Sha-zam: A Block Cipher. Fast as DES, Secure
as SHA

Sarvar Patel Zulfikar Ramzan*
Lucent Technologies Laboratory for Computer Science
67 Whippany Road Massachusetts Institute of Technology
Whippany, NJ 07981 Cambridge, MA 02139
sarvar@lucent.com zulfikar@theory.lcs.mit.edu

Ganesh Sundaram
Lucent Technologies
67 Whippany Road
Whippany, NJ 07981
ganeshs@lucent.com

December 6, 1999

Abstract

We describe a block cipher which is both practical and provably se-
cure as SHA-1. The cipher uses the Secure Hash Algorithm (SHA-1) as
an underlying primitive, and we show that any succesful attack on the
cipher results in a succesful attack against one or more of the hallowed
properties of SHA-1. Moreover, our block cipher is still as fast as the Data
Encryption Standard (DES). We also describe a practical Pseudo-Random
Generator which again is as secure as SHA-1. We apply this generator for
secure key scheduling and since it is based on the same underlying prim-
itive as our cipher, we get efficient reuse of our code. Finally we describe
a construction of an efficient family of universal hash functions which are
used by our cipher, which may be of independent interest.

1 Introduction

Designing practical yet provably secure cryptographic algorithms is one of the
greatest challenges in modern cryptography. In fact the notions of practicality
and provable security have often seemed contradictory. Usually provably secure

*Work done while this author was at Lucent Technologies



systems rely on heavy duty mathematical tools which often end up slowing the
system down immensely. On the other hand, one can attempt to design systems
in a fast, ad-hoc manner, but usually it’s difficult to make any statements about
the security of these systems, and the upshot is that most such systems end up
being broken.

In this paper we propose the design of a practical but yet provably secure
block cipher based on SHA! as one of the underlying building blocks of our
system. We combine SHA with what’s called a Feistel Permutation, and a
square hash function (SQH). This permutation function is one of the design
principles that is central to the data encryption standard (DES), whereas SQH is
fundamentally new. In this work we present the security results (and refer to the
proofs published elsewhere) under some reasonable and accepted assumptions
about SHA, that our block cipher is secure. The novelty in our proof is that
we show different levels of security under different assumptions about SHA.
Under some of the stronger assumptions about SHA we can make very strong
guarantees of security, and under certain weaker assumptions about SHA we
can make weaker guarantees of security. This enables us to avoid “putting all
of our eggs in one basket.” This way even if many years down the line, someone
shows that a particular assumption about SHA is false (though this is commonly
believed to be unlikely) our system may still be secure. Moreover, our system
is designed such that it might still be a secure system even if all the underlying
hallowed assumptions about SHA are wrong (which is, once again, believed to
be unlikely).

The central idea in our construction is based on a result of Luby and Rackoff,
[LR], where they use Feistel networks to construct pseudo random permutations
from pseudo random functions. In particular they have outlined the construc-
tion of a block cipher from pseudo random functions using Feistel Networks.
This work of Luby and Rackoff has initiated an explosion of research on appli-
cations and generalizations. More recently, Maurer [M] has greatly simplified
the treatment and proofs of [LR], and Lucks [L] has improved the efficiency
using difference concentration. This work was followed by a more efficient con-
struction by Naor and Reingold, [NR1], where they partially replace the Feistel
permutation by universal hash functions. This modification improves the effi-
ciency with no compromise on security. Furthermore, they present proofs for a
four round construction which is secure against adaptive plaintext and adaptive
ciphertext attacks.

Replacing pseudo random functions (PRF) by cryptographic functions (with
desired properties) is not new. Anderson and Biham [AB], propose the use of
Feistel networks in conjunction with stream ciphers to design block ciphers.
Also, Lucks used MD5 with an unbalanced Feistel network and Guttman’s con-
struction uses SHA but different from the Luby Rackoff construction.

L. To be precise we use SHA-1 in our construction. But for brevity we will refer to it as
SHA in the entire paper.



In our design we do not use any stream ciphers. Instead we rely entirely
on the improved versions of the Luby Rackoff construction and use SHA as our
underlying primitive. In addition to this, we use another building block called a
A-universal hash function. We propose a new family of such hash functions and
we prove that this family of functions has the desired properties. This use of hash
functions, similar to the Naor-Reingold construction, makes our cipher secure
against adaptive attacks (as mentioned earlier). Notably, our construction is
simpler compared to the Naor-Reingold scheme since we use a triplet of keys
for four rounds, and the hash functions we utilize in the first and fourth rounds
can be implemented more efficiently than the ones originally proposed by Naor
and Reingold. This simplification and optimization comes with no compromise
of security, and we prove this fact within.

The novelty of this paper lies in the fact that our design is practical but yet
provably secure. We use familiar constructions from contemporary cryptogra-
phy. The contributions of this work lie in the following: We introduce a new
family of A-universal hash functions which aids in the efficiency of the overall
system. In fact, this family of hash functions is faster than contemporary fami-
lies with similar properties used in cryptography [EPR]. In addition, properties
specific to this family of hash functions allows us to use three keys for four
rounds thereby increasing the efficiency. Next, our use of the Feistel permuta-
tion is slightly modified without any sacrifice in the security. This modification
was motivated by the observation that the core of the proof of Luby and Rackoff
regarding the properties of the Feistel permutation relies on the fact that the
operations are being performed in a group. In other words, there is nothing
specific about the XOR operation (as in the conventional Feistel permutation).
In our design we use the group of integers modulo 2" instead of the Galois field
GF(2™) and prove that this modification does not introduce any weaknesses.
Additionally, the triplet of keys which drive the cipher are generated by a prov-
ably secure pseudo random bit generator which also uses SHA as the underlying
primitive. This pseudo random bit generator, whose security is related to SHA,
runs at approximately half the speed of the overall cipher but every bit of the
output is individually hard. Since we use SHA for this generator also, we get
very efficient reuse of code, which helps in improving the overall efficiency of
the system. The proofs of security, are of two kinds: First under the assump-
tion that SHA provides us with a family of pseudo random functions, we show
our system is secure. Next under the “message authentication code (MAC)”
assumption (which is weaker) we show our cipher is secure. This assumption is
very practical, and in fact is at the heart of many systems currently in practice.
A good example is the HMAC construction. In fact, even if HMAC is broken
our system might be secure. This second proof (where we require the IV to be
secret) based on a weaker assumption, for a Luby Rackoff cipher, is fundamen-
tally new. Finally, we observe that the overall system is as fast as DES (the
data encryption standard). Note that, DES has been a world wide standard and
by far the most popular encryption algorithm. The security of DES (although



under debate in recent times) is believed to be high and the efficiency of the
encryption and decryption processes are very fast in most microprocessors.

The assumptions we make about SHA are widely believed to be true. In
addition it is both a NIST and internet standard. So the claims of provable
security we make are based on the assumption that SHA has all these hallowed
properties. In addition, under one of the assumptions (i.e., Secure MAC as-
sumption) we do not make any claims on partial leakage of bits of a message.
This we consider to be a theoretical weaknesses in the system, but should not
be of much concern in practice.

The rest of the paper is organized as follows. We start with some background
information on practical versus provably secure cryptography. This is followed
by a discussion of the basic tools that are relevant to our construction in section
3. Section 4 provides a description of the block cipher, and in section 5 we
discuss performance issues. This is followed by the key scheduling algorithm in
section 6, and in section 7 we discuss the proofs of the security of the system.
A few of the design choices we made, which seemingly improve the security of
the system, are discussed in section 8.

2 Background

In the design of unconditionally secure cryptosystems, the goal is to show that
it is absolutely infeasible for any adversary, no matter how clever, to break the
cryptosystem. But, no one to this day has been able to design an unconditionally
provably secure cryptosystem (with one notable, but very impractical exception:
the one-time pad). The approach taken by most people trying to design provably
secure systems is to start with some type of basic building block or primitive.
Then, you make some reasonable assumptions, which you may not be able to
formally prove, but yet justify for all practical purposes, about this primitive.
Usually such assumptions should be well accepted and widely believed, even
though no formal proof is known. Finally, you show that any attack which breaks
the security of your new cryptosystem will cause one of the hallowed assumptions
you made on the underlying primitive to be broken. Since you assumed, and it
is widely believed, that the assumption on the underlying primitive is valid, it
then becomes unlikely that the cryptosystem can be broken. This approach was
pioneered in a seminal paper by Blum and Micali [BM], where they introduced
the notion of a secure pseudo random number generator based on complexity
theoretic assumptions.

One problem with this approach is that often, in order to design systems like
the ones mentioned above, one needs a great deal of heavy duty mathematical
machinery, and this can often cost you a great deal of efficiency. For example,
many people have used famous unsolved problems in number theory as the
underlying primitives. Unfortunately, most number theoretic notions are very
expensive to implement on current microprocessors. Some of the more popular



number theoretic problems considered are the discrete log problem in a finite
field and the problem of factoing integers. The reader is referred to [PS] for a
survey of the work on discrete log based generators and the design of an efficient
generator. The benefit of these systems is that, although they are very slow, we
are almost guaranteed that no one can break them.

The design of practical cryptosystems is in many ways an art. The goal is
to use inexpensive operations, and be clever enough so that no one can break
the system. Usually cleverness entails doing enough bit manipulation so as to
confuse any adversary thereby preventing breakage of the cryptosystem. The
nice thing about this approach is that the resulting systems are often very
fast. Unfortunately, the security of the cryptosystems rests almost solely on
the cleverness of the person who designed it. There are several well known
systems that were designed to be very efficient, but for which there are no
known mathematical proofs of security. Examples: SHA-1, DES. A few of these
systems have “withstood the test of time” and have still not been broken. One
of the newest trends in cryptography has been to study these particular systems,
and understand what it is about them that makes them secure. And to see if
these systems in some form can be incorporated and used as the building blocks
for other systems. This brings us to the forefront of current research, which
involves the design and analysis of practical yet provably secure cryptosystems.

Perhaps the main approach to designing practical, yet provably secure cryp-
tosystems has been to use fundamental building blocks which are both fast, and
for which there are many hallowed properties which are believed and widely
accepted to be true. One example of such a building block is the Secure Hash
Algorithm (SHA). SHA is believed to have several very nice properties. Un-
fortunately, no one has been able to prove that these properties hold, but it
appears that they do. Moreover, to this day, no one has been able to show that
any of these believed properties are false — though many have tried.

3 Basic Tools

The Sha-zam cipher makes use of two building blocks. The first of these is
the Secure Hash Algorithm (SHA) designed by NIST along with the NSA. The
second of these basic building blocks is the Square Hash (SQH) which we have
developed. We describe the construction of SHA and SQH in the subsequent
sections and discuss their relevant properties. Before proceeding further, we
discuss the relevant notation.

3.1 Notation

Given two strings z and y we denote by (z,y) their concatenation. Also we
denote by {0, 1}* the set of all bit strings of length k. If C' is an n-bit string, we
denote by prefizy(C) the n — k bit prefix of C (i.e. the first n — k bits of C).



3.2 The Secure Hash Algorithm (SHA)

The Secure Hash Algorithm (SHA) was designed by the National Institute
of Standards and Technology (NIST) along with the NSA (National Security
Agency) to be used with the Digital Signature Standard. SHA was modled
closely after the MD family of message digest algorithms devloped by Rivest.
SHA takes a 512 bit input and produces a 160 bit output. SHA also has a
160 bit Initialization Vector (IV) which can be modified but there is a stan-
dard setting for this vector which is believed to give good security. SHA was
designed to make the process of digitally signing messages more practical. In
particular the idea is that instead of signing the entire message, you first apply
SHA to the message, get an output of shorter length than the input, and then
sign this shorter value — which would take less time than signing the original
larger message.

We denote by SHA(IV, ) the 160 bit output produced by SHA on a 512 bit
user specified input z and the standard IV. SHA is believed to have several fun-
damental properties which make it an excellent building block for cryptographic
protocols and algorithms:

1. SHA behaves like a random function: If some significant portion of the
input is kept secret, then there is no computationally feasible mechanism
for correlating the remaining input bits with the output bits of SHA.

2. SHA acts as a secure Message Authentication Code: If there is a relatively
large (greater than say 128 bits) secret value s, then any adversary who
gets to see pairs (mi,t1),...(my,t,) where each t; = SHA(IV,m;,s),
will not be able to come up with a pair (m',t') where t' = SHA(IV,m/, s)
and where m' is different from each of the m;’s. Moreover, the adver-
sary will be unsuccesful even if this attack is mounted adaptively; e.g.
the adversary can pick a message mi, be given the corresponding tag
t1 = SHA(IV,my,s), and from this information can pick ma, see the cor-
responding t» and so on — it will still be impossible for the adversary to
come up with a valid (m’,t') pair where m' is different from the other m;.

These are some of the accepted and believed properties of SH A. To this day,
no one has been able to violate even a single one of these hallowed properties.
We show that any attack on the Sha-zam block cipher will violate at least one
of these properties. In fact, we can show that in order to “completely” break
the Sha-zam cipher and the key scheduling generator, one would have to violate
all of the above mentioned properties. Moreover, the converse is not necessarily
true. That is, someone can violate all three properties (which is highly unlikely)
and still not be able to break our cipher.

3.2.1 Assumptions related to Sha-zam

In our proofs of security of Sha-zam, we make the following assumptions:



1. keyed variant of SHA-1 is pseudo-random
2. keyed variant of SHA-1 is a secure MAC

Assumption 1 is stronger and, in fact, assumption 1 implies assumption 2.
Indeed, Sha-zam attains the highest possible level of security of strong pseudo-
randomness, under the first assumption. In addition, we prove security against
inversion and forging type attacks under the second assumption, i.e., that the
keyed variant of SHA-1 is a secure Message Authentication Code.

3.2.2 Evidence
The pseudo-random function assumption on SHA-1 can be justified as follows.

1. This assumption follows, for example, from the random oracle assumption
on SHA-1. Intuitively, this means that it is infeasible for any adversary
to establish any kind of corellation between the input bits and the output
bits. In other words, the output bits appear to be “random.” Several
proofs of security for various protocols in cryptography rely on the random
oracle model. In practice a vast majority of them use SHA-1 as a random
oracle, and in particular none of these protocols which use SHA-1 and
whose proof of security is based on the random oracle model have been
broken. In other words implicitly various protocols already assume that
SHA-1 behaves like a random oracle (which is a stronger assumption than
the assumption that SHA-1 behaves like a pseudo-random function).

2. In addition, although SHA-1’s immediate design goals do not discuss
pseudo-randomness, it is well accepted that in order for SHA-1 to meet its
intended design goal (collision-intractability) it should have good statisti-
cal properties and computational properties such as pseudo-randomness.
For instance the designers of RIPEMD in their detailed design note [BP]
state:

“It is the general view that in order to avoid possible statistical attacks,
a good cryptographic hash function should behave like a random function.
The same holds for the compression function....

Statistical irregularities in the behavior of this function could be used in
finding collisions or messages that produce a given hash code.”

Furthermore, they state that (based on statistical tests):

“We can conclude from the results of these tests that there is no indication
that the statistical behavior of the function compress used in RIPEMD
differs significantly from what can be expected for a random function.”

The last quotation, applies to RIPEMD but it is widely believed that
SHA-1 and RIPEMD have similar strengths.



3. Another instance, where the pseudo-randomness assumption is used is in
the pseudo-random number generator for DSS. This is a NIST standard
[DSS]. This generator cannot be cryptographically secure unless we make
the assumption that SHA-1 behaves like a pseudo-random function. For
details the reader is referred to [MvV].

4. Other examples of ciphers which rely on the assumption that SHA-1
and/or MD5 behave like pseudo-random functions can be found in the
works of [AB] and [Lu]. In particular, the latter cipher by Lucks involves
a Luby-Rackoff type construction albeit with an unbalanced Feistel net-
work.

Even if the pseudo-random assumption is not to be trusted, we have another
proof of security based on the weaker message authentication code (MAC) as-
sumption. The MAC assumption is universally believed.

1. Tt is used in the popular HMAC construction as noted in the Internet
RFC [HMAC]. For the details of the proof of the HMAC construction the
reader is referred to [BCK].

2. Another instance is the use of SHA-1 in challenge response protocols. Re-
call that these authentication protocols generally rely on the MAC prop-
erty of SHA-1. Hence in particular, if the MAC assumption on SHA-1 was
not true then the system would have been compromised at the authenti-
cation level to begin with.

3.2.3 Consequences

1. The assumption that SHA-1 behaves like a PRF allows one to make a
very strong claim about Sha-zam: any attempt to “distinguish” will need
on the order of 289 plaintext-ciphertext pairs. Recall that, “distinguish”
refers to any test which just discovers any difference between random and
pseudo-random. Clearly it is harder to recover the keys than it is to
distinguish.

2. Notice what we have proved provides us with lower bounds on security
and the ACTUAL “security”, in the conventional sense of key recovery, of
Sha-zam may be much higher.

3. Another aspect of our construction is that even if some compromises on
SHA-1 with respect to the properties of interest are found, Sha-zam may
yet be secure. In other words, Sha-zam could very well be stronger than
SHA-1.

Consequently little, if any, heuristic analysis needs to be done on Sha-zam;
especially since its underlying building block, SHA-1, has been around for several



years. A lot of work on understanding the properties of SHA-1 has been done
and at some point if weaknesses had been found then clearly we would not have
used the pseudo-randomness assumption in our design.

3.3 The Square Hash

In this section we discuss the second fundamental building block of our block
cipher: The Square Hash (SQH). SQH is what’s called a A-universal family of
hash functions. It has some very nice statistical properties, and is very easy
to compute and evaluate. Because of its nice statistical properties, we can use
A-universal hash functions in our block cipher to enable us to get a great degree
of security at a very small cost. We start by defining the SQH1 family which
gives the basic idea, and later we show how to modify this idea in order to make
implementations easier. Here is the definition of SQH1 :

Definition 1 Let p be a prime. Define the SQH1 family of functions from Z,
to Z, as:
SQH1={hy : Zp — Zp|lx € Z,}

where the functions h, are defined as:
he(m) = (m + 2)? mod p
We now define what it means to be a A-universal family of hash functions:

Definition 2 Let R be an Abelian Group and let '—' denote the subtraction
operation with respect to this group. Then H is a A-universal-family of hash
functions if for all z,y € D with x # y, and all a € R, Pr[h(z) — h(y) = a] <
1/|R|. H is called € — almost — A — universal if Pr[h(z) — h(y) = a] <e.

Theorem 1 The family SQH1 is a A-univeral family of hash functions.

Here is the definition of SQH which is a minor modification on SQH1 to make
implementations easier:

Definition 3 Let | be a positive integer, and let p be a prime with 2! < p <
2l + 2171, The SQH family of functions from ZI’,“ to Z, is defined as follows:

SQH = {g, : {0,1}' — {0,1}' | z € {0,1}}
where the functions g, are defined for any z,m € {0,1}!,
gz(m) = (m 4 z)* mod p mod 2!

Usually we denote by SQH(m) the value gx(m) = (m + k)2 mod p mod 2!
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When implementing the SQH family we usually take [ = 160 and p to be
the smallest prime number greater than 2'%0. We now state our main theorem
regarding the statistical properties of the SQH family:

Theorem 2 SQH is an e-almost-A-universal family of hash functions with € <

3-27¢

Since we typically take I to be a large quantity (a 160 bit number), 3-27! is a

negligible quantity.

The proofs of theorems 1 and 2 are provided in, [EPR].

4 Description of Block Cipher

Our block cipher, which we call Sha-zam, takes as input a 320 bit block M and
outputs a 320 bit ciphertext C. We denote M = (L, R) where L is the left 160
bits of M and R is the right 160 bits of M. Also, we prefer to keep IV secret.

Encryption with Sha-zam

Input:

Output:

Procedure:

Plaintext Stored in L, R — each of which is 160 bits
Private Key: k = (k1, ko, k3) where:

k1, ks are 160 bits each, and ko is 352 bits.

If IV not secret: then use the standard 160 bit IV.

Ciphertext stored in V,W — each of which is 160 bits

S =L+ SQHj;(R) mod 2160

T = R+ SHA(IV, S, k») mod 2'5
V =S+ SHA(IV, T, k) mod 2'60
W =T + SQHy, (V) mod 2160

Decryption with Sha-zam

Input:

Output:

Procedure:

Ciphertext Stored in V,W — each of which is 160 bits
Private Key: k = (k1, ko, k3) where:

k1, ks are 160 bits each, and k- is 352 bits.

If IV note secret: then use the standard 160 bit TV.

Plaintext stored in L,R

T =W — SQHy, (V) mod 2160

S =V — SHA(IV,T, k) mod 216
R=T — SHA(IV, S, k2) mod 2160
L =5 — SQHy, (R) mod 2160
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5 Performance of Sha-zam

Our block cipher can be implemented efficiently. Specifically, it can encrypt
messages in roughly the same time as it would take DES to accomplish this
same task. We start by comparing the processing speed (in megabits / sec-
ond) of optimized SHA and DES implementations. On a Pentium 100 running
Linux, SHA works at 18.6 megabits per second, whereas DES produces 17.864
megabits per second. On a Pentium Pro 200 running Win 95, SHA works at
39.656 megabits per second, and DES works at 37.322 megabits per second.
Here is a table summarizing these results:

Platform SHA DES
Pentium 100 Running Linux 18.6 mbits/sec 17.864 mbits/sec
Pentium Pro 200 Running Win 95 | 39.656 mbits/sec | 37.232 mbits/sec

These results were derived using the SSLay Optimized Assembly implemen-
tations of SHA and DES. This implementation can be found at:
ftp://ftp.psy.uq.oz.au/pub/Crypto/libeay/.

For our implementation of Sha-zam we can actually speed things up because
part of our input to SHA is held to be a fixed constant. This should give us
approximately a 10% speedup for each of the two calls to SHA. Moreoever, we
also believe that each call to SQH can be implemented within this 10% window
[EPR]. We derived at this conclusion by analyzing the instruction counts of
an optimized assembly language implementation of SQH. Therefore, we can
implement our entire cipher in the same amount of time as DES.

Note that, these implementation results are preliminary. More work needs
to be done to confirm these numbers and it is possible to improve some of these
timings.

6 Key Scheduling

We describe a practical and provably secure pseudo-random generator based on
SHA. If we run our generator using a randomly selected 100-bit key as an input
seed, we can securely generate the necessary 672 bits needed for the secret key
of our block cipher. If the initial value for SHA (i.e., IV) is also a secret, then
we will generate an extra 160 bits, for a total of 832 bits. We can also run our
generator assuming a smaller or larger initial seed and get an appropriate level
of security — so the system is flexible. The proofs of security of our generator,
which relies on the security of SHA, will appear elsewhere.

6.1 Description of Generator

We start by describing some of the relevant parameters and building blocks of
our generator. Our generator makes use of several parameters. We make use
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of a 512 bit prespecified global constant C. We almost never use the entire
constant C' but often take some specified prefix of it depending on the length
of the key we’re working with. We now describe our generator. Given a secret
key s and a counter ¢ we generate random bits as follows:

Description of Secure Pseudo Random Number Generator
Input: secret key s and counter c

1. Load the payload registers of SHA with prespecified global constant C'.
2. Load the initial value IV with the standard SHA IV constant.
3. Let s' = the secret key XORed with the most signigicant bits of IV.
4. Let C; = the i-th counter value XORed with all the even words of the payload.
0-th is the least significant word, and 15-th is the most significant.
5. Fori= 1 to m do
Let s; = SHA(s',CY)
6. Output: (h(s1),---,h(sm))

In step 6 above, h refers to a hash function chosen from a universal class. For
example, the linear congruential hash function is any finite field is a very good
candidate. For our purposes we will be using linear congruential hash functions
in a finite field of order p, where p is prespecified 161-bit prime number. Several
optimal implementations of this hash function (which involves a multiplication
and an addition in a finite field of the given order) exist.

7 Security of Sha-zam

In this section we discuss the security of the system. We are able to prove that
Sha-zam is at least as secure as the underlying cryptographic primitive, SHA.
In fact, under some reasonable assumptions about SHA we can show that an
adversary (who has no knowledge of the secret key) cannot even distinguish the
output of Sha-zam from a purely random string. This is the strongest possible
claim of security you can possibly make. Under different assumptions about the
security of SHA, we can show different levels of security for our block cipher.
In the subsequent sections we describe the various levels of provable security we
can achieve.

7.1 Security of the Feistel Construction

The overall security of the system relies on the Feistel construction, the proof
of which was provided by Luby and Rackoff, and later simplied by Maurer [M].
Our design follows the Naor Reingold scheme [NR1], however, we improve upon
their constructions in particular ways. First we use the same random function f
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in rounds 2 and 3, but do not use full 2n-bit pairwise independent permutations
in rounds 1 and 4. Instead we use a n bit universal hash function in rounds 1
and 4. Furthermore the universal hash function does not have to be a strongly
universal thus saving on key bits, but it is enough to be a certain type of Delta-
universal hash function. Care needs to be taken here, for example the use of
a linear delta-universal hash function will not guarantee a secure system. We
show that the square hash function is sufficient. Square hash also has the added
benefit of being twice as efficient as the linear hash. To be able to use square
hash we have to also change the XORs between rounds to addition modulo 2™.
We refer the reader to [PRS1] for a proof of the following theorem.

Theorem 3 Let hy and hy be SQH A-universal hash functions and f be a
random function. The block cipher defined by a 4 round Feistel network where
fi = hi, fo = f, f3s = f, and fy = ho is distinguishable from a random
permutation with Prob < O(gl—f) where m is the number of queries made by an
adversary.

7.2 Security Under the Secure Message Authentication
Code Assumption

We consider the case when the adversary is able to decrypt ciphertext with-
out knowing the secret key. We already know that under the pseudo-random
assumptions on SHA this is very unlikely. In any case, we now give further evi-
dence that this is unlikely under a slightly weaker but widely held assumption:
That SHA can be used for Secure Message Authentication. This assumption is
quite widely believed — in fact it were false, then the proofs of security in HMAC
(which is an internet RFC) would not work. We start by defining some basic
notions relating to Message Authentication Codes (MACs), (see [BCK]), and
later show that in fact the task of decryption in Sha-zam without knowledge of
the secret key is much more difficult than violating the MAC security of SHA.
In this section, we will use Sha-zam with a secret initial value. In other words
we will generate 160 extra bits out of the key scheduling generator (for a total
of 832 bits) and allot these bits for the IV.

A Message Authentication Code (or MAC) is a function which has a secret
key k and takes as input a message m. It returns as output a tag M ACk(m).
MAC’s are used by two people engaged in communication (who have agreed
on a secret key) to ascertain that the messages they’ve sent across are in fact
valid, authentic, and have not been tampered with. There is a stringent notion
of security for MACs. Here is the most general type of attack that can occur.
An adversary gets to see a sequence (m1,t1), (M2, t2),...(Mmq,t,) of (message,
tag) pairs; i.e. t; = M ACy(m;). The adversary, however, is not told what the
secret key k is. We say that the adversary breaks the MAC if he can come up
with a message m which is different from each of the messages my,...,mq, and
a corresponding tag ¢ such that t = M ACy(m).
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The (message, tag) pairs that the adversary gets to see could be derived in
several different ways. It could be that the adversary managed to eavesdrop on
some communication between two parties, and had no control over the messages
for which he saw the tag. Or, the adversary could have been given restricted
black box access to the MACing algorithm. Specifically, the adversary could
have chosen messages m1, ..., m, and been told the corresponding tags t1,...,t,
such that t; = M ACy(m;). This type of attack is called a chosen message attack.
Or, the worst possible scenario — the adversary was given unrestricted black box
access to the MACing algorithm. Specificially, the adversary can choose m;, get
to see the corresponding tag t;. From that information, the adversary can pick
mg, receive the corresponding tag t2, and so on. In this case, the adversary is
said to mount an adaptive chosen message attack because the adversary gets
to adaptively choose his queries to the black box based on the answers to the
previous queries.

We now formally state our assumption on SHA’s ability to be a secure MAC:

Assumption 1 Let k be a 352 bit secret key. Consider the MAC on a 160
bit message m defined by M ACy(m) = SHA(IV,m,k). We assume that it is
computationally infeasible for an adversary to break the MAC (even under an
adaptive chosen message attack).

One thing to note is that the above assumption is actually much weaker
than the standard assumptions made about SHA’s ability to act as a good
MAC. Normally when one thinks of a MAC, both the size of the secret key
and the size of the output are much smaller than the size of the input message.
Since we have a relatively large key and a relatively large output size, we get
a much better level of security. We now state our main theorem regarding the
security of our cipher under the assumption that SHA serves as a secure MAC.
The proof of this theorem can be found in [PRS1].

Theorem 4 Suppose there is an adversary A that is given black box access
to both the encryption and decryption functions for Sha-zam. And after some
number q of queries to the black box, is capable of either encrypting or de-
crypting o randomly chosen message M. Then this adversary A can be con-
verted to another adversary (call it A') which can break the MAC denoted by:
MACy(m) = SHA(IV,m, k) by making 2q adaptive queries. (Thus violating
the assumption that SHA serves as a secure MAC.)

8 Miscellaneous design choices

In our design of Sha-zam, we chose to use Feistel networks involving addition
over the group of integers modulo 2™ as opposed to conventional Feistel networks
which rely on the XOR operation of bit strings. There are some deep scientific
reasons that justify this new approach - in fact in a forthcoming paper [PRS2] we
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show that constructing Luby-Rackoff ciphers over the group of integers modulo
2™ provides examples of ciphers which are secure which may not be secure
involving conventional XOR operations. But that discussion is beyond the scope
of this note. On the other hand let us observe heuristically what is going on
- which led us to formalize what we did. Consider two bit strings A and B.
When we XOR them then each bit of A is transformed into something by the
corresponding bit of B. On the other hand, the operation of addition mod 2"
makes allowance for carry bits and so this allows for a “greater” mixing of bits.
In other words a given bit of B can influence the output bits of multiple bits of
A+B. A simple example of this phenomenon is as follows: consider the subset
sum problem over the integers. This is known to be NP complete. But the same
problem when considered over the set GF(2") is rather trivial to solve. In other
words, conventional addition with carry bits makes it harder than XOR when
addressed in the context of the subset sum problem.

Another design choice which we feel is noteworthy, is the use of square hash
in the outer rounds instead of linear hash functions. Notice that square hash
has the property of removing any linear dependencies between chosen inputs (as
observed earlier). Overall, these choices (albeit heuristic in a certain sense) add
a lot of value to the security (some of them provably) thereby providing some
evidence to the claim that Sha-zam may yet be secure even if some hallowed
property of SHA-1 is compromised.

9 Conclusion

We have described a practical and secure Block Cipher. We have shown that our
cipher is as fast as DES, and is at least as secure as SHA. We have also described
how to do secure key schedhuling via a practical and cryptographically secure
pseudo-random bit generator where each bit is individually hard as SHA.
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