may depend on the rendered length of the actual text string. Authors should consider whether the scrolling speed that results will be exceed that at which text on a wireless terminal could be readable.

Terminals may use simple algorithms to determine the actual scroll speed. For example, the speed may be determined by moving the text an integer number of pixels in every update cycle. Terminals should choose a scroll speed which is as fast or faster than needed so that the scroll operation completes within the sample duration.

Terminals are not required to handle dynamic or stylistic effects such as highlight, dynamic highlight, or href links on scrolled text.

The scrolling direction is set by a two-bit field, with the following possible values:

00b –
text is vertically scrolled up (‘credits style’), entering from the bottom of the bottom and leaving towards the top.

01b –
text is horizontally scrolled (‘marquee style’), entering from the right and leaving towards the left.

10b –
text is vertically scrolled down, entering from the top and leaving towards the bottom.

11b –
text is horizontally scrolled, entering from the left and leaving towards the right.

D.8a.9
Language

The human language used in this stream is declared by the language field of the media-header atom in this track. It is an ISO 639/T 3-letter code. The knowledge of the language used might assist searching, or speaking the text. Rendering is language neutral. Note that the values ‘und’ (undetermined) and ‘mul’ (multiple languages) might occur.

D.8a.10
Writing direction

Writing direction specifies the way in which the character position changes after each character is rendered. It also will imply a start-point for the rendering within the box.

Terminals shall support the determination of writing direction, for those characters they support, according to the Unicode 3.0 specification. Note that the only required characters can all be rendered using left-right behaviour. A terminal which supports characters with right-left writing direction shall support the right-left composition rules specified in Unicode.

Terminals may also set, or allow the user to set, an overall writing direction, either explicitly or implicitly (e.g. by the language selection). This affects layout. For example, if upper-case letters are left-right, and lower-case right-left, and the Unicode string ABCdefGHI shall be rendered, it would appear as ABCfedGHI on a terminal with overall left-right writing (English, for example) and GHIdefABC on a system with overall right-left (Hebrew, for example).

Terminals are not required to support the bi-directional ordering codes (\u200E, \u200F and \u202A through \u202E).

If vertical text is requested by the content author, characters are laid out vertically from top to bottom. The terminal may choose to render different glyphs for this writing direction (e.g. a horizontal parenthesis), but in general the glyphs should not be rotated. The direction in which lines advance (left-right, as used for European languages, or right-left, as used for Asian languages) is set by the terminal, possibly by a direct or indirect user preference (e.g. a language setting). Terminals shall support vertical writing of the required character set. It is recommended that terminals support vertical writing of text in those languages commonly written vertically (e.g. Asian languages). If vertical text is requested for characters which the terminal cannot render vertically, the terminal may behave as if the characters were not available.

D.8a.11
Text wrap

Automatic wrapping of text from line to line is complex, and can require hyphenation rules and other complex language-specific criteria. For these reasons, text is not wrapped in this specification. If a string is too long to be drawn within the box, it is clipped. The terminal may choose whether to clip at the pixel boundary, or to render only whole glyphs.

There may be multiple lines of text in a sample (hard wrap). Terminals shall start a new line for the Unicode characters line separator (\u2028), paragraph separator (\u2029) and line feed (\u000A). It is recommended that terminals follow Unicode Technical Report 13 [48]. Terminals should treat carriage return (\u000D), next line (\u0085) and CR+LF (\u000D\u000A) as new line.

D.8a.12
Highlighting, Closed Caption, and Karaoke

Text may be highlighted for emphasis. Since this is a non-interactive system, solely for text display, the utility of this function may be limited.

Dynamic highlighting used for Closed Caption and Karaoke highlighting, is an extension of highlighting. Successive contiguous sub-strings of the text sample are highlighted at the specified times.

D.8a.13
Media Handler

A text stream is its own unique stream type. For the 3GPP file format, the handler-type within the ‘hdlr’ atom shall be ‘text’.

D.8a.14
Media Handler Header

The 3G text track uses an empty null media header (‘nmhd’), called Mpeg4MediaHeaderAtom in the MP4 specification, in common with other MPEG streams.

aligned(8) class Mpeg4MediaHeaderAtom

extends FullAtom(’nmhd’, version = 0, flags) {

 }

D.8a.15
Style record

Both the sample format and the sample description contain style records, and so it is defined once here for compactness.

aligned(8) class StyleRecord {

unsigned int(16)
startChar;

unsigned int(16)
endChar;

unsigned int(16)
font-ID;

unsigned int(8)
face-style-flags;

unsigned int(8)
font-size;

unsigned int(8)
text-color-rgba[4];

}

startChar:

character offset of the beginning of this style run (always 0 in a sample description)

endChar:
first character offset to which this style does not apply (always 0 in a sample description); shall be greater than or equal to startChar. All characters, including line-break characters and any other non-printing characters, are included in the character counts.
font-ID:

font identifier from the font table; in a sample description, this is the default font

face style flags:
in the absence of any bits set, the text is plain

1 bold

2 italic

4 underline

font-size:

font size (nominal pixel size, in essentially the same units as the width and height)

text-color-rgba:
rgb colour, 8 bits each of red, green, blue, and an alpha (transparency) value

Terminals shall support plain text, and underlined horizontal text, and may support bold, italic and bold-italic depending on their capabilities and the font selected. If a style is not supported, the text shall still be rendered in the closest style available.

D.8a.16
Sample Description Format

The sample table box ('stbl') contains sample descriptions for the text track. Each entry is a sample entry box of type ‘tx3g’. This name defines the format both of the sample description and the samples associated with that sample description. Terminals shall not attempt to decode or display sample descriptions with unrecognised names, nor the samples attached to those sample descriptions.

It starts with the standard fields (the reserved bytes and the data reference index), and then some text-specific fields. Some fields can be overridden or supplemented by additional boxes within the text sample itself. These are discussed below.

There can be multiple text sample descriptions in the sample table. If the overall text characteristics do not change from one sample to the next, the same sample description is used. Otherwise, a new sample description is added to the table. Not all changes to text characteristics require a new sample description, however. Some characteristics, such as font size, can be overridden on a character-by-character basis. Some, such as dynamic highlighting, are not part of the text sample description and can be changed dynamically.

The TextDescription extends the regular sample entry with the following fields.

class FontRecord {

unsigned int(16)
font-ID;

unsigned int(8)
font-name-length;

unsigned int(8)
font[font-name-length];

}

class FontTableBox() extends Box(‘ftab’) {

unsigned int(16) entry-count;

FontRecord
font-entry[entry-count];

}

class BoxRecord {

signed int(16)
top;

signed int(16)
left;

signed int(16)
bottom;

signed int(16)
right;

}

class TextSampleEntry() extends SampleEntry (‘tx3g’) {

unsigned int(32)
displayFlags;

signed int(8)

horizontal-justification;

signed int(8)

vertical-justification;

unsigned int(8)
background-color-rgba[4];

BoxRecord

default-text-box;

StyleRecord

default-style;

FontTableBox

font-table;

}

displayFlags:
scroll In

0x00000020
scroll Out

0x00000040
scroll direction

0x00000180

/ see above for values
continuous karaoke
0x00000800
write text vertically
0x00020000

horizontal and vertical justification:
/ two eight-bit values from the following list:
left, top

0
centered

1

bottom, right
-1

background-color-rgba:
rgb color, 8 bits each of red, green, blue, and an alpha (transparency) value

Default text box: the default text box is set by four values, relative to the text region; it may be over-ridden in samples;

style record of default style: startChar and endChar shall be zero in a sample description

The text box is inset within the region defined by the track translation offset, width, and height. The values in the box are relative to the track region, and are uniformly coded with respect to the pixel grid. So, for example, the default text box for a track at the top left of the track region and 50 pixels high and 100 pixels wide is {0, 0, 50, 100}.

A font table shall follow these fields, to define the complete set of fonts used. The font table is an atom of type ‘ftab’. Every font used in the samples is defined here by name. Each entry consists of a 16-bit local font identifier, and a font name, expressed as a string, preceded by an 8-bit field giving the length of the string in bytes. The name is expressed in UTF-8 characters, unless preceded by a UTF-16 byte-order-mark, whereupon the rest of the string is in 16-bit Unicode characters. The string should be a comma separated list of font names to be used as alternative font, in preference order. The special names “Serif”, “Sans-serif” and “Monospace” may be used. The terminal should use the first font in the list which it can support; if it cannot support any for a given character, but it has a font which can, it should use that font. Note that this substitution is technically character by character, but terminals are encouraged to keep runs of characters in a consistent font where possible.

D.8a.17
Sample Format

Each sample in the media data consists of a string of text, optionally followed by sample modifier boxes.

For example, if one word in the sample has a different size than the others, a 'styl' box is appended to that sample, specifying a new text style for those characters, and for the remaining characters in the sample. This overrides the style in the sample description. These boxes are present only if they are needed. If all text conforms to the sample description, and no characteristics are applied that the sample description does not cover, no boxes are inserted into the sample data.

class TextSampleModifierBox(type) extends Box(type) {

}

class TextSample {

unsigned int(16)

text-length;

unsigned int(8)

text[text-length];

TextSampleModifierBox
text-modifier[];
// to end of the sample

}

The initial string is preceded by a 16-bit count of the number of bytes in the string. There is no need for null termination of the text string. The sample size table provides the complete byte-count of each sample, including the trailing modifier boxes; by comparing the string length and the sample size, you can determine how much space, if any, is left for modifier boxes.

Authors should limit the string in each text sample to not more than 2048 bytes, for maximum terminal interoperability.

Any unrecognised box found in the text sample should be skipped and ignored, and processing continue as if it were not there.

D.8a.17.1
Sample Modifier Boxes

D.8a.17.1.1
Text Style

'styl'

This specifies the style of the text. It consists of a series of style records as defined above, preceded by a 16-bit count of the number of style records. Each record specifies the starting and ending character positions of the text to which it applies. The styles shall be ordered by starting character offset, and the starting offset of one style record shall be greater than or equal to the ending character offset of the preceding record; styles records shall not overlap their character ranges.

class TextStyleBox() extends TextSampleModifierBox (‘styl’) {

unsigned int(16)
entry-count;

StyleRecord

text-styles[entry-count];

}

D.8a.17.1.2
Highlight

'hlit' - Specifies highlighted text: the atom contains two 16-bit integers, the starting character to highlight, and the first character with no highlighting (e.g. values 4, 6 would highlight the two characters 4 and 5). The second value may be the number of characters in the text plus one, to indicate that the last character is highlighted.

class TextHighlightBox() extends TextSampleModifierBox (‘hlit’) {

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;

}

class TextHilightColorBox() extends TextSampleModifierBox ('hclr') {

unsigned int(8)
highlight_color_rgba[4];

}

highlight_color_rgb:

rgb color, 8 bits each of red, green, blue, and an alpha (transparency) value

The TextHilightColor Box may be present when the TextHighlightBox or TextKaraokeBox is present in a text sample. It is recommended that terminals use the following rules to determine the displayed effect when highlight is requested:

a)
if a highlight colour is not specified, then the text is highlighted using a suitable technique such as inverse video: both the text colour and the background colour change.

b)
if a highlight colour is specified, the background colour is set to the highlight colour for the highlighted characters; the text colour does not change.

Terminals do not need to handle text that is both scrolled and either statically or dynamically highlighted. Content authors should avoid specifying both scroll and highlight for the same sample.

D.8a.17.1.3
Dynamic Highlight

'krok' – Karaoke, closed caption, or dynamic highlighting. The number of highlight events is specified, and each event is specified by a starting and ending character offset and an end time for the event. The start time is either the sample start time or the end time of the previous event. The specified characters are highlighted from the previous end-time (initially the beginning of this sample’s time), to the end time. The times are all specified relative to the sample’s time; that is, a time of 0 represents the beginning of the sample time. The times are measured in the timescale of the track.

The atom starts with the start-time offset of the first highlight event, a 16-bit count of the event count, and then that number of 8-byte records. Each record contains the end-time offset as a 32-bit number, and the text start and end values, each as a 16-bit number. These values are specified as in the highlight record – the offset of the first character to highlight, and the offset of the first character not highlighted. The special case, where the startcharoffset equals to the endcharoffset, can be used to pause during or at the beginning of dynamic highlighting. The records shall be ordered and not overlap, as in the highlight record. The time in each record is the end time of this highlight event; the first highlight event starts at the indicated start-time offset from the start time of the sample. The time values are in the units expressed by the timescale of the track. The time values shall not exceed the duration of the sample.

The continuouskaraoke flag controls whether to highlight only those characters (continuouskaraoke = 0) selected by a karaoke entry, or the entire string from the beginning up to the characters highlighted (continuouskaraoke = 1) at any given time. In other words, the flag speciﬁes whether karaoke should ignore the starting offset and highlight all text from the beginning of the sample to the ending offset.

Karaoke highlighting is usually achieved by using the highlight colour as the text colour, without changing the background.

At most one dynamic highlight (‘krok’) atom may occur in a sample.

class TextKaraokeBox() extends TextSampleModifierBox (‘krok’) {

unsigned int(32)
highlight-start-time;

unsigned int(16)
entry-count;

for (i=1; i<=entry-count; i++) {

unsigned int(32)
highlight-end-time;

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;

}
}

D.8a.17.1.4
Scroll Delay

'dlay' - Specifies a delay after a Scroll In and/or before Scroll Out. A 32-bit integer specifying the delay, in the units of the timescale of the track. The default delay, in the absence of this box, is 0.

class TextScrollDelayBox() extends TextSampleModifierBox (‘dlay’) {

unsigned int(32)
scroll-delay;

}

D.8a.17.1.5
HyperText

'href' – HyperText link. The existence of the hypertext link is visually indicated in a suitable style (e.g. underlined blue text).

This box contains these values:

startCharOffset: – the start offset of the text to be linked

endCharOffset: – the end offset of the text (start offset + number of characters)

URLLength:– the number of bytes in the following URL

URL: UTF-8 characters – the linked-to URL

altLength:– the number of bytes in the following “alt” string

altstring: UTF-8 characters – an “alt” string for user display

The URL should be an absolute URL, as the context for a relative URL may not always be clear.

The “alt” string may be used as a tool-tip or other visual clue, as a substitute for the URL, if desired by the terminal, to display to the user as a hint on where the link refers.

Hypertext-linked text should not be scrolled; not all terminals can display this or manage the user interaction to determine whether user has interacted with moving text. It is also hard for the user to interact with scrolling text.

class TextHyperTextBox() extends TextSampleModifierBox (‘href’) {

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;

unsigned int(8)
URLLength;

unsigned int(8)
URL[URLLength];

unsigned int(8)
altLength;

unsigned int(8)
altstring[altLength];

}

D.8a.17.1.6
Textbox

‘tbox’ – text box over-ride. This over-rides the default text box set in the sample description.

class TextboxBox() extends TextSampleModifierBox ('tbox') {

BoxRecord
text-box;

}

D.8a.17.1.7
Blink

‘blnk’ – Blinking text. This requests blinking text for the indicated character range. Terminals are not required to support blinking text, and the precise way in which blinking is achieved, and its rate, is terminal-dependent.

class BlinkBox() extends TextSampleModifierBox ('blnk') {

unsigned int(16)

startcharoffset;

unsigned int(16)

endcharoffset;

}

D.8a.18
Combinations of features

Two modifier boxes of the same type shall not be applied to the same character (e.g. it is not permitted to have two href links from the same text). As the ‘hclr’, ‘dlay’ and ‘tbox’ are globally applied to the whole text in a sample, two modifier boxes of the same type shall not be present within a sample.
Table D.8 details the effects of multiple options:

Table D.8: Combinations of features

	
	
	
	
	First sample modifier atom

	
	
	Sample description style record
	styl
	hlit
	krok
	href
	blnk

	Second sample
	styl
	1
	3
	
	
	
	

	modifier atom
	hlit
	
	
	3
	
	
	

	
	krok
	
	
	4
	3
	
	

	
	href
	2
	2
	
	5
	3
	

	
	blnk
	
	6
	6
	6
	6
	6

1.
The sample description provides the default style; the style records over-ride this for the selected characters.

2.
The terminal over-rides the chosen style for HREF links.

3.
Two records of the same type cannot be applied to the same character.

4.
Dynamic and static highlighting must not be applied to the same text.

5.
Dynamic highlighting and linking must not be applied to the same text.

6.
Blinking text is optional, particularly when requested in combination with other features.

D.9
File Identification

3GPP multimedia files can be identified using several mechanisms. When stored in traditional computer file systems, these files should be given the file extension “.3gp” (readers should allow mixed case for the alphabetic characters). The MIME types “video/3gpp” (for visual or audio/visual content, where visual includes both video and timed text) and “audio/3gpp” (for purely audio content) are expected to be registered and used.
A file-type atom, as defined in the JPEG 2000 specification [36] shall be present in conforming files. The file type box ‘ftyp’ shall occur before any variable-length box (e.g. movie, free space, media data). Only a fixed-size box such as a file signature, if required, may precede it.
The brand identifier for this specification is '3gp5'. This brand identifier must occur in the compatible brands list, and may also be the primary brand. If the file is also conformant to release 4 of this specification, it is recommended that the Release 4 brand '3gp4' also occur in the compatible brands list; if 3gp4 is not in the compatible brand list the file will not be processed by a Release 4 reader. Readers should check the compatible brands list for the identifiers they recognize, and not rely on the file having a particular primary brand, for maximum compatibility. Files may be compatible with more than one brand, and have a 'best use' other than this specification, yet still be compatible with this specification.

Table D.9: The File-Type atom

	Field
	Type
	Details
	Value

	AtomHeader.Size
	Unsigned int(32)
	
	

	AtomHeader.Type
	Unsigned int(32)
	
	'ftyp'

	Brand
	Unsigned int(32)
	The major or ‘best use’ of this file
	

	MinorVersion
	Unsigned int(32)
	
	

	CompatibleBrands
	Unsigned int(32)
	A list of brands, to end of the atom
	

Brand: Identifies the ‘best use’ of this file. The brand should match the file extension. For files with extension ‘.3gp’ and conforming to this specification, the brand shall be ‘3gp4’.

MinorVersion: This identifies the minor version of the brand. For files with brand '3gpZ', where Z is a digit, and conforming to release Z.x.y, this field takes the value x*256 + y.

CompatibleBrands: a list of brand identifiers (to the end of the atom). ‘3gp5’ shall be a member of this list.

Annex E (normative):
RTP payload format and file storage format for AMR and AMR-WB audio

The AMR and AMR-WB speech codec RTP payload, storage format and MIME type registration are specified in [11].

Annex F (normative):
RDF schema for the PSS base vocabulary

<?xml version="1.0"?>

<!--

 This document is the RDF Schema for streaming-specific vocabulary

 as defined in 3GPP TS 26.234 Rel.5 (in the following "the

 specification").

 The URI for unique identification of this RDF Schema is

 http://www.3gpp.org/profiles/PSS/ccppschema-PSS5

 This RDF Schema includes the same information as the respective

 chapter of the specification. Greates care has been taken to keep

 the two documents consistence. However, in case of any divergence

 the specification takes presidence.

 All reference in this RDF Schmea are to be interpreted relative to

 the specification. This means all references using the form

 [ref] are defined in chapter 2 "References of the

 specification. All other references refer to parts within that

 document.

 Note: This Schemas has been aligned in structure and base

 vocabulary to the RDF Schema used by UAProf [40].

-->

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema" >

 <!-- ** -->

<!-- ***** Properties shared among the components***** -->

 <rdf:Description ID="defaults">

 <rdfs:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="Streaming"/>

 <rdfs:comment>

 An attribute used to identify the default capabilities.

 </rdfs:comment>

 </rdf:Description>

<!-- ** -->

<!-- ***** Component Definitions ***** -->

 <rdf:Description ID="Streaming">

 <rdf:type resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 <rdfs:subClassOf rdf:resource="http://www.wapforum.org/UAPROF/ccppschema-20010330#Component"/>

 <rdfs:label>Component: Streaming</rdfs:label>

 <rdfs:comment>

 The Streaming component specifies the base vocabulary for

 PSS. PSS servers supporting capability exchange should

 understand the attributes in this component as explained in

 detail in 3GPP TS 26.234 rel. 5.

 </rdfs:comment>

 </rdf:Description>

<!-- **

 ** In the following property definitions, the defined types

 ** are as follows:

 **

 ** Number: A positive integer

 ** [0-9]+

 ** Boolean: A yes or no value

 ** Yes|No

 ** Literal: An alphanumeric string

 ** [A-Za-z0-9/.\-_]+

 ** Dimension: A pair of numbers

 ** [0-9]+x[0-9]+

 **

-->

<!-- ** -->

<!-- ***** Component: Streaming ***** -->

<rdf:Description ID="AudioChannels">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: This attribute describes the stereophonic capability of the natural audio device. The only legal values are "Mono" and "Stereo".

 Type: Literal

 Resolution: Locked

 Examples: "Mono", "Stereo"

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="VideoPreDecoderBufferSize">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: This attribute signals if the optional video

 buffering requirements defined in Annex G are supported. It also

 defines the size of the hypothetical pre-decoder buffer defined in

 Annex G. A value equal to zero means that Annex G is not

 supported. A value equal to one means that Annex G is

 supported. In this case the size of the buffer is the default size

 defined in Annex G. A value equal to or greater than the default

 buffer size defined in Annex G means that Annex G is supported and

 sets the buffer size to the given number of octets. Legal values are all

 integer values equal to or greater than zero. Values greater than

 one but less than the default buffer size defined in Annex G are

 not allowed.

 Type: Number

 Resolution: Locked

 Examples: "0", "4096"

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="VideoInitialPostDecoderBufferingPeriod">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: If Annex G is not supported, the attribute has no

 meaning. If Annex G is supported, this attribute defines the

 maximum initial post-decoder buffering period of video. Values are

 interpreted as clock ticks of a 90-kHz clock. In other words, the

 value is incremented by one for each 1/90 000 seconds. For

 example, the value 9000 corresponds to 1/10 of a second initial

 post-decodder buffering. Legal valaues are all integer value equal

 to or greater than zero.

 Type: Number

 Resolution: Locked

 Examples: <VideoInitialPostDecoderBufferingPeriod>

 9000

 </VideoInitialPostDecoderBufferingPeriod>

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID=" VideoDecodingByteRate ">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

Description: If Annex G is not supported, the attribute has no meaning. If Annex G is supported, this attribute defines the peak decoding byte rate the PSS client is able to support. In other words, the PSS client fulfils the requirements given in Annex G with the signalled peak decoding byte rate. The values are given in bytes per second and shall be greater than or equal to 8000. According to Annex G, 8000 is the default peak decoding byte rate for the mandatory video codec profile and level (H.263 Profile 0 Level 10).Legal values are integer value greater than or equal to 8000.

 Type: Number

 Resolution: Locked

 Examples: <VideoDecodingByteRate>16000</VideoDecodingByteRate>

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID=" MaxPolyphony">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: Attribute definition:
The MaxPolyphony attribute refers to the maximal polyphony

 that the synthetic audio device supports as defined in [44]. Legal values are integer between 5

 to 24.

 NOTE:

MaxPolyphony attribute can be used to signal the maximum polyphony capabilities supported by the PSS client. This is a complementary mechanism for the delivery of compatible SP-MIDI content and thus the PSS client is required to support Scalable Polyphony MIDI i.e. Channel Masking defined in [44].

 Type: Number

 Resolution: Locked

 Examples: <MaxPolyphony>8</MaxPolyphony>

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="PssAccept">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Bag"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: List of content types (MIME types) the PSS

 application supports. Both CcppAccept (SoftwarePlatform, UAProf)

 and PssAccept can be used but if PssAccept is defined it has

 precedence over CcppAccept and a PSS application shall then use

 PssAccept.

 Type: Literal (bag)

 Resolution: Append

 Examples: "audio/AMR-WB;octet-alignment,application/smil"

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="PssAccept-Subset">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Bag"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: List of content types for which the PSS application

 supports a subset. MIME-types can in most cases effectively be

 used to express variations in support for different media

 types. Many MIME-types, e.g. AMR-NB has several parameters that

 can be used for this purpose. There may exist content types for

 which the PSS application only supports a subset and this subset

 can not be expressed with MIME-type parameters. In these cases the

 attribute PssAccept-Subset is used to describe support for a

 subset of a specific content type. If a subset of a specific

 content type is declared in PssAccept-Subset, this means that

 PssAccept-Subset has precedence over both PssAccept and CcppAccept.
 PssAccept and/or CcppAccept shall always include the corresponding
 content types for which PSSAccept-Subset specifies subsets of.
 This is to ensure compatibility with those content servers that

 do not understand the PssAccept-Subset attribute but do understand e.g. CcppAccept.

This is illustrated with an example. If PssAccept="audio/AMR",

"image/jpeg" and PssAccept-Subset="JPEG-PSS" then "audio/AMR"

and JPEG Base line is supported. "image/jpeg" in PssAccept is of no

importance since it is related to "JPEG-PSS" in PssAccept-Subset.

Subset identifiers and corresponding semantics shall only be defined by

the TSG responsible for the present document. The following values are defined:

-
"JPEG-PSS": Only the two JPEG modes described in clause 7.5 of the present

document are supported.

-
"SVG-Tiny"

-
"SVG-Basic"

 Legal values are subset identifiers defined by the specification.

 Type: Literal (bag)

 Resolution: Locked

 Examples: "JPEG-PSS","SVG-Tiny","SVG-Basic"

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="PssVersion">

e <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: Latest PSS version supported by the client. Legal

 values are "3GPP-R4", "3GPP-R5" and so forth.

 Type: Literal

 Resolution: Locked

 Examples: "3GPP-R4", "3GPP-R5"

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="RenderingScreenSize">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: The rendering size of the device's screen in unit of

 pixels. The horizontal size is given followed by the vertical

 size. Legal values are pairs of integer values equal or greater

 than zero. A value equal "0x0"means that there exist no display or

 just textual output is supported.

 Type: Dimension

 Resolution: Locked

 Examples: "160x120"

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="SmilBaseSet">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: Indicates a base set of SMIL 2.0 modules that the

 client supports. Leagal values are the following pre-defined

 identifiers: "SMIL-3GPP-R4" indicates all SMIL 2.0

 modules required for scene description support according to clause

 8 of Release 4 of TS 26.234. "SMIL-3GPP-R5" indicates all SMIL 2.0

 modules required for scene description support according to clause

 8 of the specification.

 Type: Literal

 Resolution: Locked

 Examples: "SMIL-3GPP-R4", "SMIL-3GPP-R5"

 </rdfs:comment>

</rdf:Description>

<rdf:Description ID="SmilModules">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdfschema#Property"/>

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Bag"/>

 <rdfs:domain rdf:resource="#Streaming"/>

 <rdfs:comment>

 Description: This attribute defines a list of SMIL 2.0 modules

 supported by the client. If the SmilBaseSet is used those modules

 do not need to be explicitly listed here. In that case only

 additional module support needs to be listed. Legal values are all

 SMIL 2.0 module names defined in the SMIL 2.0 recommendation [31],

 section 2.3.3, table 2.

 Type: Literal (bag)

 Resolution: Locked

 Examples: "BasicTransitions,MulitArcTiming"

 </rdfs:comment>

</rdf:Description>

</rdf:RDF>

Annex G (normative):
Buffering of video

G.1
Introduction

This annex describes video buffering requirements in the PSS. As defined in clause 7.4 of the present document, support for the annex is optional and may be signalled in the PSS capability exchange and in the SDP. This is described in clause 5.2 and clause 5.3.3 of the present document. When the annex is in use, the content of the annex is normative. In other words, PSS clients shall be capable of receiving an RTP packet stream that complies with the specified buffering model and PSS servers shall verify that the transmitted RTP packet stream complies with the specified buffering model.

G.2
PSS Buffering Parameters

The behaviour of the PSS buffering model is controlled with the following parameters: the initial pre-decoder buffering period, the initial post-decoder buffering period, the size of the hypothetical pre-decoder buffer, the peak decoding byte rate, and the decoding macroblock rate. The default values of the parameters are defined below.

-
The default initial pre-decoder buffering period is 1 second.

-
The default initial post-decoder buffering period is zero.

-
The default size of the hypothetical pre-decoder buffer is defined according to the maximum video bit-rate according to the table below:

Table G.1: Default size of the hypothetical pre-decoder buffer

	Maximum video bit-rate
	Default size of the hypothetical pre-decoder buffer

	65536 bits per second
	20480 bytes

	131072 bits per second
	40960 bytes

	Undefined
	51200 bytes

-
The maximum video bit-rate can be signalled in the media-level bandwidth attribute of SDP as defined in clause 5.3.3 of this document. If the video-level bandwidth attribute was not present in the presentation description, the maximum video bit-rate is defined according to the video coding profile and level in use.

-
The size of the hypothetical post-decoder buffer is an implementation-specific issue. The buffer size can be estimated from the maximum output data rate of the decoders in use and from the initial post-decoder buffering period.

-
By default, the peak decoding byte rate is defined according to the video coding profile and level in use. For example, H.263 Level 10 requires support for bit-rates up to 64000 bits per second. Thus, the peak decoding byte rate equals to 8000 bytes per second.

-
The default decoding macroblock rate is defined according to the video coding profile and level in use. If MPEG-4 Visual is in use, the default macroblock rate equals to VCV decoder rate. If H.263 is in use, the default macroblock rate equals to (1 / minimum picture interval) multiplied by number of macroblocks in maximum picture format. For example, H.263 Level 10 requires support for picture formats up to QCIF and minimum picture interval down to 2002 / 30000 sec. Thus, the default macroblock rate would be 30000 x 99 / 2002 (1484 macroblocks per second.

PSS clients may signal their capability of providing larger buffers and faster peak decoding byte rates in the capability exchange process described in clause 5.2 of the present document. The average coded video bit-rate should be smaller than or equal to the bit-rate indicated by the video coding profile and level in use, even if a faster peak decoding byte rate were signalled.

Initial parameter values for each stream can be signalled within the SDP description of the stream. Signalled parameter values override the corresponding default parameter values. The values signalled within the SDP description guarantee pauseless playback from the beginning of the stream until the end of the stream (assuming a constant-delay reliable transmission channel).

PSS servers may update parameter values in the response for an RTSP PLAY request. If an updated parameter value is present, it shall replace the value signalled in the SDP description or the default parameter value in the operation of the PSS buffering model. An updated parameter value is valid only in the indicated playback range, and it has no effect after that. Assuming a constant-delay reliable transmission channel, the updated parameter values guarantee pauseless playback of the actual range indicated in the response for the PLAY request. The indicated pre-decoder buffer size and initial post-decoder buffering period shall be smaller than or equal to the corresponding values in the SDP description or the corresponding default values, whichever ones are valid. The following header fields are defined for RTSP:

-
x-predecbufsize:<size of the hypothetical pre-decoder buffer>
This gives the suggested size of the Annex G hypothetical pre-decoder buffer in bytes.

-
x-initpredecbufperiod:<initial pre-decoder buffering period>
This gives the required initial pre-decoder buffering period specified according to Annex G. Values are interpreted as clock ticks of a 90-kHz clock. That is, the value is incremented by one for each 1/90 000 seconds. For example, value 180 000 corresponds to a two second initial pre-decoder buffering.

-
x-initpostdecbufperiod:<initial post-decoder buffering period>
This gives the required initial post-decoder buffering period specified according to Annex G. Values are interpreted as clock ticks of a 90-kHz clock.

These header fields are defined for the response of an RTSP PLAY request only. Their use is optional.

The following example plays the whole presentation starting at SMPTE time code 0:10:20 until the end of the clip. The playback is to start at 15:36 on 23 Jan 1997. The suggested initial post-decoder buffering period is half a second.

 C->S: PLAY rtsp://audio.example.com/twister.en RTSP/1.0

 CSeq: 833

 Session: 12345678

 Range: smpte=0:10:20-;time=19970123T153600Z
 User-Agent: TheStreamClient/1.1b2
 S->C: RTSP/1.0 200 OK

 CSeq: 833

 Date: 23 Jan 1997 15:35:06 GMT

 Range: smpte=0:10:22-;time=19970123T153600Z

 x-initpredecbufperiod: 45000

G.3
PSS server buffering verifier

The PSS server buffering verifier is specified according to the PSS buffering model. The model is based on two buffers and two timers. The buffers are called the hypothetical pre-decoder buffer and the hypothetical post-decoder buffer. The timers are named the decoding timer and the playback timer.

The PSS buffering model is presented below.

1.
The buffers are initially empty.

2.
A PSS Server adds each transmitted RTP packet having video payload to the pre-decoder buffer immediately when it is transmitted. All protocol headers at RTP or any lower layer are removed.

3.
Data is not removed from the pre-decoder buffer during a period called the initial pre-decoder buffering period. The period starts when the first RTP packet is added to the buffer.

4.
When the initial pre-decoder buffering period has expired, the decoding timer is started from a position indicated in the previous RTSP PLAY request.

5.
Removal of a video frame is started when both of the following two conditions are met: First, the decoding timer has reached the scheduled playback time of the frame. Second, the previous video frame has been totally removed from the pre-decoder buffer.

6.
The duration of frame removal is the larger one of the two candidates: The first candidate is equal to the number of macroblocks in the frame divided by the decoding macroblock rate. The second candidate is equal to the number of bytes in the frame divided by the peak decoding byte rate. When the coded video frame has been removed from the pre-decoder buffer entirely, the corresponding uncompressed video frame is located into the post-decoder buffer.

7.
Data is not removed from the post-decoder buffer during a period called the initial post-decoder buffering period. The period starts when the first frame has been placed into the post-decoder buffer.

8.
When the initial post-decoder buffering period has expired, the playback timer is started from the position indicated in the previous RTSP PLAY request.

9.
A frame is removed from the post-decoder buffer immediately when the playback timer reaches the scheduled playback time of the frame.

10.
Each RTSP PLAY request resets the PSS buffering model to its initial state.

A PSS server shall verify that a transmitted RTP packet stream complies with the following requirements:

-
The PSS buffering model shall be used with the default or signalled buffering parameter values. Signalled parameter values override the corresponding default parameter values.

-
The occupancy of the hypothetical pre-decoder buffer shall not exceed the default or signalled buffer size.

-
Each frame shall be inserted into the hypothetical post-decoder buffer before or on its scheduled playback time.

G.4
PSS client buffering requirements

When the annex is in use, the PSS client shall be capable of receiving an RTP packet stream that complies with the PSS server buffering verifier, when the RTP packet stream is carried over a constant-delay reliable transmission channel. Furthermore, the video decoder of the PSS client, which may include handling of post-decoder buffering, shall output frames at the correct rate defined by the RTP time-stamps of the received packet stream.

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1082281924.unknown

