Error! No text of specified style in document.
1
Error! No text of specified style in document.

[bookmark: _Toc428529780][bookmark: _GoBack]3GPP TSG SA WG3 (Security) Meeting #82	S3-160128
1-5 February 2016 Dubrovnik, Croatia	 revision of
	
Source:	BlackBerry UK Ltd
Title:	Allowing per user profiles per MCPTT User in the IMS network
Document for:	Approval
Agenda Item:	MCPTT
Work Item / Release:	MCPTT/Rel-13
Abstract of the contribution: This contribution proposes a mechanism to allow an MCPTT pool device to be assigned any user profile on the device and in the SIP Core (i.e. S-CSCF).
1. Introduction
OpenID Connect procedures provides tokens to the OpenID Connect Client. One of these tokens is the ID Token. Per section 7.2.1 of this specification the ID Token is similar to an identity card. The ID Token contains a set of standard cliams but can also be expanded to include new claims. It is proposed that the ID Token is expanded to include the IMS Public identity that shall be used when the MCPTT User has been successfully authenticated.
Given that a new identity has been provided to the MCPTT UE a new SIP REGISTRATION will need to take place.
The ability to assign a new IMS Public identity allows a default IMS service profile and initial filter criteria to be available for the MCPTT UE to be used prior to user authentication, however once authentication of the MCPTT User has been completed the MCPTT User specific IMS service profile and MCPTT User specific initial filter criteria can be then used. E.g. The MCPTT UE is a "pool device". If it is picked up by the Captain of the police department and he will have a different IMS service profile than others in the department. Additionally the E.164 telephone number of the MCPTT User can be associated with the MCPTT IMS registration so that regardless of which device is used the E.164 number and telephony services for that MCPTT User function correctly.
The MCPTT User can have multiple IMS Public identities associated with them and a different IMS Public User identity could be provided upon each MCPTT User authentication.

2. pCR to TR 33.879

****Proposed changes****
7.2 Solution #2: MCPTT User Authentication and Registration based on OpenID Connect
In order to provide a complete user authentication and UE authorization solution for MCPTT that satisfies the requirements in TS 22.179 [2] and the architecture in TS 23.179 [10], the following security features are needed.
1.	Network access and network security with the EPS Core.
2.	MCPTT UE authentication and registration with SIP Core.
3.	Identity verification of the MCPTT user with the MCPTT domain via a set of MCPTT User Credentials.
4a.	MCPTT UE REGISTERS with the SIP Core using the IMPU provided in step 3.
4b.	MCPTT User authentication and registration with the MCPTT Server
This solution provides for MCPTT User identity verification, MCPTT User Authentication and Registration with the MCPTT Server, as well as SIP Core registration for MCPTT UE.
OpenID Connect [17] tokens are used for both authenticating and registering the user with the MCPTT Server. MCPTT UE Authentication and SIP Core registration is based on an existing IMS Authentication schemes detailed in TS 33.203 [9].
Figure 7.2-1 shows the high level flow for Token-based MCPTT user authentication and UE registration with SIP Core.
NOTE: As defined in TS 23.179 [10], the SIP Core may be resident in the network domain or MCPTT domain. Also, it is important to note that User authentication (Step 3 in this instance) may occur at any point in this flow between Step 0 and Step 4.

Figure 7.2-1: MCPTT UE Registration and Token based User Authentication Flow
The following describes the steps performed in Figure 7.2-1 for MCPTT UE registration and token-based MCPTT User Authentication and registration with the MCPTT Server.
Step 0:		The UE attaches to the network, establishes normal connectivity, and sets up network security as defined in TS 33.401 [21].
Step 1: 	The MCPTT UE establishes a secure session with the SIP Core. The SIP User Agent authenticates to the SIP core and registers its IMPU. For IMS authentication, TS 33.203 [9] applies.
NOTE: At this time, only a secure connection exists between the MCPTT UE and the SIP Core, no MCPTT communications (emergency or otherwise) are available.
Step 2: 	The SIP core sends a SIP 3rd Party Registration to the MCPTT application Server, notifying it of the MCPTT UE SIP registration. The registered IMPU is sent in this step along with the SIP Core address. This allows MCPTT server to allow minimal or default services for this SIP session at this time.
Step 3: 	The user provides its MCPTT User Identity and associated credentials to the IdM server via the IdM client’s user agent (over https). If the user is successfully authenticated (and optionally authorized) by the IdM server, the MCPTT client receives in return an access token specific to the MCPTT user and MCPTT service and a KMS access token specific to the MCPTT user and the MCPTT key management service.
Step 3.5:	The KMS access token obtained in Step 3 is provided to the MCPTT KMS on the TLS protected HTTP-1 interface. The MCPTT KMS validates the access token, and if the MCPTT user is authorized for MCPTT key management services, then the MCPTT KMS provides keys specific to the user.
NOTE: Steps 3 and 3.5 together may occur at any point in this flow between Step 0 and Step 4.
Step 4: 	The access token obtained in Step 3 is provided to the MCPTT server in a SIP REGISTER Publish message. The MCPTT application validates the access token. If the MCPTT user is authorized for MCPTT services, then the MCPTT server binds the user associated with the access token with the SIP session URI and IMPU.
The MCPTT server responds by providing the MCPTT user its service authorization profile.
[bookmark: _Toc428529781]7.2.1 OpenID Connect (OIDC)
The OpenID Connect [17] based authorization server provides client applications with two key tokens:
a) 	ID Token – asserts the user’s identity in a signed and verifiable way. Similar to an identity card, enables MCPTT Client to identify the authenticated user. This is JSON Web Token (JWT) based and is self-contained with information useful to the receiving OIDC Client. The JWT contains the Public User identities as JSON claims.
b) 	Access token – A bearer token that represents that a resource owner has authorized an MCPTT client for access to a protected MCPTT resources on behalf of the end user. The token is sent by the MCPTT client to the MCPTT server. The MCPTT server utilizes this token to determine the set of protected resources it will enable for the MCPTT client.
Authorization servers supporting OpenID Connect protocol and providing user authentication as a service are referred to as OpenID Identity Providers (IDP). Applications that outsource its user authentication function to an IDP is referred to as Relying Parties (RPs).
The Identity Management Server in the MCPTT network is the OpenID Identity Provider, and the MCPTT server which depends on the access token to verify the user is the Relying Party.
[bookmark: _Toc428529782]7.2.1.1 OpenID Connect Authorization Code flow using Proof Key for Code Exchange
OAuth 2.0 Authorization code flow [16] with additional security enhancements proposed by [15] is used as the OpenID Connect flow in the proposed solution.
The MCPTT Client native application in the UE is a “public client” incapable of maintaining the confidentiality of their credentials. When a public client utilizes the Authorization Code Grant to authenticate with the OIDC server, they are susceptible to the authorization code interception attack.
Once the user (i.e. the resource owner) authenticates, the OIDC server provides MCPTT Client with an authorization code through a browser redirect HTTP message. The client then sends the authorization code to the OIDC Server and gets an access token in return. The Redirection URI typically uses a custom URI to communicate with the native application.
The interface between the browser and the native app is based on callbacks (handlers). This path is unprotected and could be attacked by a malicious application (native application) in the UE. A malicious app can register itself as handler for the custom URI scheme and intercept the authorization code. To prevent these kinds of malicious apps from exchanging the “falsely obtained” code for an access token, code-challenge and code-verifier strings are used by the IdM Server to verify the MCPTT Client.
a) 	The Client creates a code_verifier string and a code_challenge string derived from the code-verifier string.
b) 	The client includes the code_challenge string when it requests an access token in the “Authorization Request” message.
c) 	Subsequently, when it sends a message to exchange the authorization code for an access token, it includes the code_verifier string to the IdM Server, in addition to the authorization code. The code_verifier string is cryptographically associated with the code_challenge. Therefore the IdM Server can generate code_challenge on its own from the received code-verifier string, and compare it with the code_challenge provided by the client in the “Authorization Request”. If the values match, it proves that the client is legal. An access token is granted to the client.
[bookmark: _Toc428529783]7.2.2 Detailed flow for MCPTT User Authentication and Registration using OpenID Connect
Figure 7.2.2-1 shows the detailed flow for MCPTT User Authentication and Registration.

Figure 7.2.2-1 OpenID Connect MCPTT User Authentication and Registration
Step 0: 	The UE attaches to the network, establishes normal connectivity, and sets up network security as defined in TS 33.401 [21]. Local P-CSCF in the Home IMS network is discovered at this point.
Step 1: 	The UE IMS Client authenticates with the Home IMS network. For IMS authentication, TS 33.203 [9] applies.
Step 2: 	The SIP core sends a SIP 3rd Party Registration to the MCPTT application Server, notifying it of the MCPTT UE SIP registration. The 3rd party REGISTER message includes the registered IMPU and S-CSCF’s SIP-URI or IP Address.
Step 3a: 	The IdM client in the UE issues a HTTPS Authentication request to the OIDC based IdM Server in the MCPTT network. The client includes the code_challenge value in this request.
Step 3b: 	The user provides the MCPTT User Identity and associated credentials to the IdM server. The user is successfully authenticated (and optionally authorized) by the IdM Server.
Step 3c: 	The IdM Server may optionally request user consent for granting the MCPTT client access to MCPTT services in the MCPTT Server.
Step 3d: 	The IdM Server generates an authorization code that is associated with the code_challenge provided by the client. It sends a browser redirect HTTP message with the Authorization Response containing the authorization code.
Step 3e: 	The UE IdM Client performs a HTTP POST request to exchange the authorization code for an access token. In the request, the client includes the code-verifier string. This string is cryptographically associated with the code_challenge value provided in the Authorization Request in Step 3a.
Step 3f: 	The IdM Server verifies the IdM Client based on the received code-verifier string and issues a 200 OK with an access token and ID token (specific to the MCPTT user and MCPTT service) included in it.
NOTE: The server verifies by calculating the code challenge from the received code_verifier and comparing it with the code_challenge value provided by the client in Step 3a.
Step 3g: 	The access token and ID token are provided to the MCPTT client. The ID token contains the JSON Web Token claim for IMS Public Identity assigned by the IdM Server..
Step 3h:	The UE IMS Client authenticates with the Home IMS network using the IMS Public identity received in the ID Token in Step 3g and includes the JSON Web Token claim for the access token in the SIP REGISTER. For IMS authentication, TS 33.203 [9] applies.The MCPTT client may forward the access token to the MCPTT server over the SIP-1/SIP-2 interface. The MCPTT server may then authorize the MCPTT user and then may bind the MCPTT user to the SIP session.
Step 3i: 	The SIP core sends a SIP 3rd Party Registration to the MCPTT application Server, notifying it of the MCPTT UE SIP registration. The 3rd party REGISTER message includes the registered IMPU and S-CSCF’s SIP-URI or IP Address and the JSON Wen Token claim for the access token.
Step 4: 	The MCPTT client establishes TLS on the HTTP-1 interface and forwards the access token to the MCPTT application server. The MCPTT application server authorizes the MCPTT user and binds the user to the HTTP-1 session. Once the user is authorized, the MCPTT application server provides the user’s profile and permissions to the MCPTT client over the HTTP-1 interface.

3GPP
image1.emf
Network

EPS

Core

MCPTT

UE

IdM

Server

SIP Core

MCPTT

Server

0. UE performs network attach

as specified in 33.401.

3.

MCPTT UE performs user authentication and acquires a server access token and

a KMS access token.

1. SIP User Agent Registration with SIP Core

4. MCPTT UE uses token for Service Authorization with MCPTT Application

MCPTT Domain

Key

Mgmt

Server

2. 3rd party registration

3.5. MCPTT UE uses KMS token for Service Authorization with KMS to obtain user’s keys.

Microsoft_PowerPoint_Slide1.sldx
Network

EPS

Core

MCPTT

UE

IdM Server

SIP Core

MCPTT

Server

0. UE performs network attach as specified in 33.401.

3. MCPTT UE performs user authentication and acquires a server access token and a KMS access token.

1. SIP User Agent Registration with SIP Core

4. MCPTT UE uses token for Service Authorization with MCPTT Application

MCPTT Domain

Key Mgmt

Server

2. 3rd party registration

3.5. MCPTT UE uses KMS token for Service Authorization with KMS to obtain user’s keys.

image2.emf
MCPTT

Client

MCPTT

Server

P-CSCF

Request Access

Token

S-CSCF

MCPTT

User

3a. HTTPS GET (Authentication request)

https://IdM.server.com/authorize?response_type=code&client_id=mcptt_client&nonce=nMqsIj&state=af0ifjsldkj&scope=openid profile

IMS

Client

ID Mgmt

Server

MCPTT UE

Home IMS

network

Primary MCPTT

System

PLMN

LTE

Access

0. UE authenticates and obtains

an IP address

ID Mgmt

Client

3c. Obtain user consent (optional/conditional)

Initiate

Authentication

procedure

3g. Response

Access token,

ID Token

3b. User Authenticates User provides credentials

3d. Authorization Response

https://IdM.server.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=af0ifjsldkj&code_challenge=0x123456789abcdef

3e. POST token

Host: IdM.server.com

grant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef

3f. 200 OK

{ "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xLOxBtZp8", "expires_in": 3600, "id_token": "ey...vKMzqg"}

1. IMS client authenticates with the Home IMS 2. Third party Reg

Initiate

Registration

procedure

4. HTTP-1: TLS session is established and the access token is used to obtain MCPTT services for the user

3h. REGISTER

(To:<MCPTT Server PSI>, From:<IMPU>, JSON JWT(=Access Token))

3i. 3rdParty Register

(To:<MCPTT Server PSI>,

From:<IMPU>, P-

Asserted_Identity=<IMPU>,

JSON JWT(

Access Token

)

)

Internal Messaging Publish

(Access Token)

oleObject1.bin

image3.emf
MCPTT

Client

MCPTT

Server

P-CSCF

Request Access

Token

S-CSCF

MCPTT

User

3a. HTTPS GET (Authentication request)

https://IdM.server.com/authorize?response_type=code&client_id=mcptt_client&nonce=nMqsIj&state=af0ifjsldkj&scope=openid profile

IMS

Client

ID Mgmt

Server

MCPTT UE

Home IMS

network

Primary MCPTT

System

PLMN

LTE

Access

0. UE authenticates and obtains

an IP address

ID Mgmt

Client

3c. Obtain user consent (optional/conditional)

Initiate

Authentication

procedure

 3g. Response

Access token,

ID Token

3b. User Authenticates User provides credentials

3d. Authorization Response

https://IdM.server.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=af0ifjsldkj&code_challenge=0x123456789abcdef

3e. POST token

Host: IdM.server.com

grant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef

3f. 200 OK

 { "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xLOxBtZp8", "expires_in": 3600, "id_token": "ey...vKMzqg"}

1. IMS client authenticates with the Home IMS 2. Third party Reg

 Initiate

Registration

procedure

4. HTTP-1: TLS session is established and the access token is used to obtain MCPTT services for the user

3h. Publish, Event = Token

(To:<MCPTT Server PSI>, From:<IMPU>, encrypted (XML body with Access Token))

Publish

(To:<MCPTT Server PSI>,

From:<IMPU>, P-

Asserted_Identity=<IMPU>,

encrypted (XML body with

Access Token))

Internal Messaging Publish

(Access Token)

MCPTT Client
MCPTT
Server
P-CSCF
Request Access Token
S-CSCF
MCPTT User
3a. HTTPS GET (Authentication request)
https://IdM.server.com/authorize?response_type=code&client_id=mcptt_client&nonce=nMqsIj&state=af0ifjsldkj&scope=openid profile
IMS
Client
ID Mgmt
Server
MCPTT UE
Home IMS network
Primary MCPTT System
PLMN
LTE
Access
0. UE authenticates and obtains an IP address
ID Mgmt Client
3c. Obtain user consent (optional/conditional)
Initiate Authentication procedure
3g. Response
Access token,
ID Token
3b. User Authenticates
User provides credentials
3d. Authorization Response
https://IdM.server.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=af0ifjsldkj&code_challenge=0x123456789abcdef
3e. POST token
Host: IdM.server.com
grant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef
3f. 200 OK
 { "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xLOxBtZp8", "expires_in": 3600, "id_token": "ey...vKMzqg"}
1. IMS client authenticates with the Home IMS
2. Third party Reg
Initiate Registration procedure
4. HTTP-1: TLS session is established and the access token is used to obtain MCPTT services for the user
3h. Publish, Event = Token
(To:<MCPTT Server PSI>, From:<IMPU>, encrypted (XML body with Access Token))
Publish
(To:<MCPTT Server PSI>, From:<IMPU>, P-Asserted_Identity=<IMPU>, encrypted (XML body with Access Token))
Internal Messaging Publish
(Access Token)

