Page 1

3GPP TSG SA3 Meeting #86
S3-170260
Sophia Antipolis; 6th – 10th February 2017
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	33.863
	CR
	0004
	rev
	1
	Current version:
	14.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	BEST: Fixing error in Figure 6.10.2.3 of Solution #10

	
	

	Source to WG:
	Nokia

	Source to TSG:
	SA3

	
	

	Work item code:
	TEI14
	
	Date:
	2017-1-30

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	Figure 6.10.2.3 of Solution #10 has an error in how EMKS obtains e2m_int_key when EMSE places a request for the e2m key.

	
	

	Summary of change:
	Figure is updated by creating a new step 6. Numbering of steps explaining the sequence is also corrected.

	
	

	Consequences if not approved:
	Incorrect figure which wrongly explains how EMKS obtains e2m_int_key for the UE.

	
	

	Clauses affected:
	6.10.2.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

* * * First Change * * * *

6.10.2.3
Example use of solution 10: information flow using pre-shared key DTLS

In this subclause we show how the present solution can be applied using the example of pre-shared key DTLS as the application layer security protocol between UE and EMSE.

Other candidate application layer security protocols include IKEv2 (with pre-shared keys) combined with ESP.

Prerequisite:

a)
HSS has processed the Authentication Information Request from the SGSN or MME, and pushed the intermediate key, e2m_int_key and the associated key identifier to the EMKS.
Network access AKA run is completed and UE is in possession of the necessary inputs for deriving the e2m_int_key, together with the related key identifier.

b)
UE is ready to initiate setup of the chosen application layer security protocol with a particular EMSE. UE derives e2m_key using the EMSE_Id.

c)
EMSE has registered and established a session with the EMKS. The interface between EMSE and EMKS is integrity- and confidentiality-protected by TLS as shown in the protocol stack in Figure 6.10.2.2.1-1.

[image: image2.emf]UEEMSEEMKS

Compute e2m_key for

the chosen EMSE

2. ServerHello(PSK-based ciphersuite)

ServerHelloDone

1. ClientHello(PSK-based ciphersuite)

9. UE is autenticated

by validating the

Finished message

10. ChangeCipherSpec, Finished

11. EMSE is autenticated

by validating the

Finished message

HSS

Push e2m_int_key and

key identifier

3. Generate TLS

session keys

8. Generate TLS

session keys

EPS AKA or UMTS AKA

EMSE Registration

4. ClientKeyExchange(

psk_identity = UE’s application

identity:key_identifier)

ChangeCipherSpec

Finished

5. HTTP GET (UE’s application identity,

key_identifier)

7. HTTP 201 OK (e2m_key)

DTLS tunnel

6. Select e2m_int_key using

key identifier and compute

e2m_key using EMSE_Id

as input.

Figure: 6.10.2.3 DTLS-PSK session between UE and EMSE based on e2m_key

In the following sequence (D)TLS-PSK is used as an example:

1)
UE initiates establishment of a DTLS session by sending TLS message “ClientHello”. This may, for example, contain COAP defined mandatory-to-implement cipher suite TLS_PSK_WITH_AES_128_CCM_8.

2)
EMSE responds to the UE with the “ServerHello” and “ServerHelloDone” messages.

3)
Using e2m_key (from prerequisite step b above) as the psk, UE generates TLS session keys.

4)
UE sends “ClientKeyExchange”, “ChangeCipherSpec” and “Finished”. UE’s application layer identity and key identifier are sent in the psk_identity value in the “ClientKeyExchange” message.

5)
EMSE initiates HTTP GET to obtain the latest UE specific e2m_key from EMKS. EMSE sends UE’s identity value and key identifier in this request message to EMKS.

6)
The EMKS selects the right e2m_int_key with the help of the key identifier and computes e2m_key using the EMSE_Id as input.
7)
The EMKS then returns e2m_key in the HTTP 201 response to EMSE.

8)
EMSE uses the received e2m_key as pre-shared secret as specified for DTLS.

9-11)
EMSE continues with rest of the DTLS session setup flow.

As a result, a DTLS security session is setup between the UE and EMSE.
* * * End of Change * * * *
_1547296965.vsd
UE

EMSE

EMKS

EPS AKA or UMTS AKA

Compute e2m_key for
the chosen EMSE

4. ClientKeyExchange(
psk_identity = UE’s application identity:key_identifier)
ChangeCipherSpec
Finished

5. HTTP GET (UE’s application identity, key_identifier)

8. Generate TLS
 session keys

EMSE Registration

7. HTTP 201 OK (e2m_key)

DTLS tunnel

11. EMSE is autenticated
by validating the
Finished message

6. Select e2m_int_key using
 key identifier and compute
 e2m_key using EMSE_Id
 as input.

2. ServerHello(PSK-based ciphersuite)
ServerHelloDone

1. ClientHello(PSK-based ciphersuite)

9. UE is autenticated
by validating the
Finished message

10. ChangeCipherSpec, Finished

HSS

Push e2m_int_key and
 key identifier

3. Generate TLS
 session keys

