SA WG2 Temporary Document

Page 1
-

3GPP TSG SA WG2 Meeting #63
TD S2-081109
Athens, Greece

18 - 22 February 2008

Source:
Samsung

Title:
The use of DNS for Server Selection

Document for:
Approval

Agenda Item:
8.2.9, 8.4.7

Work Item / Release:
SAES / Rel. 8

Abstract of the contribution:

There is broad agreement that server selection may occur through the use of DNS. There are various possibilities available for use of the DNS. Work in SA2 should simplify its stage 2 selection specifications as the current assumption of a straightforward 'concatenation of labels' to form a host name is inferior to other possibilities. Specifics of DNS usage to support selection should be worked out in CT4.

Introduction

It is agreed that Gateway Section functions in release 8 make use of the DNS in [TS 23.327], [TS 23.401] and [TS 23.402]. A broad assumption has been made that the same approach should be used in release 8 as appeared in pre-release 8 selection functions. To perform selection, the discovering entity concatenates information to form a host name and looks this up in the DNS to obtain the address of the server. This approach has several undesirable characteristics, as will be shown below.

This contribution is related to [S2-080074] "GW Selection Issues", though here the focus is broader in scope. Different DNS mechanisms are discussed to indicate their possible utility in performing DNS lookup to support GW selection. This paper arrives at the same conclusion: our stage 2 TSs should indicate the use of DNS to support selection functions but leave the specifics to Stage 3.

Discussion

The Domain Name Service [RFC 1034] offers many mechanisms for a client to obtain the address of a server.

A solution based on text records (TXT RR) is not discussed since this field is entirely non-standard and coventions about its will not become standard in the IETF. Mechanisms based on TXT RR conventions have rarely - if ever - proven reliable for producing interworking implementations and deployments. This RR is often already used to encode operational information.

A. Look up by name

The client acquires the addresses of a well known server by name using an address record (A RR). Often, the name resolves to addresses in a server pool.

[image: image1.png]1. query A server name 2. reply A server addr

=)

resolver

Figure 1: Server Look up by Well Known Name

This simple approach assumes that

1. all servers with this name are functionally the same (the client may pick any one of the server's addresses returned in the reply to the type A query.)

2. the domain in which the query is performed has authority to provide the address of the server.

3. the client knows a priori which port number to use to contact the service - all that the client requires is the IP address of the server.

4. the client knows a priori which protocol to use to contact the service - all that the client requires is the IP address of the server.

This type of table is inflexible in that it is difficult to designate primary and back up systems or to add or remove hosts from the pool, especially if the host is actually supported in a different domain (see assumption 2 above).

B. Look up by alias

A level of indirection may be introduced to determine a server address by use of the pointer record (PTR RR).

[image: image2.png]1. query PTR alias 2. reply PTR server name
3. query A server name 4. reply A server addr

&)

Figure 2: Server Look up by Alias
Normally, the PTR RR is used to return a host name when given an IP address formulated as a domain name. Other uses are possible. For example, the name of a specific server may be encoded in a unique name, as described in [DNS-SD]. This name can be associated with another host name, an alias in effect. This decouples a persistent name from one that may be ephemeral, such as one that is dynamically reassigned. Assumption 1 (to some extent, as the alias may refer to a subset of the 'servers by name') and 2 may be circumvented through the use of aliases, but not assumptions 3 and 4.

C. Look up by service name

A more sophisticated mechanism exists for determining the location of services by name: the service record (SRV RR) [RFC 2782]. Here a well known service name is looked up to obtain a 'target' name and additional information: the priority/weight and the port number.

[image: image3.png]1. query SRV service name 2. reply SRV server name, priority, port
3. query A server name 4. reply A server addr

Figure 1: Server Look up by Service Name
Normally the target portion of the DNS reply is a host name that allows a subsequent A RR look up, as described above. There are two differences compared to the use of aliases, however.

First, all servers supporting the service are not the same - there is an explicit preference ordering (rendering unnecessary assumption 1 above).

Second, the service port may be assigned to allow more than one logical service to share the same address. The client may obtain this port information from the result of the SRV RR look up and contact this specific service instance (removing the need for assumption 3 above).

The SRV RR target may also be a service name, used for recursive look up. This has the advantage:

· to support delegated authority for the maintenance of the service (obviating assumption 2 above)

This use of recursive SRV RR look ups is however not explicit in the standard. Standard DNS resolvers may not properly handle recursive SRV RR look up.

D. Look up by DDDS

The naming authority pointer record (NAPTR RR) [RFC 2915] is used to encode information that the client may use to properly select the desired server.

[image: image4.png]1. query NAPTR (all) 2. reply NAPTR service name, priority, protocols
3. query SRV service name 4. reply SRV server name, priority, port
5. query A server name 6. reply A server addr

Figure 1: Server Look up by DDDS
Unlike the general use of NAPTR, DDDS offers a simplified interpretation very well suited to centralized administration of multiprotocol services. They term this the straightforward NAPTR (or S-NAPTR) RR.

This approach [RFC 3958] to service discovery allows hierarchical look up of multiprotocol service definitions without rigid domain name usage conventions (so-called 'name hacks'). Hierarchical look ups are explicitly supported as are assignment of a general service that supports multiple access protocols. Thus,

· this approach eliminates assumption 2, above.

· this simple use of NAPTR eliminates assumption 4, above.

Since the result relies on SRV RRs, assumptions 1 and 3 are also not applicable to DDDS.

The usage pattern requires downloading all NAPTR RRs and performing off-line processing. DNS may obtain this data (along with additional SRV RRs and A RRs) all at once using DNS over TCP - so the delay incurred by this use of NAPTR RRs when compared to A RRs need not be significant. Further, most of the required information is returned at once and will be cached - it need not be retrieved subsequently.

E. Applying each RR mechanism to PDN GW selection

As described in [S2-080074], the legacy approach to construction of a host name using an APN and an operator domain only works as there is one access protocol (GTP-C) and only one service per server (GGSN). A PDN GW may support multiple protocol options (GTP and PMIP), multiple PDNs, and both private addresses (e.g. for S5 termination) and global addresses (e.g. for S8 termination).

To select a PDN GW in the home domain, the following options are possible:

	Mechanism
	Operations

	A. server by name
(A RR)
	APN + domain name conventions, including GTP or PMIP protocol support => Address of server

To determine if a particular server supports both GTP and PMIP, multiple queries must be sent. There is no easy way to determine if the server is "the same" except by comparing the resulting IP address.

A separate record for each combination must be maintained in the DNS.

There is no way to indicate relative priorities if multiple servers can support the same combination or to separate particular functions (say for specific PDNs) to different ports.

	B. server by alias
(PTR RR)
	service + protocol + apn + naming convention => name of server
name of server => address of server

This does not allow for mapping to distinct ports, or determining which servers support which protocols.

	C. service by name
(SRV RR)
	service + protocol + apn + naming convention => name of server
name of server => address of server

This does not allow for the client to simply determine which servers support which protocols.

	D. service information
(S-NAPTR RR)
	obtain all service description => service name mappings
service name => server name
server name => server address

This approach does not have any limitations, as discussed above.

By using the S-NAPTR RR approach, it is possible that the client (the MME in the case of 3GPP access) to determine everything it needs to know about the PDN GWs in one query. Combining this with information that it has from the roaming agreement , the subscriber's profile (will the subscriber roam to non-3GPP?) and the capabilities of S-GWs in the vPLMN it can select a PDN GW that the appropriate protocol(s).

If other options are used, increasingly many queries and arcane naming conventions must be defined.

Though PDN GW selection has been discussed, this applies equally to selection of other gateways (specifically the Serving GW).

An example of this configuration and its advantages are included in an appendix to this contribution.

F. Conclusion

There are a significant number of options to consider, though this is properly done at stage 3. At stage 2 it is sufficient to identify

· the policy employed by the MME to select a PDN GW

· the possible characteristics of the PDN GW that would effect selection (support for PMIP, GTP or both)

The actual mechanism used to obtain the list of PDN GWs that support the policy can be left to stage 3 work.

References

[DNS-SD] "DNS-Based Service Discovery", expired internet draft, Aug 2006, please see http://tools.ietf.org/html/draft-cheshire-dnsext-dns-sd-04

[RFC 1034] "DOMAIN NAMES - CONCEPTS AND FACILITIES", Standards Track, Nov 1987.

[RFC 2782] "A DNS RR for specifying the location of services (DNS SRV)", Standards Track, Feb 2000.

[RFC 2915] "The Naming Authority Pointer (NAPTR) DNS Resource Record", Standards Track, Sep 2000.

[RFC 3958] "Domain-Based Application Service Location Using SRV RRs and the Dynamic Delegation Discovery Service (DDDS)", Standards Track, Jan 2005.

[S2-080074] "GW Selection Issues", SA2 #62, Jan 2008

[TS 23.327] "Mobility between 3GPP-Wireless Local Area Network (WLAN) Interworking and 3GPP Systems", v0.2.0, Jan 2008

[TS 23.401] "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access", v8.0.0, Dec 2007

[TS 23.402] "Architecture enhancements for non-3GPP accesses", v8.0.0, Dec 2007

Proposal

First, it is proposed to remove text specific to the use of DNS for server selection based on generating host names. CRs [S2-08zzzz], [S2-08zzzz] and [S2-08zzzz] have been provided to implement this decision, if approved.

Second, it is proposed to send a LS to CT4 indicating this strategy.

Appendix

C4-080561 suggests that a name can be constructed to include the APN as well as GW operating domain:

<APN-Operator-ID>.mnc<MNC>.mcc<MCC>.gprs

There is no doubt you can create a distributed system whose glue is the name of the servers you need. This has one significant disadvantage. The servers you locate this way are all the same. A name alone has no capacity to differentiate. We are now discussing services that are differentiated: some support PMIP, some support GTP, some both. Some GWs are multifunction, others are not. The selection criteria requires that the correct properties are observed. As these features multiply you begin to have a growing problem in your naming system. It is not only server name, but the decoration must include every permutation of capability you need to consider in your selection process. This rapidly becomes untenable.

The only way you can correlate the various properties as belonging to the same PDN GW is to add them to the same name.

So a name for a GW could look something like:

combinedGW.pmip+gtp.apn1.apn2.apnETC.mnc<MNC>.mcc<MCC>.gprs

Is this really what we want?

What happens when we determine that there are additional PDN GW properties?

Contrast this with approaches available using DDDS. This could much more elegantly (with extensibility and clarity) solve the problem.

There are many ways to use DDDS to introduce additional semantics. The following is only one example that is both extensible and rich enough to capture all the semantics we need. One interesting note is that this is not incompatible with the naming convention they are leading towards in CT4, it is just that the complexity of the names are not exposed necessarily. The way I have created the hierarchy, I end up with these names - but this name could change if I inserted additional properties. The point is that the algorithm would not need to change.

=== ROOT zone ===

operator.net.
;; ORDER PREF FLAGS RECORD
IN NAPTR 100 10 "" "GW:combined-GW" (; could be combined-GW, S-GW or P-GW
 "" ; regexp - always empty for DDDS
 pmip+gtp.operator.net. ; replacement
)
IN NAPTR 100 10 "" "GW:P-GW" (; service
 "" ; regexp
 pmip.operator.net. ; replacement
)
=== FIND THE APNs SUPPORTED BY PMIP+GTP GWs ===
pmip+gtp.operator.net.
NAPTR 100 10 "" "GW:combined-GW" (; service
 "" ; regexp
 "apn1.pmip+gtp.operator.net" ; replacement
)
=== FIND THE PMIP+GTP GWs, THEIR PRIORITIES, PORTS, ETC. ===
apn1.pmip+gtp.operator.net
NAPTR 100 10 "s" "GW:combined-GW" (; service
 "" ; regexp
 _lma._ip ; replacement
)
NAPTR 100 10 "s" "GW:combined-GW" (; service
 "" ; regexp
 _gtpv2._udp ; replacement
)
;; PRIO WEIGHT PORT TARGET
_gtpv2._udp SRV 1 1 3386 gatewayPrimary.apn1.operator.net.
_lma._ip SRV 1 1 0 gatewayPrimary.apn1.operator.net.
_gtpv2._udp SRV 1 2 3386 gatewaySecondary.apn1.operator.net.
_lma._ip SRV 1 2 0 gatewaySecondary.apn1.operator.net.
gatewayPrimary A 10.123.234.56
gatewaySecondary A 10.12.34.56
=== FIND THE APNs SUPPORTED BY PMIP ONLY PDN GWs ===
pmip.operator.net.
NAPTR 100 10 "" "GW:combined-GW" (; service
 "" ; regexp
 "apn1.pmip.operator.net" ; replacement
NAPTR 100 10 "" "GW:combined-GW" (; service
 "" ; regexp
 "apn2.pmip.operator.net" ; replacement
=== THE PMIP ONLY GWs SUPPORTING APN1 ===
apn1.pmip.operator.net.
NAPTR 100 10 "s" "GW:combined-GW" (; service
 "" ; regexp
 _lma._ip ; replacement
)
_lma._ip SRV 1 1 0 gatewayOne.apn1.pmip.operator.net.
gatewayOne A 10.11.22.33
=== THE PMIP ONLY GWs SUPPORTING APN2 ===
apn2.pmip.operator.net.
NAPTR 100 10 "s" "GW:combined-GW" (; service
 "" ; regexp
 _lma.ip ; replacement
)
_lma._ip SRV 1 1 0 gatewayTwo.apn2.pmip.operator.net.
gatewayOne A 10.11.22.33
The algorithm is simple. Always start at operator.net. and get all the NAPTR RRs. Then recurse through the desired services iteratively. You can add additional levels of hierarchy for new attributes. You can download the entire thing in one query (over TCP of course) if the other NAPTR RRs (and related SRV RRs and A RRs) are placed in the additional information section of the reply.

In the example above, there are two different GWs.

One is a combined GW that supports pmip and GTP. For the combined node, there is one APN supported: APN1. There are two servers possible - a primary and a secondary.

For the PMIP-only GWs, two APNs are supported.

One note on the example: the strange convention of listing _ip as the transport protocol and port 0 for PMIP (service type _lma) is due to the fact that SRV RRs include transport information. Mobile IPv6 has no transport protocol, hence _ip and 0 are reasonable choices for these fields.

This shows that there is a compelling reason for us to consider this further before jumping to the conclusion that use of server by name is the best way to proceed - probably only because it has worked in the past and is simple to understand in the simplest case.
3GPP

SA WG2 TD

