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4.1.1.1 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication process to take place. 

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.
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1:
Initiate Authentication

The client invokes initiateAuthentication  on the Framework's "public" (initial contact) interface to initiate the authentication process.  It  provides in turn a reference to its own authentication interface.  The Framework returns a reference to its authentication interface.

2:
Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the encryption methods it supports.  The Framework prescribes the method to be used. 

3:
Authenticate

4:
The client provides an indication if authentication succeeded.

5:
The client and Framework authenticate each other.  The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface.  In each invocation, the client supplies a challenge and the Framework returns the correct response.  Alternatively or additionally the Framework may issue its own challenges to the client using the authenticate method on the client's API Level Authentication interface.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface.  The Framework returns a reference to its access interface.

8:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

4.1.1.2 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another using an underlying distribution technology mechanism.
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1:
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the client.

3:
If the authentication was successful, the client can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

4.1.1.3 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.  

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return.  In this case the API Level Authentication interface.

2)
The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the encryption capabilities of the client.  The framework then chooses an encryption method based on the encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges according to RFC 1994 CHAP specification. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol.  Mutual authentication is achieved by the framework invoking the authenticate method on the client's APILevelAuthentication interface.

Note that at any point during the access session, either side can request re-authentication.  Re-authentication does not have to be mutual.
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4.2 Class Diagrams
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Figure: Trust and Security Management Package Overview 
4.2.1.1 Interface Class IpInitial 

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework. 

<<Interface>>

IpInitial



initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthTypeList) : TpAuthDomainAndAuthType


Method

initiateAuthentication()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.






























structure TpAuthDomain {


























domainID: 

TpDomainID;
























authInterface:

IpInterfaceRef;























};





























The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.



























The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter.  The client uses this interface to authenticate with the framework. 

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.




































structure TpAuthDomain {


























domainID: 

TpDomainID;
























authInterface:

IpInterfaceRef;






















};






























The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication).  If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).  























The authInterface parameter is a reference to call the authentication interface of the client.  The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthTypeList
This identifies the types of authentication mechanisms supported by the client. It provides operators and clients with the opportunity to negotiate which authentication method and also to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like  CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces.  OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomainAndAuthType


structure TpAuthDomainAndAuthType {



fwDomain:
TpAuthDomain;



authType: TpAuthType;


}
Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
4.2.2 Trust and Security Management State Transition Diagrams
4.2.2.1 State Transition Diagrams for IpInitial 
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Figure : State Transition Diagram for IpInitial 

4.2.2.1.1 Active State

4.2.2.2 State Transition Diagrams for IpAPILevelAuthentication 

[image: image6.wmf]Idle

Selecting 

Method

Authenticating 

Client

Client 

Authenticated

IpInitial.initiateAuthentication

requestAccess 

 ^P_ACCESS_DENIED

selectEncryptionMethod

requestAccess 

 ^P_ACCESS_DENIED

"no method found" 

 ^P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

"found method" / return prescribedMethod ^client.authenticate

authenticate / "Buffer request"

requestAccess ^P_ACCESS_DENIED

authenticate result( VALID )[ Auth 

Incomplete ] ^client.authenticate

requestAccess / new IpAccess

"re-authenticate" 

 ^client.authenticate

authenticate result( VALID )[ AuthComplete ] / 

"Process authenticate requests" ^client.authenticationSucceeded

result( INVALID )

All States

 

Figure : State Transition Diagram for IpAPILevelAuthentication 

4.2.2.2.1 Idle State

When the client has invoked the IpInitial initiateAuthentication method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to provide its encryption capabilities by invoking selectEncryptionMethod.
4.2.2.2.2 Selecting Method State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It is a policy of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not. In case no mechanism can be found the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception is thrown and the Authentication object moves back to the IDLE state  The client can now revisit its list of supported capabilities to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke abortAuthentication.
4.2.2.2.3 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework will either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request is sent to the client.  If the response is valid and the authentication process has been completed, then a transition to the state ClientAuthenticated is made, the client is informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered authenticate requests. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.
4.2.2.2.4 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge.  If the framework decides to re-authenticate the client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.
4.3 Class Diagrams
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Figure: Event Notification Class Diagram 
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Figure: Integrity Management Package Overview 
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Figure: Service Discovery Package Overview 
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Figure: Trust and Security Management Package Overview 
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Figure: Service Agreement Management Package Overview 
4.4 Class Diagrams
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Figure: Service Discovery Package Overview 
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Figure: Service Registration Package Overview 
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Figure: Trust and Security Management Package Overview 
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Figure: Service Instance Lifecycle Manager Package Overview 
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Figure: Integrity Management Package Overview 
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Figure: Event Notification Package Overview 
4.4.1 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined:

String Value
Description

P_OSA_AUTHENTICATION
Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication. Authentication is based on RFC 1994 CHAP mechanism using MD5 hashing algorithm

P_AUTHENTICATION
Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

P_OSA_HMAC_SHA1
Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication. Authentication is based on the use of HMAC-SHA1 hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method.
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