Page 1

3GPP TSG-SA WG3 Meeting #45
(
S3-060672

Ashburn, US, 31 October – 3 November 2006

	CR-Form-v9.2

	CHANGE REQUEST

	

	(

	33.110
	CR
	CRNum
	(

rev
	-
	(

Current version:
	1.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	X
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Removal of open issues from Annex A

	
	

	Source to WG:
(

	Gemalto (Gemplus SA, Axalto SA)

	Source to TSG:
(

	

	
	

	Work item code:
(

	KeyEstUTerm
	
	Date: (

	20/10/2006

	
	
	
	
	

	Category:
(

	
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	Open questions identified in sections A.1 and A.2.1 of Annex A "Pending issues" are not relevant.

	
	

	Summary of change:
(

	Open questions described in Annex A.1 and A.2.1 are removed.

	
	

	Consequences if
(

not approved:
	Pending issues are listed while they are no longer relevant.

	
	

	Clauses affected:
(

	 Annex A

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

4.5
Procedures

4.5.1
Initiation of key establishment between a UICC and a Terminal

Before Ks_local-based application can start, the UICC and the Terminal first have to share the same key Ks_local associated to the selected application. The Terminal shall check if it stores the key Ks_local associated to targeted application and if this key Ks_local is also available on the UICC.

1- The Terminal checks if it stores the key Ks_local required for the application communicating with the UICC. If the key Ks_local is not available on the Terminal then the Terminal initiates a Key Establishment procedure, else it continues the checks in step 2.

2- The Terminal sends a request to the UICC to check that the required key Ks_local is available on the UICC. The UICC reply indicates the Terminal if the required key Ks_local is available on the UICC. If the required key Ks_local is not available on the UICC, the Terminal initiates a key establishment procedure.
4.5.2 Key establishment procedure

1- The Terminal checks whether there is a valid Ks key in the UICC, by fetching the current B-TID and its corresponding lifetime from the UICC. If no valid key Ks is available in the UICC, the Terminal requests a GBA bootstrapping procedure run to derive a new Ks key in the UICC and the BSF.

2- In order to check whether there is a valid Ks_int_NAF, the Terminal sends a request to the UICC to retrieve B-TID value associated to the NAF_ID of the NAF Key Center.

Editor’s note:
The NAF_ID of the NAF Key Center has to be known by the Terminal.
3- The UICC returns the NAF_ID and associated B-TID to the Terminal. If there is no Ks_int_NAF available in the UICC, a GBA_U NAF Derivation procedure associated to the NAF Key Center is performed.
4- The Terminal sends a command to perform Ks_local derivation on the UICC. The Terminal sends the NAF_ID corresponding to the NAF Key Center, the Terminal_ID, the Terminal_appli_ID and the UICC_appli_ID. Terminal_appli_ID and UICC_appli_ID correspond to identifiers of applications that aim sharing a key Ks_local.

In case that Ks_local has to be established per platform, the UICC_appli_ID and the Terminal_appli_ID octet strings equal to static ASCII-encoded string "platform".

5- The UICC retrieves the Ks_int_NAF associated to the received NAF_ID and then derives Ks_local. The UICC stores Ks_local and associated parameters Terminal_ID, Terminal_appli_ID, UICC_appli_ID and Ks_local counter. Ks_local counter is set to COUNT_MAX default value if Ks_local corresponds to a new key value.

Ks_local is computed as Ks_local = KDF (Ks_int_NAF, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID), where KDF is the key derivation function as specified in Annex B.

The UICC may store a local policy to determine the associations between a Terminal_appli_ID and a UICC_appli_ID wich are authorized. If the Terminal requested a Terminal_appli_ID/UICC_appli_ID association not authorized by the UICC policy then the UICC stops the key establishment procedure and returns a "not authorized" error message.

6- The Terminal and the NAF Key Center establish a HTTPS tunnel with certificate based mutual authentication between the Terminal and the application server. Confer TS 33.222 [7].

Editor’s note:
In addition to certificate-based authentication, another option might be defined
7- The Terminal sends a "service request" message to the NAF Key Center node in the mobile operator network. The message is sent within HTTPS tunnel.

The request may contain the following payload: the identity (B_TID), the Terminal identifier (Terminal_ID), the smart card identifier (ICCID), and the application identifier of UICC application (UICC_appli_ID) and the application identifier of the Terminal application (Terminal_appli_ID) requiring the establishment of key Ks_local.

In case that Ks_local has to be established per platform, the UICC_appli_ID and the Terminal_appli_ID octet strings equal to static ASCII-encoded string "platform".

8- The NAF Key Center contacts the BSF and sends the identity B_TID, the NAF_ID of the NAF Key Center, the identifiers of the targeted applications (Terminal_appli_ID, UICC_appli_ID) in a credential request.

9- The BSF derives Ks_int_NAF, Ks_ext_NAF and supplies to the NAF Key Center the requested keys Ks_int/ext_NAF keys, as well as the bootstrapping time and the key lifetime of Ks_int/ext_NAF keys.

The BSF may also send requested USSs to NAF Key Center according to the BSF’s policy

10-The NAF Key Center

a. If the NAF Key Center has requested a USS, and the USS indicates to the NAF Key Center that the key establishment procedure is not allowed for the targeted applications, then the NAF Key Center shall respond with appropriate error code and terminate the TLS connection with the Terminal.

b. The NAF Key Center checks if the Terminal_ID is blocked (blacklisted) and if so it does not proceed with the key establishment procedure

c. The NAF Key Center derives Ks_local from Ks_int_NAF. The NAF Key Center associates a key lifetime to the derived key Ks_local.

Ks_local is computed as Ks_local = KDF (Ks_int_NAF, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID), where KDF is the key derivation function as specified in Annex B.

Editor’s note:
If two applications on the UICC or on the Terminal have the same application identifier then Ks_local will be the same for the two applications. It is FFS whether this is possible.

11- The NAF Key Center sends within HTTPS tunnel a response message to the Terminal with the following payload: B-TID, Ks_local, Key Lifetime

12- The Terminal stores Ks_local and associated parameters Key Lifetime, ICCID, Terminal_appli_ID, UICC_appli_ID

[image: image1.wmf]

UICC

NAF

Key Center

Terminal

BSF

6.

 Establishment of HTTPS

tunnel between the terminal

and the NAF Key Center

7.

 Application Request

for key establishment

sent within HTTPS tunnel

(B

-

TID, Terminal_ID,

Terminal_appli_ID, UICC

_appli_ID)

10.

 Checks Terminal_ID

number,

Derives Ks_local from

Ks_int_NAF

8.

 Authentication Request

(B

-

TID, NAF hostname,

Terminal_appli_ID, UICC

_appli_ID)

9.

 Authentication Answer

(Ks_NAF, Ks_int_NAF

Ks_ext_NAF, Prof, Bootstrap

time, key lifetime)

11.

 Application Answer

sent within HTTPS tunnel

(B

-

TID, Ks_local, Key

Lifetime)

12.

Stores Ks_local and

associated Key Lifetime

If no valid key Ks is available in the UICC

 the terminal requests a complete

GBA_U

bootstrapping procedure run

2

.

 Request for B

-

TID

 (NAF_ID)

3

-

 Return B

-

TID

(

NAF_ID, B

-

TID)

4.

 Request for Ks_local generation

(NAF_ID, Terminal_ID,

Term_appli_ID, UICC_appli_ID)

5.

 UICC retrieves Ks_int_NAF,

derives Ks_local.

The UICC stores Ks_local

-

specific

data

1.

Request

the

curren

t B

-

TID

and corresponding key

lifetime

Figure 4-3: Key establishment procedure

Annex A (informative):
Pending issues

This annex lists pending issues to take into account to progress the work on the key establishment between a UICC and a terminal.

Editor's note: The content of this annex is based on contributions S3-060258 and S3-060309 presented during SA3#43 meeting

·

A.1
Terminal authentication

The current proposals assume that the terminal is able to authenticate itself (at least to the network). Although TLS and ROAP have been identified as candidates, the exact mechanism and the necessary supporting infrastructure have not as yet been defined. Ideally, the mechanism for terminal authentication should be generic so that it can be easily re-used by other services.

Before deciding on the authentication mechanism, further investigation is needed on what actually needs to be authenticated: the application on the terminal, the terminal platform, or both. The answer depends on whether the secure channel should be established between applications on the UICC and applications on the ME, or whether it should be established between the UICC and the ME platform and this general-purpose secure tunnel then used by different applications on those platforms.

In the following we consider each type of authentication in turn.

· Application authentication

We assume in this scenario that the application is provisioned with key material which it uses to authenticate itself to the network (or third party server). The application may either share a key with the network, or may be provisioned with a public and private key pair together with an appropriate certificate.

The application is reliant on the underlying platform for maintaining its integrity and for securely storing its key material. When authenticating the application, the network gains assurance that the application can still access its key material, but the network has no guarantee that the application or the underlying platform has not been compromised in any way.

The only assurance that the network may receive about the integrity of the application itself would come from an assurance (if this exists) that the application would only have been installed on a secure platform.

Application-only authentication may be required for non-security critical applications on the terminal where only a light-weight authentication is required, and where the terminal is not able to provide any additional assurances to the network. Applications authenticated using this method should not be granted full access to UICC functions and data, and should be considered only partially trusted. This should affect the security policy established by the network for the UICC for use with this application.

· ME platform authentication

ME platform authentication offers authentication of the terminal itself. As with application authentication, the terminal must be provisioned with key material with which it can authenticate itself. This key material is likely to be a public and private key with a corresponding certificate, since the terminal is likely to have to authenticate itself to numerous different entities.

The mechanism employed by the terminal to authenticate itself may vary from terminal to terminal, and a few different mechanisms to authenticate a terminal may need to be implemented in order to support this.

In the simplest case (simple device authentication), a terminal may simply demonstrate the knowledge of its private key, and this together with the certificate provided by the terminal manufacturer, or another suitable authority, can be used to authenticate the terminal. However, as with application authentication, this may offer the network little assurance about the current state of the terminal. Ideally, the device certificate will also contain information regarding the trustworthiness of the platform. For example, the device certificate could indicate that the certificate issuer provides guarantees that the terminal architecture is such that it cannot be put into an insecure state (e.g. the terminal supports secure boot, real time integrity protection of critical functions and/or OS mechanisms that ensure downloaded applications cannot compromise critical functions).

A better solution (device authentication with attestations) would be for the terminal to be able to also produce some evidence (attest) that it is currently in a secure state. Such requirements should be compatible with the TCG (Trusted Computing Group) MPWG (Mobile Phone Working Group) requirements (and the MPWG specifications when available) for secure mobile platforms and should include attestations of having successfully completed a secure boot. See the “Device Authentication” use case within the MPWG Use Cases document for a description of the use case in question
.Depending on the type of device authentication performed by the network and the trustworthiness of the device, the network may generate a security policy for the UICC to use with the authenticated device.

The operator should be in control over which entities shall be able to authenticate the device based on the provisioned credentials.

· Dual authentication

In order to obtain strong application authentication, the network may authenticate both the application and the ME platform, and may require assurance from the terminal that the application is in a good state.

In this scenario we assume that the application has been provisioned with key material with which it can authenticate itself. We also assume that some measurable state of the application (e.g. a value obtained by hashing the application code) is known by the network (or this may be contained in the application’s certificate).

The network begins by authenticating the terminal, and the terminal is required to present evidence of the current state of the required application. This evidence is compared to the measurable state in the application’s certificate (or to the state maintained by the network), and if these match, then the network considers the application to be in a secure state. The network also authenticates the application directly.

The methods for providing evidence of the state of an application should be compatible with attestations provided by TPMs (Trusted Platform Modules), as defined in the TCG MPWG specifications.

We note that it may not be necessary to authenticate the application directly if the network only wishes to ensure that the application is in a good state. However, there may be instances in which the network wishes to know that it is communicating with a specific installation of a registered application, and that the application has access to the correct key material.

Applications that have been strongly authenticated using this dual authentication method could be trusted by the UICC to a higher degree than those authenticated using a weaker mechanism, and this should in turn affect the associated security policy for that application in the UICC.

� � HYPERLINK "https://www.trustedcomputinggroup.org/groups/mobile" ��https://www.trustedcomputinggroup.org/groups/mobile�

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "x WGn" where �	x = "CT" for TSG CT, "RAN" for TSG RAN, "SA" for TSG SA, "GERAN" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "TSG x". �Examples: "CT WG4", "RAN WG5", "GERAN WG3", "TSG SA".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory necessary to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1214374856.doc
		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

If no valid key Ks is available in the UICC the terminal requests a complete GBA_U bootstrapping procedure run

4. Request for Ks_local generation

(NAF_ID, Terminal_ID, Term_appli_ID, UICC_appli_ID)

11. Application Answer

sent within HTTPS tunnel

(B-TID, Ks_local, Key Lifetime)

1. Request the current B-TID and corresponding key lifetime

BSF

UICC

Terminal

NAF

Key Center

2. Request for B-TID

 (NAF_ID)

3- Return B-TID

(NAF_ID, B-TID)

10. Checks Terminal_ID number,

Derives Ks_local from Ks_int_NAF

9. Authentication Answer

(Ks_NAF, Ks_int_NAF Ks_ext_NAF, Prof, Bootstrap time, key lifetime)

8. Authentication Request

(B-TID, NAF hostname, Terminal_appli_ID, UICC_appli_ID)

12. Stores Ks_local and associated Key Lifetime

6. Establishment of HTTPS tunnel between the terminal and the NAF Key Center

7. Application Request

for key establishment

sent within HTTPS tunnel

(B-TID, Terminal_ID, Terminal_appli_ID, UICC_appli_ID)

5. UICC retrieves Ks_int_NAF, derives Ks_local.

The UICC stores Ks_local-specific data

