
3GPP TSG CN WG5
Document

e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CR-Form-v4

CHANGE REQUEST

(

29.198-3
CR

(

rev
-
(

Current version:
4.4.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

Core Network
X

Title:
(

Encryption of challenge in CHAP-based OSA authentication

Source:
(

Alcatel

Work item code:
(

Date: (

06-04-02

Category:
(

F

Release: (

Rel-4

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

TS 29.198-3 relies on the use of a challenge-based mechanism (CHAP as per IETF RFC 1994) for authentication of the client application by the framework, and vice-versa. CHAP is chosen as the authentication scheme when the authentication type in the initiateAuthenticate() method is set to P_OSA_AUTHENTICATION.

The overall authentication phase works as follows:

the client first uses the initiateAuthenticate() method to set the P_OSA_AUTHENTICATION scheme (ie CHAP).

with the selectEncryption() method, the client application and the framework agree on a symmetric encryption function to be used to encrypt the challenge sent from the verifier to the claimant.

the framework can then use the authenticate() method to pass an encrypted challenge string to the client, using the encryption algorithm (DES, triple DES) negotiated in the previous step. Encryption of the challenge string is done thanks to a secret key which must a priori be shared between the client and the framework (out of scope). The client must then decrypt the received encrypted challenge and generate a response based on the decrypted challenge and a secret shared with the framework. The client can authenticate the framework using the exactly same mechanism in the other direction.

A fundamental question is whether there is any real security gain in encrypting the challenge string itself. This indeed requires extra management (shared secret key for encryption/decryption between the client and the framework) and processing, while no identified security weakness is solved by this extra encryption process. There is no need to have this challenge encryption phase, which should be removed from the authentication procedure.

Summary of change:
(

It is suggested to suppress the requirement for encryption of the challenge in the authentication phase. This CR implements the required modifications to TS 29.198-3 v4.4.0 by removing the selectEncryptionMethod() from the specification, since its sole purpose is to negotiate the encryption mechanism. The TpEncryption tables are also removed.

The fact that public key-based authentication mechanisms could be used is clarified in the authenticate) function.

Consequences if
(

not approved:
Unnecessary use of an encryption mechanism complexifies the system without any gain. Also, lack of details of encryption procedure will lead to interoperability issues.

Clauses affected:
(

4.1.1.1, 4.1.1.2, 4.1.1.3, 4.2, 6.3.1.1, 6.3.1.5, 10.3.3, 10.3.4

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

4.1.1.1 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

[image: image2.wmf]Client

 :

IpInitial

 :

IpAPILevelAuthentication

Framework

 :

IpAccess

 :

IpClientAPILevelAuthentication

1:

initiateAuthentication()

3: authenticate()

7:

requestAccess()

5: authenticate()

8:

obtainInterface()

4:

authenticationSucceeded()

6:

authenticationSucceeded()

1:
Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Authenticate

3:
The client provides an indication if authentication succeeded.

4:
The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the client using the authenticate method on the client's API Level Authentication interface.

5:
The Framework provides an indication if authentication succeeded.

6:
Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

7:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

4.1.1.2
Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another using an underlying distribution technology mechanism.

[image: image3.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthentication(...

2: requestAccess(...

3: obtainInterface...

Underlying Distribution

Technology Mechanism is used

for application identification and

authentication.

1:
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the client.

3:
If the authentication was successful, the client can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

4.1.1.3 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below.. The inclusion of cryptographic processes (digital signatures, challenge-based methods, …) in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources.
The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the client's APILevelAuthentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.

[image: image5.wmf] :

IpClientAPILevelAuthentication

Client

 :

IpInitial

Framework

 :

IpAPILevelAuthentication

1:

initiateAuthentication()

3: authenticate()

4: authenticate()

5: authenticate()

6: authenticate()

IpClientAPILevelAuthentication

reference is passed to framework

and

IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

7:

requestAccess()

4.2 Class Diagrams

[image: image7.wmf]IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

IpAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.
<<Interface>>

IpClientAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

Method

authenticate()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to the challenges presented by the framework. When a public key-based authentication scheme is used, the domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the client on the IpAPILevelAuthentication interface.

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. If the authentication method in use is CHAP-based, the challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996].
Returns

TpOctetSet

Method

abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.

Parameters

No Parameters were identified for this method

Method

authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

Parameters

No Parameters were identified for this method

6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

<<Interface>>

IpAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

Method

authenticate()

This method is used by the client to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the client. When a public key-based authentication scheme is used, the domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. If the authentication method in use is CHAP-based, the challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996].
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

abortAuthentication()

The client uses this method to abort the authentication process. This method is invoked if the client no longer wishes to continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions,P_ACCESS_DENIED
Method

authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
10.3.3

10.3.3

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1079444048.doc

Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthentication()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

_1079444319.doc

 : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthentication()

3: authenticate()

4: authenticate()

5: authenticate()

6: authenticate()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

7: requestAccess()

_1079444375.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

IpAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

_1079428386.doc

Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

