3GPP TSG-SA3 (Security)
S3-110207
SA3#62, 24-28 January; Ljubljana, Slovenia
merger of S3-110061 and S3-110055
Source:
ZTE Corporation, China Unicom, InterDigital
Title:
Update of the solution of implementing SSO_APS based on SIP Digest
Document for:
Approval

Agenda Item:
8.4
Work Item / Release:
11
Abstract of the contribution: This contribution updates the solution of implementing SSO_APS based on SIP Digest.
1 Introduction

This contribution gives some modifications about the solution of implementing SSO_APS SSO based on SIP Digest.
2
Proposal

It is proposed that the following change is approved in the TR33.914
***** Start of first change *****
7.3 Solution 2
7.3.1
Solution 2 – Description
The solution realizes a SSO function that is available when an IMS UE is authenticated over SIP Digest authentication mechanism. Figure 7.2-4 shows the message flow of the authentication process to realize SIP Digest-based SSO with the Common IMS in the UICC-less environment.

[image: image2.emf]UE

RP(Application

Server)

IdP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K0;Calculate response;

10.Check against nonce;calculate

Xresponse and compare Xresponse

with response;obtain UE authentication

result UE_Auth;Generate K0

1.Request

U_credential

2.Redirect request to IdP

U_credential,RP_credential

3.Redirected request to IdP

U_credential,RP_credential

5.Get SD-AV&user profile

based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP

EK0(nonce1,RP_Auth);EKr,i(K1,UE_Auth)

14.Redirected to RP

EKr,i(K1,UE_Auth)

4.Authenticate RP ;check K0

13.Decrypt EK0(nonce1,RP_Auth);obtain

RP_Auth result and nonce1;generate K1

Establishment of

shared secret Kr,i

11.Generate nonce1 and then generate

K1;K0 encrypts nonce1and RP_Auth；

EK0(nonce1,RP_Auth);EKr,i(K1,UE_Auth)

15.Decrypt EKr,i(K1,UE_Auth),obtain UE_Auth and K1

17.Notify

EK1(UE_Author)

18.Decrypt EK1(UE_Author);

access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

Figure 7.3-4 authentication process of SIP Digest-based SSO with the Common IMS

The basic steps are as follows:

1.
2. The UE issues an authentication request to RP which includes the UE identifier (U_credential).
Editor’s note: the generation and the form of the identifier is FFS.

Editor’s note: the identifier e.g. IMPI and the transfer of the new credential to the UE are ffs.

3.
4. The RP redirects the authentication request sent by the UE. The redirected request includes U_credential and the RP identifier (RP_credential).

5. The authentication request is redirected to the IdP.

6. The IdP authenticates the RP based on the RP_credential and generates related authentication result RP_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.

Note: The RP and the IdP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and IdP are out of scope. With this shared secret the IdP can sign subsequent messages and the RP can verify those messages.
7. The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

8. The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

9. The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

10. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

11. The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

12. Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. The IdP stores the authentication conclusion (UE_Auth). If the UE is successfully authenticated, the IdP generates the shared secret K0 based on the H(A1), the cnonce, etc.

13. The IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and RP_Auth using K0, i.e. EK0(nonce1,RP_Auth); and encrypts the K1 and UE_Auth using Kr,i, i.e. EKr,i (K1,UE_Auth).

14. The IdP sends the UE an message including EK0(nonce1,RP_Auth) and EKr,i (K1,UE_Auth) with redirection.

15. The UE decrypts the EK0(nonce1,RP_Auth) and then obtains RP_Auth and nonce1. Based on the RP_Auth the UE knows the legitimacy of the requested RP. If the authentication result indicates that the RP is not valid, the UE will stop visiting the RP, else the UE will generates the shared secret K1 based on K0, nonce1.

16. The message sent by the IdP is redirected to the RP including EKr,i (K1,UE_Auth).

17. The RP decrypts the EKr,i (K1,UE_Auth), and obtains UE_Auth and K1.
18. After verifying the UE_Auth, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

19. The RP notifies the UE about the authorization information.

20. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

Note: The last 3 steps16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.

If there is a failure in steps 1 through 15 – the authentication procedure stops.
The SSO subsystem under the solution can provide some forms of interworking with, or support for, other SSO systems, notably OpenID and Liberty Alliance. The solution to utilize SIP Digest authentication for SSO can maximize commonality with the already defined 3GPP approaches for interworking with non-3GPP-defined SSO system as described in TR33.924 [9] and TR33.980 [8]. In the following， a message flow of the authentication process is defined to allow the interworking of the SIP Digest-based SSO with the OpenID[14].

[image: image4.emf]UE

RP(Application

Server)

OP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K0;calculate response;

10.Check against nonce;calculate

Xresponse and compare Xresponse with

response;Generate UE authentication

assertion UE_Assert and K0

1.AuthnOpenID request

OpenID identifier

2.Redirect request to OP

OpenID identifier;RP_credential

3.Redirected request to OP

OpenID identifier;RP_credential

5.Get SD-AV&user

profile based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP

EK0(nonce1);EKr,o(K1,UE_Assert)

14.Redirected to RP

EKr,o(K1,UE_Assert)

4.Authentication RP and genarate RP

authenticate assertion;check of K0

13.Decrypt EK0(nonce1);obtain

nonce1; genarate K1

Establishment of

shared secret Kr,o

11.Generate nonce1 and then generate

K1;K0 encrype nonce1andRP_Assert；

EK0(nonce1);EKr,o(K1,UE_Assert)

15.Decrypt EKr,o(K1,UE_Assert),obtain UE_Assert and K1

17.Notify

EK1(UE_Author)

18.Decrype EK1(UE_Author);

access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

Figure 7.3-5 authentication process of interworking of the SIP Digest-based SSO with the OpenID

The basic steps are as follows:

1.
2. The UE issues an authentication request AuthnOpenID to the RP which includes an OpenID identifier.

3. The RP redirects the authentication request sent by the UE which includes the OpenID identifier and the RP identifier (RP_credential).

4. The authentication request is redirected to the OpenID identity provider (OP)

5. The OP authenticates the RP based on the RP identifier. Assuming RP authentication success, the OP checks whether there is already a shared secret K0 between the UE and the OP according to the OpenID identifier. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.
Note: The RP and the OP shall have a shared secret (Kr,o) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and OP are out of scope. With this shared secret the OP can sign subsequent messages and the RP can verify those messages.
Note: The OP is the sole decision point for RP’s authenticity, and this means that any explicit messaging, e.g. to the UE, regarding the OP’s decision on the authenticity of the RP, is redundant and unnecessary.
Note: There may be security concerns if this message (about OP notifyin the UE about failure of OP authentication of the RP) is sent unprotected.
6. The OP sends an authentication request to the HSS, then it obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the OP may have to obtain the address of the HSS where the UE is stored by querying the SLF.
7. The OP generates a random nonce, stores H(A1) and the nonce against the U_credential.

8. The OP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

9. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

10. The UE sends a response to the OP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and Digest-url.

11. Upon receiving the response, The OP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the OP calculates the expected response (Xresponse) using the previously stored H(A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful the authentication of the UE is succeeded, else the authentication fails. The OP stores an authentication assertion (UE_Assert). If the UE is successfully authenticated, the OP generates the shared secret K0 based on the H(A1), the cnonce, etc.

12. The OP generates a random nonce1 and generates a shared secret K1 based on K0, nonce1. The OP encrypts the nonce1 using K0, i.e. EK0(nonce1); and encrypts the K1 and UE_Assert using Kr,o, i.e. EKr,o (K1,UE_Assert)..

13. The OP sends the UE an message including EK0(nonce1) and EKr,o (K1,UE_Assert) with redirection.

14. The UE decrypts the EK0(nonce1); and then obtains nonce1; the UE will generates the shared secret K1 based on K0, nonce1.

15. The message sent by the OP is redirected to the RP including EKr,o (K1,UE_Assert).

16. The RP decrypts the EKr,o (K1,UE_Assert), and obtains UE_Assert and K1.
17. After verifying the UE_Assert, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

18. The RP notifies the UE about the authorization information.
19. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.
Note: The last 3 steps16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.
If there is a failure in steps 1 through 15 – the authentication procedure stops.

Editor’s Note: Steps compliant to the OpenID and steps that are beyond the OpenID should be distinguished.
Editor’s Note: It should be marked, for each of the steps of the description for the protocol depicted in Figure 7.2-5, which element of the description complies to OpenID specification, and which element is beyond the scope of OpenID specification.
Editor’s Note: The aspects of providing keys for general application security between a terminal and application server, not only for interwoking with OpenID, should be also taken into account in the solution.
Note: The interworking with the Liberty Alliance is similar to the interworking with the OpenID.
***** End of changes *****
_1350722756.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

7.Generate nonce;
store nonce and H(A1)�

9.Generate cnonce,H(A1) and K0;calculate response;

11.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

2.AuthnOpenID request
OpenID identifier

3.Redirect request to OP
OpenID identifier;RP_credential

4.Redirected request to OP
OpenID identifier;RP_credential

6.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

10.response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

13.redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.redirected to RP
EKr,o (K1,UE_Assert)

5.Authentication RP and genarate RP authenticate assertion;check of K0

14.Decrypt EK0(nonce1,RP_Assert);
obtain RP_Assert and nonce1; genarate K1

1.Register in IMS�

Establishment of shared secret Kr,o

12.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

16.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1;authorized information for UE UE_Author;EK1(UE_Author)

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

_1356420022.vsd
�

UE�

RP(Application Server)�

IdP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;Calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;obtain UE authentication result UE_Auth;Generate K0

1.Request
U_credential

2.Redirect request to IdP
U_credential,RP_credential

3.Redirected request to IdP
U_credential,RP_credential

5.Get SD-AV&user profile
based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

14.Redirected to RP
EKr,i (K1,UE_Auth)

11.Generate nonce1 and then generate K1;K0 encrypts nonce1 and RP_Auth；EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

4.Authenticate RP ;check K0

13.Decrypt EK0(nonce1,RP_Auth);obtain
RP_Auth result and nonce1;generate K1

15.Decrypt EKr,i (K1,UE_Auth),obtain UE_Auth and K1

Establishment of shared secret Kr,i

17.Notify
EK1(UE_Author)

18.Decrypt EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1357679985.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

1.AuthnOpenID request
OpenID identifier

2.Redirect request to OP
OpenID identifier;RP_credential

3.Redirected request to OP
OpenID identifier;RP_credential

5.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

14.Redirected to RP
EKr,o (K1,UE_Assert)

4.Authentication RP and genarate RP authenticate assertion;check of K0

13.Decrypt EK0(nonce1,RP_Assert);obtain
RP_Assert and nonce1; genarate K1

Establishment of shared secret Kr,o

11.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1350722755.vsd
�

UE�

RP(Application Server)�

IdP(SSO)�

HSS�

7.Generate nonce;
store nonce and H(A1)�

9.Generate cnonce,H(A1) and K0;Calculate response;

11.Check against nonce;calculate Xresponse and compare Xresponse with response;obtain UE authentication result UE_Auth;Generate K0

2.Request
U_credential

3.Redirect request to IdP
U_credential,RP_credential

4.Redirected request to IdP
U_credential,RP_credential

6.Get SD-AV&user profile
based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

10.response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

13.redirect UE to RP
EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

15.redirected to RP
EKr,i (K1,UE_Auth)

12.Generate nonce1 and then generate K1;K0 encrypts nonce1 and RP_Auth；EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

5.Authenticate RP ;check K0

14.Decrypt EK0(nonce1,RP_Auth);
obtain RP_Auth result and nonce1;generate K1

1.Register in IMS�

16.Decrypt EKr,i (K1,UE_Auth),obtain UE_Auth and K1;authorized information for UE UE_Author;EK1(UE_Author)

Establishment of shared secret Kr,i

17.Notify
EK1(UE_Author)

18.Decrypt EK1(UE_Author);
access to the requested service

