3GPP TSG-SA Codec Working Group

TSGS4#8(99)486

TSG-S4#8: December 6-10, 1999, Kyoto, Japan

Source:
Nokia

Title:
AMR floating-point baseline C-code

1. Introduction

This document presents the baseline floating-point ANSI-C AMR code provided by Nokia. This code is planned to be used as a basis for a new floating-point specification of the AMR codec and it is currently being investigated, and potentially improved, by other S4 participants. Initial execution speed measurements are also presented here as a function of the CPU-load.

2. Description

ANSI-C is used as the programming language for the floating-point code because portability within general purpose processors is desirable. The floating-point encoder is not bit-exact with the fixed-point encoder, but its subjective quality is essentially identical to that of the fixed-point encoder. The "floating-point" decoder remains bit-exact with the fixed-point decoder and, hence, passes all the AMR fixed-point test vectors.

The speech coding part of the code follows the structure of TS 26.073 [1]. In addition, the C-code includes two alternative interfaces which are here referred to as the 3G-interface and the ETSI-interface. In the 3G-interface, the speech frames of the AMR codec are efficiently packed into an octet structure and "no transmission" frames are used in silence periods. This interface follows the format described in TS 26.101 [2]. The ETSI-interface provides the ETSI fixed-point AMR C code bit stream format which is compatible with the compiled C code of TS 26.073 [1]. The interface can be selected using a preprocessor definition. The ETSI-interface can be used for testing the floating-point encoder and decoder against the fixed-point encoder and decoder because the input and output formats are identical between the codecs.

Call graphs showing the functions used in the speech codec interfaces are shown in Annex A. Call graphs showing the functions used in the actual floating-point speech encoder and decoder are shown in the draft specification TS 26.XXX (Tdoc S4-99485) for the AMR floating-point codec.

3. Execution speed

The initial measurement of the execution efficiency of the floating-point C code was measured by running all the AMR fixed-point test vectors (T00-T21, T00A-T21A, T00U-T21U) through the floating-point and fixed-point [1] encoders and decoders and comparing the average execution speed of the coders. The summarized results are presented in the Table 1. The table shows the execution speed as a function of the average CPU-load in an Intel Pentium II 300 MHz machine with 512k cache running Windows NT 4.0 with Service Pack 4. The C-compiler was Microsoft Visual C++ 5.0 with Service Pack 3.

As a result, it can be seen from Table 1 that the total complexity of the optimized AMR floating-point code is significantly less than that of the fixed-point AMR codec. On the other hand, the optimized decoder is only a very small part of the total complexity, so more aggressive optimization by sacrificing the decoder bit-exactness would not bring any major benefits in terms of overall complexity.

Table 1: CPU load in PII 300MHz

MODE
MR122
MR102
MR795
MR74
MR67
MR59
MR515
MR475

Floating-point Encoder
12.94%
12.70%
11.89%
11.70%
11.98%
9.86%
8.40%
10.15%

Decoder
2.00%
1.98%
2.04%
1.97%
2.03%
2.03%
2.02%
2.03%

Floating-point Total
14.94%
14.67%
13.94%
13.67%
14.01%
11.89%
10.42%
12.18%

Fixed-point Total
99.16%
95.20%
97.26%
92.50%
97.39%
84.95%
77.30%
92.85%

4. References

[1]
TS 26.073:
"ANSI‑C code for the Adaptive Multi Rate speech codec"

[2]
TS 26.101:
" Mandatory Speech Codec speech processing functions

 AMR Speech Codec Frame Structure"

Annex A: The call structure of the AMR floating-point C-code interface

Table A.1: Speech encoder interface call structure

EncoderInterfaceInit
SpeechEncodeFrameInit
PreProcessInit
PreProcessReset

CodAmrInit
CodAmrReset

SpeechEncodeFrameExit
PreProcessExit

CodAmrExit

SidSyncReset

EncoderInterfaceEncode
SpeechEncodeFrame
PreProcess

CodAmr

SpeechEncodeFrameReset
PreProcessReset

CodAmrReset

SidSyncReset

Encoder3GPP

Prm2Bits
Int2Bin

EncoderInterfaceExit
SpeechEncodeFrameExit
PreProcessExit

CodAmrExit

Table A.2: Speech decoder interface call structure

DecoderInterfaceInit
SpeechDecodeFrameInit
DecoderAmrInit
PreProcessReset

PostFilterInit
CodAmrReset

PostProcessInit
PreProcessExit

SpeechDecodeFrameExit
CodAmrExit

DecoderInterfaceReset

DecoderInterfaceDecode
Decoder3GPP

Bits2Prm
Bin2Int

SpeechDecodeFrame
DecoderAmr

PostFilter

PostProcess

SpeechDecodeFrameReset
DecoderAmrReset

PostFilterReset

PostProcessReset

DecoderInterfaceExit
SpeechDecodeFrameExit
DecoderAmrExit

PostFilterExit

PostProcessExit

'

