3GPP TSG SA WG3 Security — SA3#45
S3-060617

31 October - 3 November, 2006

Ashburn, USA

Source:
Ericsson, Nokia, Siemens

Title:
Background doc: Email discussion on GBA Push

Agenda item:
GBA
Document for:
Information

Introduction

In SA3#44 it was decided to hold an email discussion on the subject of GBA Push to progress the issue before the SA3#45 meeting. The discussion was recorded in a living word document that was communicated on the 3GPP SA3 mailing list. Below is the last version of the discussion document to be used for future reference.
We make no distinction between GBA_ME and GBA_U, since whenever it is possible to establish a Ks_NAF, it is also possible to establish Ks_int_NAF and Ks_ext_NAF.

1. Re-use of Ks
Let us first assume that there is no distinction between Ks:es that are used for push cases and Ks:es that are used in the non push case. Then the principle is that there is only *one* Ks stored in the UE and the BSF. If this is the case, problems can occur.

The UE has lost the Ks (e.g., due to power down) while the BSF still has this Ks active
. A NAF requests a Ks_NAF and gets one based on that particular Ks (i.e., the Ks is re-used). If the NAF now sends a push, the message will not be accepted by the UE as the UE cannot access the used Ks. Furthermore, there is no way for the UE to re-establish the same Ks again as the replay protection provided by the AUTN will stop such attempts. In most push use cases it is expected that the UE provides some form of response, which would allow the NAF to detect the deadlock. [Nokia] If the UE has a return channel to the NAF, then the NAF would not be a pure broadcast NAF. Besides, if the UE can contact the NAF, then it is very likely that there is also a connection to the BSF and then there is no need to use GBA Push, but normal GBA can be used.
[Ericsson]:

First of all, as we have always believed, GBA Push should work even if there is a return channel. Broadcast-only NAF is not the only use case for motivating GBA push as we have seen in the LS from OMA in S3-060043. One of our reasons for GBA Push was to enable a server to securely initiate a session with a UE in a way that would not open up for a DoS attack against the BSF.

Of course normal GBA could be used to establish the return channel keys, but this can be more efficiently solved by the re-use of Ks_NAF as discussed below.
[Nokia] Sure it should work if there is a return channel, but it should also work if there is none. The “no-return channel” is the third requriement in S3-0600043. I copy that one here:

“The mobile client SHOULD preferably not have to contact any network entity to be able to generate the security association and check the message.”
We think that GBA Push should enable may use cases and be used for as many cases as possible to avoid later on another network function with a very similar function. Hence, if we have two approaches and one approach solves a larger range of use cases, then it seems a better approach to take that covering-more approach, else we end up specifying later add-ons.
If normal GBA can be used, then we think it should be used, since not all operators will have GBA push and also with regard to efficiency, the re-use introduces some more complexity that may outweight the gain.
[Siemens]: I agree that GBA Push should enable as many usecases as possible but lets first try to better understand the usage in specific circumstances. In order to evaluate gains/complexity we need to analyze the known usecases more. Some very specific problems will arise for pure broadcast usage of GBA push i.e. when the location of the UE is unknown (non registered user): Question: How to address the specific user (privacy), where to broadcast the message. You may argument that GBA-push should not solve some of these specific problems (location), but at least we should document the assumptions a solution is build upon. For instance, should the GBA-push message be broadcasted in the complete network to update some information of one particular UE? Such usage of GBA-push may be impractical for frequent usage. But for rare usage the single AV per GBA push may be tolerated (the assumption is that uplink is never there for pure broadcast).
a.
If so, the NAF must be able to initiate a new bootstrapping session based on a fresh Ks. In case the UE does not provide a response to the NAF, the deadlock is undetectable, which is a serious disadvantage for re-use of Ks. (This situation can also arise in the case where the UE performs UE initiated bootstrap right after the NAF has requested Ks_NAF, but before the NAF has use the Ks_NAF).

Conclusion: It should be possible for the NAF to request a Ks_NAF based on a fresh Ks.
[Nokia] It seems on this point we have a common view.
b. If the NAF initiates a fresh bootstrapping session (i.e., based on a fresh Ks), the BSF discards the previous Ks and installs the new one as the current Ks. [Nokia] In TS 33.220, end of section 4.5.2 the ks is only stored in the BSF untill it is updated. It would probably be best, if the BSF could store the keys (all Ks) for the whole duration of their lifetime and not delete or overwrite them, when a new Ks is established. . But this problem is not GBA Push specific
, but should be considered for GBA in general.
[Ericsson]: We agree that GBA in general might benefit from storing several Ks:es like this, but we have assumed that the BSF for storage efficiency reasons, just should have to store one Ks per user.
[Nokia] If the UE contacts the NAF1, and the UE generates keys for NAF1. Then the UE contacts NAF2 and generates NAF2 keys. Then NAF1 requests then the keys from the BSF, but the old key has been overwritten.
[Siemens]: If both NAF keys base on the same B-TID, then there is no problem, as the NAF2 key is generated on the same Ks. So our interpretation of your text is that the UE initiates a new GBA-run (B-TID2) after handling NAF1 (B-TID1) and starting the request to the NAF1 over Ua. One possible reason is that B-TID1 lifetime was about to expire. It is very likely that the GBA-Run takes much more time (HSS involvement) then the Zn/Ua request such that the B-TID1 request at the BSF should arrive in most case earlier at the BSF. So this out-of-order case should be very rare. It is doubtful if this out-of-order case warrants an increased BSF-database (Temporary caching of old B-TIDs may be possible but should not be mandated by standards for a transient case). Anyhow the situation corrects itself: If B-TID1 is unknown in the BSF, then the Ua request will fail and the UE will re-request by using B-TID2.
Now, if the push message is lost in transport and if the UE already had a UE initiated bootstrapping session established, the UE and the BSF will get out of synch w.r.t. the Ks.

[Nokia] The push then did not work in that case, so either a new push or a new normal gba session has to be done. But as Marc pointed out, the new “try” then corrects the situation. I’m not sure I see what you mean here, do you mean that if Ks that was used to generate Ks_NAF for GBA push is not fresh but re-used, there is no quarantee that the Ks_NAF is usable in the UE. This might be because the transport of the GBA push message takes too long, and new Ks has been formed using UE-initiated GBA. This can be avoided if fresh Ks is used for GBA push.
[Siemens]: For the question above (I.e. do you mean….). My aim was to clarify two issues

a) Network handling issue: I wanted to challenge the always-fresh-approach as the sole and only possible solution. As i wrote in my earlier comments, If the NAF always contacts the BSF for GBA-Push then there is no need to use always a fresh Ks for GBA_push. The BSF should be able to control/decide fresh versus re-use cases.
b) UE-handling issue: Even if you take a fresh AV per GBA push, still the NAF key derivation might be impossible. If the time between the Ks creation and the Ks_NAF derivation takes too long, then there is a (small) risk that a new Ks has overwritten (e.g. by UE initiated GBA) the former one. In that case the intended Ks_NAF cannot be created in the UE. Note that i assume that there are two messages needed for a NAF where the first does not contains any NAF-ID.
1) GBA_PUSH_INFO contains the AV and related identifiers for GBA push
2) The actual message that needs protection referencing (i.e. B-TID) the former one.

Conclusion: The property that the push and non-push cases compete for the same resources leads to synchronization problems. If the BSF stores the Ks for the whole lifetime, then we should avoid the problem.
[Ericsson]: Yes, we agree that this would have the same effect on the synchronization issues, but note that it is still necessary to have a separate Ks for each every NAFpush (under the assumption that Ks_NAF is not re-used for several push messages).
[Nokia] It seems logically, that the BSF stores the B-TID, Ks, key lifetime and possible GUSS. The assumption we agree upon.
In summary, the a and b cases above show that keeping only one Ks for both UE initiated and NAF initiated bootstrapping leads to serious problems. [Nokia] Should this be corrected, in other words, that the BSF stores the Ks for the whole key lifetime, for R6 also?
[Ericsson]: We need to discuss this, but it can maybe wait until later.
[Nokia] Well, if this really needs fixing in TS33.220 (because it is decided to be a general cause of failure), then we should do it as fast as possible, if we decide that this is GBA Push specific, then this has more time.
[Siemens]: See before: Is fixing really needed in Rel-6 ? This is not a case of serious misoperation.
Conclusion: A separation of Ks:es into UE-initiated and NAF-initiated would be preferable.
[Nokia] This does not seem necessary, when the BSF remembers the keys.

[Ericsson]: See conclusions to bullet d below.

So, in the following we assume that there is one Ks for UE initiated and one Ks for NAF initiated boot strappings. The problem b is no longer an issue, but the problem described in a and its conclusion are still relevant. A problem that remains to be solved (and which obviously also is valid in the case when there only is *one* Ks) is:

c. Assume there are two push NAFs (NAF1 and NAF2), that wants to initiate new boot strapping sessions. NAF1 requests a re-use Ks_NAF1 based on the "current Ks" in the BSF. Next, NAF2 requests a Ks_NAF2 based on a fresh AV

[Nokia] Marc, you probably point out the broadcast traffic keys, but here gba is only used for long-time keys and the actual short-time traffic keys are protected with the long term keys and send along.
[Siemens]: Well this again is about assumptions and specific usecases: But it seems your tending towards infrequent usage of GBA_Push from one NAF (as a restriction for the design?)
and immediately sends the push message to the UE. The UE stores the new Ks and deletes the old one. Now, NAF1 sends its push message based on the previous Ks
.
[Nokia] Marc, I don’t get the question here, do you argue that the NAF should always go the BSF to get the latest Ks_NAF (and not trust its local copy of Ks_NAF) even though Ks_NAF has not changed (i.e., Ks is re-used). YES Can you help me here a bit, what you actually do :-) Since, I’m not completely sure to understand your problem, may it be that it is no longer an issue, when the Ks are stored in BSF?
[Siemens]: First I assume that you mean that there two separate Ks's i.e. UE-initiated GBA and GBA_Push Ks both in the UE and BSF (cfr. Your last question).

In the always-fresh model both push NAF's shall always contacts the BSF. This can be done more optimal in viewpoint of AV-consumption: The BSF can control the reuse of Ks and hand-over both NAFs the same GBA_PUSH_INFO. Sending GBA_PUSH_INFO the second time is then to increase reliability.
The UE cannot accept the message, since it cannot re-establish the previous Ks and derive the corresponding Ks_NAF2. [Nokia] The application in the UE would not try to re-use the old Ks, but the application in the terminal would re-use the Ks_NAF2 key directly.
[Ericsson]: This will unfortunately not work, since the UE has never created the Ks_NAF1.
[Nokia] This is not outlined in the specificationTS33.220, since this is terminal internal architecture. The NAF2 application in the terminal gets the push and goes to the gba module in the terminal and gets the ks-naf2. Then the NAF1 pushes to the keys to the UE and the gba module deletes the old Ks, derives the ks-naf1 and gives it to the naf1 application in the terminal.
d. Finally, let us consider the case that a Ks established by a push message is reused by the UE to setup a secure connection to another NAF than the one pushing the Ks. Also in this case there is a risk that the UE and the BSF are out of synch as the BSF might have received a new request for a push KS_NAF based on a fresh AV and the corresponding push message might not have reached the UE. [Nokia]The best way out of this is not to re-use the Ks.
[Ericsson]: So you agree that Ks should not be re-used for push?
[Nokia] yes. But we should consider that the Ks establised using GBA push may be re-used by other NON-GBA push NAFs (normal NAFs).

Conclusion: The simplest solution is to use a fresh Ks for each NAF initiated boot strapping. The question regarding who decides whether re-use of Ks is allowed becomes a non-issue.
[Ericsson]: For clarification, if all Ks:es are stored in the BSF, it has the advantage that the UE can re-use any of the Ks:es when contacting *any* NAF.

Discussion conclusions:

1. Ks should never be reused for Push [Nokia] ok
2. Either the BSF stores all Ks:es (for their lifetime) [Nokia] That would be our preference. or they should be thrown away after creating Ks_NAF. In the first case the UE can reuse any Ks for establishing a session with any NAF. (In latter case the UE only needs to store the Ks with the longest lifetime, but all Ks_NAFs still need to be stored though).

Re-use of Ks_NAF for push
As discussed above, the re-use of Ks:es should not be allowed. If a NAF wishes to re-use the Ks_NAF is a separate issue. Accepting the principle of no re-use leads to the situation that each Ks_NAF is based on a unique Ks, and thus there is no reason for the UE to store the Ks it is based on
. [Nokia] Immediate, may become pretty long, when the user is switching off his phone in between or doing similar things. However, to enable the NAF to push more than one message based on the same Ks_NAF, it is necessary for the UE to store the Ks_NAF for each NAF for as long as it is valid (the life-time of the Ks_NAF is defined as in the normal case, even though the underlying Ks is no longer present). This naturally requires replay protection of the push messages.

A NAF may set a shorter lifetime for a Ks_NAF in a NAF initiated boot strapping session. However, there is no real benefit for the NAF of informing the UE about this, since any connection based on that Ks_NAF between the NAF and the UE is initiated by the NAF. The NAF would simply not use the Ks_NAF after the lifetime has expired. If the lifetime of the Ks_NAF is very long, and the NAF knows that it will only use the key for a short while, it might be beneficial for it to inform the UE about the short lifetime, but this would mainly serve the purpose of allowing the UE to efficiently manage its key storage.

Conclusion: To allow the re-use of a push Ks_NAF, the UE must store it for the duration of its lifetime, even if a bootstrapping from another NAF is made. [Nokia] The GBA Module that handles the Ks and the key derivation hands over the Ks_NAF to the application in the terminal. This can happen for several applications and each application would store “their” keys and use it. Moreover, it does not seem to make sense for the NAF to inform the UE about a shortened lifetime for security reasons. [Nokia] If the UE would contact the NAF with invalid credentials, then the UE would just bootstrap again. If a GBA Push NAF decides (e.g. due to local policy) that the UE should have new keys, then he just pushes the new keys.

Multiple keys needed by NAF
There may be a need to use more keys than one to protect a push event e.g. the push message it self, and possibly responses from the UE.

We see two possible solutions on how to derive several “push keys”, either the NAF requests the number of keys it requires from the BSF, telling the BSF about each protocol the key is intended for. The second case would be to request one key using the protocol ID of "GBA-Push" and afterwards let the NAF derive the keys needed (similar to how MBMS requests and uses Ks_NAF). [Nokia] This seems like a very specific application need and may be application implementation specific. One could envision also this kind of scenario for a large enterprise key system e.g. enterprise derives sub-keys from the keys received by the BSF e.g. hash(users password, Ks_whatever).

[Ericsson]: It seems likely that basically any application will need more than one key, and therefore we believe that there should be a mechanism to provide several keys for an application. For example, the push message it self will need an integrity key and an encryption key, and then there is a need for application specific keys. The latter keys can be derived, e.g., as you propose.
[Nokia] The easiest way would be, if the application derives the keys for themselves (in the terminal and in the NAF) based on the Ks_(ext/int)_NAF. The easiest method is just to throw the Ks_NAF together with some application specific stuff into a hash function and to use it. I don’t see the need, why we should impact Zn and BSF for this.

We believe that the second case, i.e., let the NAF perform the key derivations, is the better approach, since it gives more flexibility and ease of use.

Combined Push NAF and regular NAF

As mentioned in SA3#44, it may be beneficial to combine Push NAF and regular NAF functionality in the same location. By the conclusions drawn above, such a combined NAF would not be able to function with the use of a single Ks_NAF. In other words, in case a NAF wishes to have both push and regular NAF functionality, the NAF needs to get both a NAF-initiated Ks_NAF and a UE-initiated Ks_NAF from the BSF. [Nokia] It would be good to see, why a NAF would want both.
[Ericsson]: Since we assumed that the Push Ks would never be stored in the terminal, the terminal might need to do a regular GBA bootstrapping to contact the NAF to establish a return channel. An example application is the location tracking application mentioned above.

Note that this does not exclude the case that a NAF-initiated Ks_NAF is used by the UE to establish a secure connection with the NAF, i.e., using the Ks_NAF to derive a response key as mentioned above.
Summary
1) For simplicity and reliability reasons it seems better if an existing Ks is not re-used, i.e., whenever a NAF requests a Ks_NAF with accompanying data, it shall receive data based on a fresh AV. Also, NAF initiated bootstrap shall not influence the UE initiated boot strap. [Nokia] That seems a good way forward.

[Nokia] The multiple Ks model, seems to be a separate use case, hence should not touch this re-use Ks question. Beside in the impression is that the reuse of Ks does introduce quite some issues.
[Siemens]: In order to avoid confusion we need to agree to some terminology, otherwise 'the Multiple Ks-model' wording may be confusing. Here is my understanding, new terminology proposal and some explanations:

Single-active-Ks model: Rel-6/7 GBA according to TS 33.220. The UE only has one Ks for which Ks_NAF derivation is possible i.e. there is only one valid B-TID, but there may be many NAF keys on Ua-application level (some of them with 'older' B-TIDs). Ks re-use discussions for GBA-push (section 1) start from that point and conclude that the 'simplest'-approach is that always a fresh Ks shall be used. The proposed Rel-6/7 BSF-change to retain more valid Ks's than only the last created one to cover a transient case failure, still belongs to this model. A Rel-6/7 GBA capable UICC only can manage a single active Ks.
Multiple-active-Ks-model: Solutions whereby at least two distinct active Ks's can be created/managed in the UE i.e. one for UE-initiated GBA and one or more for GBA-push. This is not supported by Rel-6/7 UICC's. Rel-8 ME implementation can more easily be adapted to manage multiple (but only for GBA_ME runs) created Ks's. Note that the goal is to avoid interactions between UE-initiated GBA and GBA-Push on Ks-level (race conditions which lead to failures).
- For GBA_ME runs and always fresh GBA AV-pushes (i.e. single Ks and Ks-NAF usage), the Ks storage for push in the BSF could be avoided (and also in the ME) i.e. Forget Ks when creating Ks_NAF (and do not affect UE –initiated GBA). So the always fresh push in case of GBA_ME can be fitted into a Single-active-Ks-model. However our goal in mind to avoid interactions between UE-initiated GBA and GBA-Push on Ks-level, two separate active Ks's are possible (one for UE-initiated GBA and one shared between Push-NAFs).
- For GBA_U runs however we are unable to change Rel-6/7 UICCs (Also the Forget Ks when creating Ks_NAF does not work) hence these belong to the Single-active-Ks model, while some changes are needed in Rel-8 UICC's either to support Forget when creating or manage multiple Ks's.
2) To improve efficiency in cases when a NAF continuously sends push messages, it seems prudent to allow re-use of Ks_NAF. For example, a NAF implementing a location tracking service may push requests for the location of a unit at regular intervals. In these cases re-play protection is required. [Nokia] This seems very focused on some specific application scenario, also the approach outlined by Stefan may solve the problem. So, maybe it is best to leave the actual way of solving to the application implementation.
[Ericsson]: We don't think that the application scenario is very specific. If the replay protection is not defined by GBA, every application needs to define it them selves, and that seems awkward.
[Nokia] If the application is of the type that is requires this constant change of keys, then it should have key layers, similar to MBMS, with derived subkeys of shorter life time that are protected by long-term keys.

Shorter lifetimes set by the NAF are not a security issue in the push case, and it is questionable if it adds any features.
3) To align with the non-push case and for simplicity, the most obvious approach for the NAF to derive multiple keys (if it is needed) is to derive them from the Ks_NAF. Note that there should be no differences in key derivation principles for GBA_U and GBA_ME. The protocol ID to be used when deriving a push Ks_NAF should be "GBA-push" and not a per-security protocol basis. [Nokia] The multiple keys may be useful for some application scenarios, but there should be a clear idea about the use cases before we start designing a solution for it. Just to avoid that we “miss” the target.
[Ericsson]: We believe that the key derivation and the push message format should be standardized. But of course we need to agree on the use cases before this can be done.
[Nokia] Another use case, may also be enterprise security, where subkeys are derived from the Ks_NAF keys for whatever usage (one-time token, etc). There are many potential cases, but I’m not sure that we should standardize something, since it can be handled by the NAF and the corresponding NAF application in the terminal.
�A bit puzzled by the meaning of the sentence). The assumption is that whenever Ks_NAF is written in the text below, it should also be possible to interpret this as Ks_ext_NAF

But there are some differences in the evaluation of the ‘problems’ that occur for GBA push in the GBA_U and GBA_ME case. Considering GBA_ME equal as GBA_U is too much simplified. Further comments will clarify this.

�(Here is the first difference for GBA_U: a Ks is retained on a GBA capable UICC on power down of the ME: So the loss problem does not occur for GBA_U). The Ks_xx_NAF can be rebuild as long as the right Ks (B-TID identified) is available in the UICC. This issue of synchronization is covered in b.

�Does this mean that for the OMA usecases UE Initiated GBA should be used ?

Looking at S3-060043: Reply LS from OMA on GBA push solution, this LS does not contain pure broadcast usecases.

�Can it be explained how this is a problem for UE –initiated GBA ?

�The UE initiated use of GBA will correct this situation in disadvantage for push.

The conclusion is that the requirement for Push NAFs always to initiate a fresh Ks (and use it without contacting the BSF) does not very work well together with the model of ‘only one Ks in BSF’. In addition Ks_NAF reuse in push NAF may lead to even more problems.

However if the NAF would always contact the BSF when wanting a Key then the latest Ks could be reused as well.

�Up to now there was no requirement that “use old” or “always fresh” is signaled over Zn. This introduces new problems.

A NAF requesting “fresh key” must do this for every access to BSF, as it cannot know if other NAFs requested keys in between. On the other hand, if the NAF is required to contact the BSF before every single push message, then a service delivering e.g. 1 message per minute uses up 60 AVs per hour.

�This implies that a push_NAF should always go back to the BSF in order to base the immediate push on the latest push Ks (similar as the solution for providing some reliability for the one Ks model). A Push NAF should not buffer GBA_PUSH_INFO and reuse Ks_NAF without contacting the BSF. In this case race conditions may still be possible although hopefully sufficiently rare.

�Multiple Ks’s , one for each push NAF.

A solution is needed for GBA capable UICC to deal with this situation.

With multiple push NAFs (and non immediate use of the AV from the NAF) AV resynchronization may occur more often then in the model with Ks reuse. This can be avoided by introducing a rule that Ks_NAF is immediately derived for GBA_Push.

�Where does this requirement come from? It is a deviation from current GBA concept, currently Ks_NAF secures a bidirectional channel i.e. does not know two Ks_NAFs for the same NAF-UE connection at the same time.

Or is this only related to protocol identifiers? Then it should be stated.

�This is worth to study compared to the Ks-reuse case.

But the multiple Ks-model will create impacts in the UICC unless we restrict GBA_Push for GBA_ME only (But this latter would exclude possible usecases). This means that we have to analyse the use of unaffected UICC’s in any case (and single Ks reuse model).

