​3GPP TSG SA WG3 (Security) Meeting #45 S3-060629
Ashburn, USA, 31 Oct- 3 Nov 2006

Title:
Ks-models for GBA push solutions

Source:
Siemens Networks, Nokia

Document for:
Discussion/Decision

Agenda Item:
6.9.5

1 Introduction

One of the issues caused by using GBA push in parallel with UE-initiated GBA, is that Ks race conditions may cause inefficient flows or lead to failures. This contribution lists the possible Ks models for GBA push and evaluates (dis-)advantages & impacts. Section 2.1 lists the UE-initiated GBA definitions and requirements, and the GBA push solution requirements. Section 2.2 categorizes the different Ks models for GBA push. In section 3 we make a start in comparing the advantages and disadvantages of the different Ks models. We do not yet aim at a decision in favour of one of the models yet, as we feel more work needs to be done.

2 Ks & NAF key usage models for GBA push

2.1 Definitions, assumptions and requirements.

Key derivation properties for UE-initiated GBA:

1. Only one Ks is valid at a certain point in time in the UE.

2. From a Ks, keys can be derived for multiple NAFs (key separation as each NAF has another NAF_Id).

3. NAF specific keys are useable until lifetime expiry (when not deleted before) although the corresponding Ks may have been replaced in the UE and the BSF.
GBA push requirements:

1. A GBA push solution shall support GBA_U capable and non GBA_U capable UICC's.

2. A Ks generated via GBA push shall be useful to derive NAF specific keys for use towards Ua applications on the UICC and Ua applications on the ME.

NOTE: Backwards compatibility issues between UICC, ME and BSF have to be investigated together with the impacts that are needed to support GBA-push for Ua applications.

A push NAF is defined as a NAF having implemented GBA push and abbreviated pNAF in this contribution.

2.2 Proposed categorization/terminology for GBA push

NAF key derivation alternatives for GBA push

1. From one Ks, only one NAF key (related to one NAF_Id) is derived i.e. single NAF key generation model.

2. From one Ks, multiple NAF keys for all NAF_Ids can be derived i.e. multiple NAF key generation model.
3. From one Ks, NAF keys for one NAF_Id DNS name can be derived (but for multiple Ua applications on that NAF) i.e. multiple Ua/single NAF key generation model.

TS 33.220 allows multiple normal NAFs to reuse the same Ks during its lifetime, while if the GBA push in the single NAF key generation model (as defined above) is applied also to TS 33.220, then it would restrict the amount of derived NAF keys from one Ks to one. In such a model the push NAF always requests a new Ks to be generated when the NAF key lifetime is expired. In a single NAF key generation model the Ks does not need to be retained in the BSF or the UE as there is no re-use of Ks (in viewpoint of GBA push). If the re-use of Ks as in TS 33.220 is also applied to GBA push, then it may lead to race conditions as discussed below.

Independently of the NAF key derivation models above, the pNAF can decide on the re-use of the NAF specific keys, but the re-usage of NAF specific keys is a separate discussion and not part of this document.

Ks sharing properties (in the UE)

In order to avoid race conditions between GBA flows initiated by the UE and initiated by the NAF, it may be useful to design GBA push such that undesired Ks replacements are avoided. One such a solution is to require the handling of more than one Ks in the UE and the BSF.

Definition of Ks race condition: A race condition between GBA flows is, if two or more key generation process conflict with each other in the BSF or UE i.e. if the corresponding Ks-keys are overwritten, before they could be given out to the requesting NAFs or could be used in the UE.
The text below is described under the assumption that GBA push would be finalised in Rel-8. If however GBA push would be finalised in an earlier release, then the same model classification and feature support is still valid but shifted with one 3GPP release.

Basically following cases can be distinguished:

A) Single-active-Ks model:

Definition of Single-active-Ks model: UE initiated GBA and GBA Push are both used to establish a single Ks, which is stored in the BSF and UE. Once this is done, this single Ks can be used to establish both UE initiated and NAF initiated NAF specific keys.

Rel-6/7 GBA according to TS 33.220 (i.e. UE initiated GBA) belongs to this category. The UE has one Ks for which NAF Key derivation is possible i.e. there is only one active B-TID for NAF key derivation, but there may be many NAF keys on Ua-application level (some of them with 'older' B-TIDs).

Ks re-use discussions for GBA-push (section 1 of the paper S3-060617) starts from that model and conclude that the 'simplest'-approach would be that always a fresh Ks shall be used for GBA push.

During the email discussion captured in S3-060617 an error case was mentioned (see also Annex A of this contribution). If the BSF would be changed for UE-initiated GBA to retain more valid Ks's in the BSF (in order to counteract the Annex A problem) than only the last created then we still categorize this under the Single-active-Ks model. A Rel-6/7 GBA capable UICC only can manage a single active Ks.

B) Multiple-active-Ks-model

Definition of Multiple-active-Ks-model: Solutions whereby at least two distinct active Ks's can be created/managed in the UE and the BSF at the same time i.e. one for UE-initiated GBA and one or more for GBA-push.

This is not part of TS 33.220 and support can not be expected by Rel-6/7 UICC's and MEs. Such solutions could avoid –per design- interactions between UE-initiated GBA and GBA-Push on Ks-level (i.e. avoid race conditions which might lead to failures or inefficient flows).

Note:
If the NAF desires multiple keys for it’s usage, then it always has the possibility to derive from the Ks_(ext/int)_NAF sub-keys. Such functionality is independent of GBA Push or UE initiated GBA usage.

3 Impacts

3.1 Multiple-active-Ks-model

In this model the UE shall be able to maintain a Ks for UE-initiated GBA and at least one for GBA-push. Consequently the UE shall be able to distinguish a bootstrapping via GBA push and one that is initiated by the UE. Both requirements create impacts on the UICC for GBA_U and on the ME for GBA_ME. Note that in case the UICC is GBA_U aware then GBA_U will be executed.

The main advantage of the Multiple-active-Ks-Model is that there will be no effects of UE-initiated GBA on GBA-push Ks's and vice versa, since the two are treated seperately.

In this model it has to be analyzed whether multiple NAF key generation (i.e. from one Ks, multiple NAF keys for all NAF_Ids can be derived) is allowed or shall be restricted to single NAF key generation. In the latter case it can be questioned whether the Ks shall be maintained on the UE, and if not, this would rather belong to a Single-active-Ks model. In the next section under the name 'Forget Ks when creating NAF keys (and do not affect UE-initiated GBA)' we discuss Ks interactions.

3.2 Single-active-Ks model

If the effects of GBA push on UE-initiated Ks management would be acceptable
 then this Single-active-Ks model would be the model of choice as the impacts to realize a GBA push solution are less then in a Multiple-active-Ks model. But to split the two GBA types and have a Multiple-active-Ks model seems to be a cleaner solution as it avoids Ks interactions between both types. Choosing a single NAF key generation model in a single-active-Ks model will create the maximum possible Ks-interactions (i.e. only one Ks is created and from that only one NAF key is derived, this lead to a larger need for authentication vectors).

One solution that has been brought forward during discussions on the SA3-email list is a so called 'Forget Ks when creating NAF keys (and do not affect UE-initiated GBA)' concept. The goal is again to avoid Ks interactions. We show below the impacts:

The 'Forget Ks when creating Ks_NAF for GBA Push (and do not affect UE –initiated GBA)' concept
 works as follows: The BSF is modified such that GBA_PUSH_INFO and NAF specific keys are created when requested by a NAF via the Zn-reference point for GBA push. The BSF does not replace the Ks of a UE–initiated bootstrapping (i.e. key seperation between normal GBA and GBA push). The NAF (or the BSF) then sends the GBA_PUSH_INFO to the UE.

For GBA_ME, the AUTHENTICATE command in 3G security is used (The ME can only use TS 31.102 specified interfaces specified in Pre-Rel-6). The GBA application in the ME retrieves the CK, IK and would need to be modified in order to handle the resulting Ks transiently for GBA push. The GBA application in the ME would need to be informed of handling GBA push or have enough information to distinguish the two cases.

For GBA_U, a similar indication would be needed for UICC's to separate the two cases. So there is impact for GBA-capable UICC's and MEs. And if there is impact in the UICC and ME, we could as well analyze impacts of Multiple-Ks-models. UICC and ME as defined by TS 33.220 will not be able to support additional functionality for GBA push, so belong per definition to the Single-active-Ks model.

3.3 Overview table

	
	UE impacts
	Single NAF Key generation for GBA push
	Multiple NAF key generation for GBA push

	(A) Single active Ks model
	No impacts: Supported by Rel-6/7 UICCs
	Supported, but increases failure probability on GBA level
	Supported, but increases failure probability on Ua application level using GBA push

	(B) Variant: Forget Ks when
….
	UICC impacts for GBA_U (Ks management).

ME impacts for key derivation source code.
	Avoids race conditions on GBA level
	Excluded

	(C) Multiple active Ks-model
	UICC impacts for GBA_U and ME (key management/storage).
	Possible
	Possible

4 Conclusions

This analyses needs to be progressed further on following aspects.

a) In a single-active-Ks model we need to assess the severity/errors of the suboptimal flows when executing GBA push and UE-initiated GBA at nearly the same time against the advantages.

b) In the multiple-active-Ks model, the gains, impacts and backwards compatibility issues have to be further analysed. This also applies for the disposable Ks's model.

Annex A: Description of Zn (transient) failure due to B-TID unknown.

Following error case was brought forward by Nokia during the GBA Push discussions on the SA3-email reflector which was captured within S3-060617. We believe that this case will rarely happen and corrections are seen as not essential. The suggested correction was that the BSF would maintain all Ks's until lifetime expiry.

Description: The UE contacts the NAF1 and generates keys for NAF1. Then the UE contacts NAF2 and generates NAF2 keys. Then NAF1 requests then keys from the BSF, but the old key keys could have been overwritten due to NAF2 having initiated a new GBA run.

Analysis: The UE initiates a new GBA-run (B-TID2) after handling NAF1 (B-TID1) and starting the request to the NAF1 over Ua. One possible reason is that B-TID1 lifetime was about to expire. It is very likely that the GBA-run takes much more time (HSS involvement) then the Zn/Ua request such that the B-TID1 request at the BSF should arrive in most cases earlier at the BSF. So this out-of-order case should be very rare. This error situation will be signaled back to the UE, such that the most recent B-TID2 will also be used for NAF1.

The suggested correction was to increase the BSF-database such that it would maintain all Ks's until lifetime expiry is not necessary. Temporary caching of old B-TIDs may be possible but should not be mandated by standards for a transient, rare case. Anyhow the situation corrects itself: If B-TID1 is unknown in the BSF, then the Ua request will fail and the UE will re-request by using B-TID2.

� The effects could be acceptable if the chance to happen would be rare, or if interactions would not create (permanent) failures e.g. The UE initiated GBA replaces the Ks-generated by GBA-Push before the latter Ua-application can use it (i.e. UE initiated GBA would take precedence) Also the load effects on the BSF have to be analyzed for suboptimal signaling cases.

� No Ks re-use per definition i.e. Single NAF key generation model.

� Could also be called disposable Ks

