3

3GPP TSG SA WG3 (Security) Meeting #81
S3-152224
9-13 November 2015 Anaheim, CA

revision of S3-15abcd

Source:
Motorola Solutions and Alcatel-Lucent

Title:
Specification of MCPTT User Authentication in 33.179
Document for:
Discussion and Approval

Agenda Item:
MCPTT

Work Item / Release: MCPTT/Rel-13

Abstract of the contribution: This pCR proposes adding MCPTT User Authentication and Authorization to TS 33.179 based on Solution #2 in TR 33.879.
1 Introduction
Conditional on the acceptance of pCR S3-152222 “Resolution of editor’s note in section 7.2 of 33.879”, this pCR adds User Authentication and Authorization to the MCPTT Technical Specification 33.179.
2 pCR to TR 33.179

************* Start of first change ***
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 23.179: "Functional architecture and information flows to support mission critical communication services".
[3]
3GPP TS 22.179: "Mission Critical Push To Talk (MCPTT) over LTE".
[4]
3GPP TS 33.401: ''3GPP System Architecture Evolution (SAE); Security architecture''.
[5]
3GPP TS 33.203: ''3G security; Access security for IP-based services''.
[6]
IETF Draft draft-ietf-oauth-spop-15: “Proof Key for Code Exchange by OAuth Public Clients”.

[7]
OpenID Foundation "OpenID Connect Basic Client Implementer's Guide 1.0 - draft 37",8http://openid.net/specs/openid-connect-basic-1_0.html.

[9]
OpenID Foundation "OpenID Connect Core 1.0 incorporating errata set 1", http://openid.net/specs/openid-connect-core-1_0.html
************* End of first change **

************* Start of second change ***

X.x MCPTT User Authentication and Authorization
In order to provide a complete user authentication and UE authorization solution for MCPTT that satisfies the requirements in TS 22.179 [3] and the architecture in TS 23.179 [2], the following security features are needed.

1.
Network access and network security with the EPS Core.

2.
MCPTT UE authentication and registration with SIP Core.

3.
Identity verification of the MCPTT user with the MCPTT domain via a set of MCPTT User Credentials.

4.
MCPTT User authentication and registration with the MCPTT Server
This section addresses 3 and 4, defining the security for MCPTT user identity verification with the Identity Management (IdM) server and user authorization with the MCPTT application services.
OpenID Connect [4] tokens are used for both authenticating and authorizing the user. MCPTT access tokens are obtained from the IdM through user authentication and are used to assert the MCPTT user’s identity to the MCPTT services. The MCPTT services (e.g. MCPTT application, MCPTT key management, etc.) authorize the MCPTT user by validating the user’s access token. Validation of a token is performed by verifying the signature (i.e. proving it was signed by the IdM server).

After the UE attaches to the network (Step 1), and either before or after UE SIP authentication and registration (Step 2), the MCPTT client initiates user authentication. The MCPTT human user provides their credentials which are passed by the IdM client to the IdM server for authentication. Successful authentication results in access tokens being returned to the MCPTT client, specific to the MCPTT user and the associated MCPTT services.

After obtaining the access token(s) from the IdM, the MCPTT client uses the access token(s) to assert the user’s identity to MCPTT services. The MCPTT service verifies the access token(s), which authorizes the MCPTT user access to the service. Specifically, the MCPTT client asserts the MCPTT user’s identity to the MCPTT application server via the SIP-1/SIP-2 interfaces with the MCPTT application access token (creating an association between the established SIP session and the MCPTT user).
The MCPTT client also asserts the MCPTT user’s identity to the MCPTT application server via the HTTP-1 interface (protected with TLS). The MCPTT application server validates the access token, authorizes the MCPTT user, and establishes an association between the HTTP session and the MCPTT client. The MCPTT application server responds by providing the MCPTT user’s service authorization profile to the MCPTT client over the HTTP-1 interface.
Figure X.x-1 shows the high level flow for MCPTT user authentication and authorization (Network attach and UE registration with the SIP Core is shown for thoroughness).
NOTE: As defined in TS 23.179 [2], the SIP Core may be resident in the network domain or MCPTT domain. Also, it is important to note that User authentication and authorization (Steps 3 in this instance) may occur at any point in this flow between Step 0 and Step 4.

[image: image1.png]
Figure X.x-1: MCPTT UE Registration and token based User Authentication Flow

The following describes the steps performed in Figure X.x-1 for MCPTT UE registration and token-based MCPTT User Authentication and registration with the MCPTT Server.

Step 0:

The UE attaches to the network, establishes normal connectivity, and sets up network security as defined in TS 33.401 [5].

Step 1:
The MCPTT UE establishes a secure session with the SIP Core. The SIP User Agent authenticates to the SIP core and registers its IMPU. Authentication of the SIP Core is dependent on the SIP Core deployment model. For deployment of a SIP core outside of the MCPTT domain, IMS authentication as defined in 33.203 [6] applies.

NOTE: At this time, only a secure connection exists between the MCPTT UE and the SIP Core, no MCPTT communications (emergency or otherwise) are available.

Step 2:
The SIP core sends a SIP 3rd Party Registration to the MCPTT application Server, notifying it of the MCPTT UE SIP registration. The registered IMPU is sent in this step along with the SIP Core address. This allows MCPTT server to allow minimal or default services for this SIP session at this time.

Step 3:
The user provides its MCPTT User Identity and associated credentials to the IdM server via the IdM client’s user agent (over https). If the user is successfully authenticated (and optionally authorized) by the IdM server, the MCPTT client receives in return access tokens specific to the MCPTT user and any MCPTT services.
NOTE: Steps 3 may occur at any point in this flow between Step 0 and Step 4.

Step 4:
The access token obtained in Step 3 is provided to the MCPTT server in a SIP Publish message. The MCPTT application validates the access token. If the MCPTT user is authorized for MCPTT services, then the MCPTT server binds the user associated with the access token with the SIP session URI and IMPU. The MCPTT server responds by providing the MCPTT user its service authorization profile.
X.x.1 OpenID Connect (OIDC)

The OpenID Connect [9] based authorization server provides client applications with at least two key tokens:

a)
ID Token – asserts the user’s identity in a signed and verifiable way. Similar to an identity card, enables MCPTT Client to identify the authenticated user. This is JSON Web Token (JWT) based and is self-contained with information useful to the receiving OIDC Client.

b)
Access token – A bearer token that represents that a resource owner has authorized an MCPTT client for access to a protected MCPTT resources on behalf of the end user. The token is sent by the MCPTT client to the MCPTT server. The MCPTT server utilizes this token to determine the set of protected resources it will enable for the MCPTT client. Additional tokens may be obtained from the Identity Management server at this time for authorization with other MCPTT services such as key management, SIP registration, etc.
Authorization servers supporting OpenID Connect protocol and providing user authentication as a service are referred to as OpenID Identity Providers (IDP). Applications that outsource its user authentication function to an IDP is referred to as Relying Parties (RPs).

The Identity Management Server in the MCPTT network is the OpenID Identity Provider, and the MCPTT server which depends on the access token to verify the user is the Relying Party.

7.2.1.1 OpenID Connect Authorization Code flow using Proof Key for Code Exchange

OAuth 2.0 Authorization code flow [7] with additional security enhancements proposed by [6] is used as the OpenID Connect flow.

The MCPTT Client native application in the UE is a “public client” incapable of maintaining the confidentiality of their credentials. When a public client utilizes the Authorization Code Grant to authenticate with the OIDC server, they are susceptible to the authorization code interception attack.

Once the user (i.e. the resource owner) authenticates, the OIDC server provides MCPTT Client with an authorization code through a redirect HTTP message. The client then sends the authorization code to the OIDC Server and gets an access token in return. The Redirection URI typically uses a custom URI to communicate with the native application.

The interface between the browser and the native app is based on callbacks (handlers). This path is unprotected and could be attacked by a malicious application (native application) in the UE. A malicious app can register itself as handler for the custom URI scheme and intercept the authorization code. To prevent these kinds of malicious apps from exchanging the “falsely obtained” code for an access token, code-challenge and code-verifier strings are used by the IdM Server to verify the MCPTT Client.

a)
The Client creates a code_verifier string and a code_challenge string derived from the code-verifier string.

b)
The client includes the code_challenge string when it requests an access token in the “Authorization Request” message.

c)
Subsequently, when it sends a message to exchange the authorization code for an access token, it includes the code_verifier string to the IdM Server, in addition to the authorization code. The code_verifier string is cryptographically associated with the code_challenge. Therefore the IdM Server can generate code_challenge on its own from the received code-verifier string, and compare it with the code_challenge provided by the client in the “Authorization Request”. If the values match, it proves that the client is legal. An access token is granted to the client.

X.x.2 Detailed flow for MCPTT User Authentication and Authorization using OpenID Connect

Figure X.x.2-1 shows the detailed flow for MCPTT User Authentication and Authorization.

[image: image2.emf]MCPTT ClientMCPTT ServerP-CSCFRequest Access TokenS-CSCFMCPTT User3a. HTTPS GET (Authentication request) https://IdM.server.com/authorize?response_type=code&client_id=mcptt_client&nonce=nMqsIj&state=af0ifjsldkj&scope=openid profileIMS ClientID MgmtServerMCPTT UEHome IMS networkPrimary MCPTT SystemPLMNLTE Access0. UE authenticates and obtains an IP addressID Mgmt Client3c. Obtain user consent (optional/conditional)Initiate Authentication procedure 3g. ResponseAccess token,ID Token3b. User AuthenticatesUser provides credentials3d. Authorization Responsehttps://IdM.server.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=af0ifjsldkj&code_challenge=0x123456789abcdef3e. POST tokenHost: IdM.server.comgrant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef3f. 200 OK { "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xLOxBtZp8", "expires_in": 3600, "id_token": "ey...vKMzqg"}1. IMS client authenticates with the Home IMS2. Third party Reg Initiate Registration procedure4. HTTP-1: TLS session is established and the access token is used to obtain MCPTT services for the user3h. Publish, Event = Token(To:<MCPTT Server PSI>, From:<IMPU>, encrypted (XML body with Access Token))Publish(To:<MCPTT Server PSI>, From:<IMPU>, P-Asserted_Identity=<IMPU>, encrypted (XML body with Access Token))Internal Messaging Publish(Access Token)

Figure X.x.2-1 OpenID Connect MCPTT User Authentication and Registration

Step 0:
The UE attaches to the network, establishes normal connectivity, and sets up network security as defined in TS 33.401 [4]. Local P-CSCF in the Home IMS network is discovered at this point.

Step 1:
The UE IMS Client authenticates with the Home IMS network. For deployment of a SIP core outside of the MCPTT domain, IMS authentication as defined in 33.203 [5] applies.
Step 2:
The SIP core sends a SIP 3rd Party Registration to the MCPTT application Server, notifying it of the MCPTT UE SIP registration. The 3rd party REGISTER message includes the registered IMPU and S-CSCF’s SIP-URI or IP Address.
Step 3a:
The IdM client in the UE issues a HTTPS Authentication request to the OIDC based IdM Server in the MCPTT network. The client includes the code_challenge value in this request.

Step 3b:
The user provides the MCPTT User Identity and associated credentials to the IdM server. The user is successfully authenticated (and optionally authorized) by the IdM Server.

Step 3c:
The IdM Server may optionally request user consent for granting the MCPTT client access to MCPTT services in the MCPTT Server.

Step 3d:
The IdM Server generates an authorization code that is associated with the code_challenge provided by the client. It sends a browser redirect HTTP message with the Authorization Response containing the authorization code.

Step 3e:
The UE IdM Client performs a HTTP POST request to exchange the authorization code for an access token. In the request, the client includes the code-verifier string. This string is cryptographically associated with the code_challenge value provided in the Authorization Request in Step 3a.

Step 3f:
The IdM Server verifies the IdM Client based on the received code-verifier string and issues a 200 OK with an access token and ID token (specific to the MCPTT user and MCPTT service) included in it.

NOTE: The server verifies by calculating the code challenge from the received code_verifier and comparing it with the code_challenge value provided by the client in Step 3a.

Step 3g:
The access token and ID token are provided to the MCPTT client.
Step 3h:
The MCPTT client forwards the access token to the MCPTT server over the SIP-1/SIP-2 interface. The MCPTT server authorizes the MCPTT user and then binds the MCPTT user to the SIP session.
Step 4:
The MCPTT client establishes TLS on the HTTP-1 interface and forwards the access token to the MCPTT application server. The MCPTT application server authorizes the MCPTT user and binds the user to the HTTP-1 session. Once the user is authorized, the MCPTT application server provides the user’s profile and permissions to the MCPTT client over the HTTP-1 interface.

************* End of second change ***
3 Conclusion

We kindly ask SA3 to consider this pCR for inclusion into TS 33.179.
3GPP

MCPTT Client
MCPTT
Server
P-CSCF
Request Access Token
S-CSCF
MCPTT User
3a. HTTPS GET (Authentication request)
https://IdM.server.com/authorize?response_type=code&client_id=mcptt_client&nonce=nMqsIj&state=af0ifjsldkj&scope=openid profile
IMS
Client
ID Mgmt
Server
MCPTT UE
Home IMS network
Primary MCPTT System
PLMN
LTE
Access
0. UE authenticates and obtains an IP address
ID Mgmt Client
3c. Obtain user consent (optional/conditional)
Initiate Authentication procedure
3g. Response
Access token,
ID Token
3b. User Authenticates
User provides credentials
3d. Authorization Response
https://IdM.server.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=af0ifjsldkj&code_challenge=0x123456789abcdef
3e. POST token
Host: IdM.server.com
grant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef
3f. 200 OK
 { "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xLOxBtZp8", "expires_in": 3600, "id_token": "ey...vKMzqg"}
1. IMS client authenticates with the Home IMS
2. Third party Reg
Initiate Registration procedure
4. HTTP-1: TLS session is established and the access token is used to obtain MCPTT services for the user
3h. Publish, Event = Token
(To:<MCPTT Server PSI>, From:<IMPU>, encrypted (XML body with Access Token))
Publish
(To:<MCPTT Server PSI>, From:<IMPU>, P-Asserted_Identity=<IMPU>, encrypted (XML body with Access Token))
Internal Messaging Publish
(Access Token)

