
3GPP TSG CN WG5
Document

e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CR-Form-v4

CHANGE REQUEST

(

29.198-3
CR

(

rev
-
(

Current version:
4.4.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

Core Network
X

Title:
(

Negotiation of Authentication Scheme in OSA

Source:
(

Alcatel

Work item code:
(

Date: (

06-04-02

Category:
(

C

Release: (

Rel-4

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

As per TS 29.198-3, the negotiation of the authentication mechanism is achieved with the initiateAuthenticate() method, which enables the client to indicate which (single) authentication scheme it is willing to use. Currently, two methods have been defined: P_OSA_AUTHENTICATION indicates the use of CHAP (challenge-based authentication with MD5) and P_AUTHENTICATION indicates use of an underlying mechanism (eg CORBA). Other authentication schemes can be defined by service providers and be identified with prefix “SP_”.

New authentication schemes under the SP_ prefix are therefore reserved for service providers and would therefore not appear in the standard. Two different service providers may also well assign their own (different) names to the same authentication scheme. This limits the extensibility of the whole mechanism.

In addition, the current mechanism does not enable negotiation of the authentication scheme, since the client indicates a single chosen scheme as a parameter to the initiateAuthentication() method. This limits the scalability of the whole mechanism.

The current specification does not either enable to negotiate the signing algorithm to be used with the terminateAccess() function.

Summary of change:
(

The authType parameter of the initiateAuthentication() method is modified to carry a list of proposed authentication schemes. The return result must then also contain the scheme chosen by the framework. New authentication types are then defined in table TpAuthType to cover other authenticaton schemes such as digital signature-based schemes, use of HMAC with MD5 or SHA1 in CHAP, … With this solution, the signing algorithm for the terminateAccess() function cannot be negotiated except if the authentication scheme negotiated is always a digital signature scheme, which would then also apply to the terminateAccess() function. To be able to do so, the authType parameter is made compound to contain two lists of proposals: one for initial authentication and one for the signing algorithm of the terminateAccess() function.

Consequences if
(

not approved:
Restrictions on possibilities to extend OSA with new standard authentication schemes and no negotiation of signature function in terminateAccess().

Clauses affected:
(

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

4.1.1.1 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

[image: image1.wmf]Client

 :

IpInitial

 :

IpAPILevelAuthentication

Framework

 :

IpAccess

 :

IpClientAPILevelAuthentication

1:

initiateAuthentication()

2:

selectEncryptionMethod()

3: authenticate()

7:

requestAccess()

5: authenticate()

8:

obtainInterface()

4:

authenticationSucceeded()

6:

authenticationSucceeded()

1:
Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the encryption methods it supports. The Framework prescribes the method to be used.

3:
Authenticate

4:
The client provides an indication if authentication succeeded.

5:
The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the client using the authenticate method on the client's API Level Authentication interface.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

8:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

4.1.1.2 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another using an underlying distribution technology mechanism.

[image: image2.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthentication(...

2: requestAccess(...

3: obtainInterface...

Underlying Distribution

Technology Mechanism is used

for application identification and

authentication.

1:
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the client.

3:
If the authentication was successful, the client can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

4.1.1.3 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the encryption capabilities of the client. The framework then chooses an encryption method based on the encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges according to RFC 1994 CHAP specification. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the client's APILevelAuthentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.

[image: image3.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

6: authenticate()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

7: requestAccess()

4.2 Class Diagrams

[image: image4.wmf]IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
4.2.1.1 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

<<Interface>>

IpInitial

initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthTypeList) : TpAuthDomainAndAuthType

Method

initiateAuthentication()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthTypeList
This identifies the types of authentication mechanisms supported by the client. It provides operators and clients with the opportunity to negotiate which authentication method and also to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomainAndAuthType

structure TpAuthDomainAndAuthType {

fwDomain:
TpAuthDomain;

authType: TpAuthType;

}
Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
4.2.2 Trust and Security Management State Transition Diagrams
4.2.2.1 State Transition Diagrams for IpInitial

[image: image5.wmf]Active

initiateAuthentication / return new IpAuthentication

Figure : State Transition Diagram for IpInitial

4.2.2.1.1 Active State

4.2.2.2 State Transition Diagrams for IpAPILevelAuthentication

[image: image6.wmf]Idle

Selecting

Method

Authenticating

Client

Client

Authenticated

IpInitial.initiateAuthentication

requestAccess

 ^P_ACCESS_DENIED

selectEncryptionMethod

requestAccess

 ^P_ACCESS_DENIED

"no method found"

 ^P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

"found method" / return prescribedMethod ^client.authenticate

authenticate / "Buffer request"

requestAccess ^P_ACCESS_DENIED

authenticate result(VALID)[Auth

Incomplete] ^client.authenticate

requestAccess / new IpAccess

"re-authenticate"

 ^client.authenticate

authenticate result(VALID)[AuthComplete] /

"Process authenticate requests" ^client.authenticationSucceeded

result(INVALID)

All States

Figure : State Transition Diagram for IpAPILevelAuthentication

4.2.2.2.1 Idle State

When the client has invoked the IpInitial initiateAuthentication method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to provide its encryption capabilities by invoking selectEncryptionMethod.
4.2.2.2.2 Selecting Method State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It is a policy of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not. In case no mechanism can be found the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception is thrown and the Authentication object moves back to the IDLE state The client can now revisit its list of supported capabilities to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke abortAuthentication.
4.2.2.2.3 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework will either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state ClientAuthenticated is made, the client is informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered authenticate requests. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial interface.
4.2.2.2.4 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface. In case the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.
4.3 Class Diagrams

[image: image7.wmf]IpAppEventNotification

reportNotification()

notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram
[image: image8.wmf]IpAppFaultManager

activityTestRes()

appActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

svcUnavailableInd()

genFaultStatsRecordRes()

fwUnavailableInd()

activityTestErr()

genFaultStatsRecordErr()

appUnavailableInd()

genFaultStatsRecordReq()

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

genFaultStatsRecordReq()

appActivityTestErr()

appUnavailableInd()

genFaultStatsRecordRes()

genFaultStatsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

queryAppLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotification()

resumeNotification()

suspendNotification()

<<Interface>>

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview
[image: image9.wmf]IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image10.wmf]IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image11.wmf]IpAppServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

(from App Interfaces)

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

selectService()

initiateSignServiceAgreement()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Service Agreement Management Package Overview
4.4 Class Diagrams

[image: image12.wmf]IpFwServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image13.wmf]IpFwServiceRegistration

registerService()

announceServiceAvailability()

unregisterService()

describeService()

unannounceService()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview
[image: image14.wmf]IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

endAccess()

listInterfaces()

releaseInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod()

authenticate()

abortAuthentication()

authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image15.wmf]IpServiceInstanceLifecycleManager

createServiceManager()

destroyServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Instance Lifecycle Manager Package Overview
[image: image16.wmf]IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

queryLoadReq()

querySvcLoadRes()

querySvcLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

suspendNotification()

resumeNotification()

<<Interface>>

IpSvcLoadManager

querySvcLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotification()

suspendNotification()

resumeNotification()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

fwFaultReportInd()

fwFaultRecoveryInd()

fwUnavailableInd()

svcUnavailableInd()

appUnavailableInd()

genFaultStatsRecordRes()

activityTestErr()

genFaultStatsRecordErr()

genFaultStatsRecordReq()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

genFaultStatsRecordReq()

svcUnavailableInd()

svcActivityTestErr()

genFaultStatsRecordRes()

genFaultStatsRecordErr()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview
[image: image17.wmf]IpFwEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNotification

reportNotification()

notificationTerminated()

(from Service Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview
4.4.1 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined:

String Value
Description

P_OSA_AUTHENTICATION
Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication. Authentication is based on RFC 1994 CHAP mechanism using MD5 hashing algorithm

P_AUTHENTICATION
Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

P_OSA_HMAC_SHA1
Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication. Authentication is based on the use of HMAC-SHA1 hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1079428386.doc

Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

7: requestAccess()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

