3GPP TSG SA WG3 Security — SA3#44
S3-060668
Oct 31 – Nov 3, 2006
Ashburn, VA，USA
Source:
Huawei
Title:
Discussion of Multiple Ks_locals per Ks_int_NAF
Agenda item:
6.27
Document for:
Discussion and decision

1 Introduction
 In the current TS 33.110, whether a derived Ks_local is valid depends on not only Ks_local lifetime, but the value of Ks_local counter. So there is a possibility that this Ks_local becomes invalid long before the lifetime of the associated Ks_int_NAF and Ks expires. In this document, a kind of mechanism for deriving a new Ks_local reusing the old Ks_int_NAF and Ks is introduced.

2 Problem description and solution
In the current specification, Ks_local counter is defined to each key Ks_local in the UICC. Each time that the Ks_local is used for a cryptographic computation, the UICC shall decrease by one the associated Ks_local counter. Ks_local is invalidated when Ks_local counter reaches null value and a new Ks_local establishment procedure should be implemented. But if this Ks_local becomes invalid long before the lifetime of the associated Ks_int_NAF and Ks expires, the derived new key will get the same value as the invalidated Ks_local, as the parameters (i.e., Ks_int_NAF, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID) keeps unchanged.

For example, it is assumed that a key Ks_local1 is derived from Ks_int_NAF1and Ks_local1 becomes invalid while Ks_int_NAF1 still valid. A new key Ks_local2 will still be computed on Ks_int_NAF1 because it is still available on UICC, according to current Ks_local establishment procedure. And if all the other parameters also keep unchanged, the new key Ks_local2 will get the same value as Ks_local1. To avoid this problem, there are two possible solutions.
2.1 Solution 1:
 Once a Ks_local becomes invalid, the associated Ks_int_NAF and Ks is deleted correspondingly. UICC shall store B-TID of Ks along with Ks_local in order to know which Ks shall be deleted if Ks_local is established per application in which case more than one Ks_locals are derived from one Ks_int_NAF at one time.
However if Ks_local is used very frequently and Ks_local counter reaches null value in a very short time, Ks updated procedure will be implemented frequently and it can not be used efficiently.
Another possible problem with this solution is that if a key Ks_local1 is deleted from terminal for some reason such as power down, a new Ks_local establishment procedure will be initiated by terminal. In this case, no Ks_local counter value check procedure is implemented and the old Ks will not be deleted. So a Ks_local2 will still be derived from old Ks_int_NAF and have the same value as old key Ks_loca1l. Then the Ks_local2 "Ks_local counter" will be set to a default value again (The maximal value), which will enlarge the times that Ks_local1can be used actually.
2.2 Solution 2:
A variational value is introduced as a parameter to compute Ks_local. This variational value can be produced by terminal, and then sent to UICC and Key Center before each new Ks_local is derived. The variational value can be a random value or just a timestamp. Take random value for example, terminal can produce a random value RANDk and send this RAND to UICC in the Ks_local derivation command. Then UICC computed Ks_local as Ks_local = KDF (Ks_int_NAF, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID, RANDk).

Terminal also need send this RAND value in the "service request" message to the NAF Key Center. Then NAF Key Center also computed Ks_local as Ks_local = KDF (Ks_int_NAF, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID, RANDk).
Thus different Ks_local can be derived from the same Ks_int_NAF. And all the problems described above are resolved.

This solution make sure that a new bootstrapping procedure need not have to be implemented until the lifetime of old Ks expires, which decrease unnecessary rounds on Ub reference point as possible as it can.

2.3 Comparison
Compared with solution1, solution2 has the following advantages:

1) If solution1is used, frequently complete GBA procedure over Ub reference point will be initiated, especially when Ks_local is used frequently and corresponding Ks_local counter reaches NULL in very short time. Implementation of complete GBA procedure will not only add burden to UE and network resource, but also prolong the time to establish a Ks_local. However, if solution2 is used, complete GBA procedure over Ub reference point is initiated only when the lifetime of Ks and Ks_int_NAF expires or will expires soon, which will not only save UE and network resource, but also save the Ks_local establishment time.
2) Solution1 can not work in some scenarios, especially when terminal loses Ks-local before counter value reaches null. Solution2 can work well in all scenarios.
3 Proposal
We suggest Ks and Ks_int_NAF can be reused to derive multiple Ks_locals during the lifetime of Ks to get better efficiency. And solution2 is proposed to solve this issue since it is very easily to implement. A CR is attached, we hope SA3 agree it.

