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* * * First Change * * * *

6.10.2.3
Example use of solution 10: information flow using pre-shared key DTLS


In this subclause we show how the present solution can be applied using the example of pre-shared key DTLS as the application layer security protocol between UE and EMSE. 

Other candidate application layer security protocols include IKEv2 (with pre-shared keys) combined with ESP. 

Prerequisite: 

a)
HSS has processed the Authentication Information Request from the SGSN or MME, and pushed the intermediate key, e2m_int_key and the associated key identifier to the EMKS. 
Network access AKA run is completed and UE is in possession of the necessary inputs for deriving the e2m_int_key, together with the related key identifier. 

b)
UE is ready to initiate setup of the chosen application layer security protocol with a particular EMSE. UE derives e2m_key using the EMSE_Id.

c)
EMSE has registered and established a session with the EMKS. The interface between EMSE and EMKS is integrity- and confidentiality-protected by TLS as shown in the protocol stack in Figure 6.10.2.2.1-1.
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Figure: 6.10.2.3 DTLS-PSK session between UE and EMSE based on e2m_key

In the following sequence (D)TLS-PSK is used as an example:

1)
UE initiates establishment of a DTLS session by sending TLS message “ClientHello”. This may, for example, contain COAP defined mandatory-to-implement cipher suite TLS_PSK_WITH_AES_128_CCM_8.

2)
EMSE responds to the UE with the “ServerHello” and “ServerHelloDone” messages. 

3)
Using e2m_key (from prerequisite step b above) as the psk, UE generates TLS session keys.

4)
UE sends “ClientKeyExchange”, “ChangeCipherSpec” and “Finished”. UE’s application layer identity and key identifier are sent in the psk_identity value in the “ClientKeyExchange” message.

5)
EMSE initiates HTTP GET to obtain the latest UE specific e2m_key from EMKS. EMSE sends UE’s identity value and key identifier in this request message to EMKS.

6)
The EMKS selects the right e2m_int_key with the help of the key identifier and computes e2m_key using the EMSE_Id as input. 
7)
The EMKS then returns e2m_key in the HTTP 201 response to EMSE.

8)
EMSE uses the received e2m_key as pre-shared secret as specified for DTLS.

9-11)
EMSE continues with rest of the DTLS session setup flow.

As a result, a DTLS security session is setup between the UE and EMSE.
* * * End of Change * * * *
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