
S2-166590

Data Layer Framework

Why? What? How?

November 7, 2016

Devaki C

2 © Nokia 2015

Why data layer framework for 5G architecture?

1Decoupling

“compute” from

“storage”

improving

Resiliency of a

NF (1:n), save

NF resources
(e.g.mIoT).

2
Unified data

storage for a

Network function

and across

Network
functions

3
Data Exposure,

Data Analytics

Three Key Factors

3 © Nokia 2015

AMF

PCF

SMF

NEF

Decoupling “compute” and “storage” – What is proposed?
Data Layer becoming an integral part of NextGen

• Enables NF resiliency, stateless NF
but not data sharing for inter vendor
AMF mobility

• DL I/f standardization
• Opaque data - No Data Model

standardization required

• Enables NF resiliency, ease context
retrieval during NF mobility, enables
stateless NF

• DL I/f standardization
• Standardization of UE MM context data

model like in S10 today (TS 29.274 –
Context response message)

• Stage 2 call flows should incorporate
DL for context storage/retrieval

• Enables capability/data exposure
• DL I/f standardization
• Data model standardization

- selective data shared between
different NFs. (TS 29.128 –
Monitoring report message).

• Stage 2 call flows should incorporate
DL for context storage/notification

#3- Multi-NF selective data sharing

(AMF, SMF, NEF, PCF)

#1 - Multivendor opaque data store #2 – Structured data store for

sharing across same NF

(hand-over/mobility, resiliency)

Data Layer
Data Layer

Data Layer

AMF

PCF

SMF

NEF AMF

AMF

All use cases proposed for standardization

4 © Nokia 2015

• Use case #1 maps to question 7/2a –

• Should 3GPP recommend or specify an optional interface from network functions to a
storage service that network functions may use to store selected state as opaque (=
vendor specific) data?

• Use case #3 maps to question 7/2b –

• Should Rel15 support Information exchange (exposure) of selected information like ULI
(specific info to be decided on a case by case basis) between different NF via a “data
layer” in a standardized manner?

• Use case #2 maps to question 7/2c –

• Should Rel-15 support Network function with standardized interface to Information
repository for UE context?

Mapping between use cases and NextGen questions in S2-66588

5 © Nokia 2015

#1 Opaque data store in the DL:

• Enables stateless NF, NF resiliency

• Inter NF Mobility between stateless NFs
(i.e. TAU in a new AMF) will require old
(stateless) AMF to be instantiated solely
for the purpose of reading the DL and
sending the UE MM context via
messaging to the new AMF instance.

• Standards impact: NF <-> DL interface
specification; No Data model
standardization required

#2 Structured data for sharing across

same NFs for NF resiliency, mobility:

• Enables stateless NF, inter vendor NF
resiliency

• Inter NF mobility (e.g. AMF mobility due
to TAU in a new AMF) does not involve
old AMF to be instantiated rather new
AMF can retrieve UE context directly
from the DL.

• Standards impact: Incorporating DL as
integral part of the architecture, Stage 2
flows, NF <-> DL interface specification,
Data model standardization.

Comparison - Use case #1 versus Use case #2

6 © Nokia 2015

Generally NF is expected to have the knowledge when it is appropriate to store UE context information in
the data layer (i.e. when UP function is processing traffic and CP function has not much activity for the
given UE and/or UE remains idle for a long duration). Following are some illustrations:

• Completion of registration (e.g. attach/TAU) procedure.

• When the UE transitions from active to idle mode (i.e. release of NG2/1 signalling connection).

• Completion of HO procedure

The main requirement:

• NF should ensure that the UE context stored in the data layer is up to date (stable state is expected
to stored in the Data Layer)

Triggers for storing context in the Data Layer

7 © Nokia 2015

Intrinsic capabilities of the Data Layer shared across network functions:

• Data may be stored in a distributed manner or in a centralized manner.

• The data can be replicated across multiple locations transparently for the application.

• Data layer can either be shared across network slices or support isolation requirement for isolated
network slices (based on operator policies)

Flexibility in storage

Common CP NFx (CCNF)Common CP NFx (CCNF)

Subscriber
Repository
Subscriber
Repository

Policy Control
Function

Policy Control
Function

Slice CP
NF 1

Slice CP
NF 1

Slice CP
NF n

Slice CP
NF n

Slice UP
NF 1

Slice UP
NF 1

Slice UP
NF n

Slice UP
NF n

NG4

NG1 + NG2

NG3

Slice Specific Core Network Functions

Authentication &
Authorization

Authentication &
Authorization

NSI
Selector

NSI
Selector

NFI
Selector

NFI
Selector

NAS
Routing

NAS
Routing MMMM

NGr

NGs
NGp

NGc

NGcp

DLDL

NGx

NGx

8 © Nokia 2015

In a virtualized environment, there are 2 ways to store data:

• Cache within Network functions.

• Independent storage layer.

• Having storage capabilities in each and every control plane functions is disadvantageous considering
cost and it is not flexible/elastic. Furthermore, it takes away the storage space in a transaction
processing compute machine (= network function).

• Especially in a virtualized environment, an independent storage (data layer) improves the resiliency of
the network by decoupling the “compute” from “storage”. The latency for data retrieval is just a
consequence of virtualization while providing the benefit of independent scalability.

• Even if there is no 3GPP defined standard interface for this purpose, this I/O still exists. On the other
hand, benefit of standardized interface allows multi-vendor capability in operator’s environment.

• NF stores the context in the DL when there is no critical transaction ongoing. In the middle of a
transaction, the network function is expected to store the context within NF cache. Thus there
should be no impact to system performance due to context storage in the Data layer

Latency and system performance

9 © Nokia 2015

• Allows “compute” (Network function) to be decoupled from the “storage” (data layer) functionality
and this helps any network function to perform the processing for a certain UE thus improving the
resiliency of a Network Function. Data Layer can offer resiliency independent of Network Function.

• Network Function can save its resources for massive IoT devices.

• Support for data analytics (KPIs) and network capability exposure (within and outside MNO).

• Provides a unified way how UE MM context and session context is stored across network functions.

• Data Layer exposes one interface for any network function that needs to leverage the services of
Data Layer. “Data as a service” eases the introduction of new network functions as the same
interface can be reused (i.e. a new interface need not be introduced).

• In standards, it embeds and expands the UDC architecture as part of the 5G architecture.

Main benefits of supporting Data Layer framework in the standards

10 © Nokia 2015

Value proposition for operators

• Data layer framework standardization opens up new opportunities:

• Newer Redundancy Models:

• N+m Geo-Redundancy, rather than 1:1 Mated Pair (really 1+1 : 1+1) Geo-Redundancy

• Enables multivendor Network Function resiliency

• Ability to support higher reliability with less hardware footprint

• Opportunity to do more things with contexts/states in the “data layer”:

• Data Analytics

• Internal and External capability exposure (e.g. MEC application has access to context)

• Newer services with access to state/context information (e.g. subscribe/notify access

to ULI for Location-based services)

• OpenAPIs access required to State Repository, with ability to deploy additional State-replicas for
query/subscribe-notify purposes

Decoupling “compute” from “storage” with a standardized interface
opens up new opportunities for operators.

Cloud native technology, improves NF resiliency and enables data sharing

11 © Nokia 2016

• Why?

• Without standardized data layer, every VNF vendor supplying Network Function would support its own
data layer. Standardized DL eases support for Data analytics, Network Capability exposure.

• Standardization of DL enables operator to deploy it across Network Functions (same type or different
type) provided by different vendors without major integration effort.

• When stage 2 procedures and corresponding context exchange via DL are standardized accordingly, it
can enable multi-vendor resiliency.

• Publishing APIs means every vendor’s NF needs to be customized to support every other vendor’s DL,
i.e. requires a specific integration project. And does not allow data sharing between different vendor’s
NFs.

• Why now?

• It needs to be specified in phase 1 as the stage 2 procedures have to be designed with DL framework
right from the beginning and it cannot be introduced in phase 2 in a backward compatible manner if DL
needs to be used as the primary storage of context by a NF.

• Has this been done before?

• This is similar to UDC architecture standardized with Ud interface in CT4.

Why should DL be standardized and Why NOW (in phase 1)?

S2-166590

Open points resolution

13 © Nokia 2016

• Is there is a negative consequence due to communication between 2 NFs that involves the DL (write followed by read
operation):

• a) NF1 stores data in DL

• b) NF1 sends a message to NF2 to trigger a certain request.

• c) NF2 reads data from DL in order to perform some procedure

• How can it be ensured that NF2 has data available from DL in order to process the message from NF1?

Is there a synchronization issue due to DL framework?

Depending on the type of procedure, Network Function 1 can store the data and request for acknowledgement prior to
sending a message to NF2. This ensures that NF2 has the data available from DL for processing the message from NF1.

Proposed Resolution

14 © Nokia 2016

• For Use case #1:

• NF can store opaque (= vendor specific) data in the data layer

What are the contexts stored in the Data Layer?

• Mainly UE contexts.

• Exact set of parameters that is stored in data layer should be determined based on analysis of all relevant
scenarios/key issues, outcome of the NextGen TR, work during the normative phase.

• For Use case #2 (Structured data for sharing across same NFs for NF resiliency, mobility):

• AMF can store standardized UE MM context in the DL. MM Contexts include information such as the following –

• IMSI, MSISDN (optional), MM state, TAI, UE radio capability, UE network capability, DRX parameters, Mobility
Restriction parameters, Access restriction parameters, RFSP index, NSSAI.

• In addition, AMF can also store opaque data in the DL

• For Use case #3 (Multi-NF selective data sharing across different NFs):

• AMF can store UE contexts (TAI, Cell ID, UE reachability event notification) to share with other network functions

• SMF can store UE contexts (Standardized PDU session contexts, User plane function topology information)

15 © Nokia 2016

• When the initial message is received from
UE/RAN, Network function is selected based on
load balancing algorithm.

• NG2AP association is created between RAN
and CCF/AMF for a given UE when the UE
moves to CN connected state and the NG2
association remains active as long as UE is in
connected mode.

• So, for subsequent transactions, when the UE
is in CN connected state, RAN selects the same
AMF pool and eventually the entry point (e.g.
load balancer) in the core network may select
an AMF instance based on NG2AP association.

• Ensures selection of same AMF for subsequent
transaction.

• RAN selects the CCF/AMF pool and eventually
AMF instance is selected based on load
balancing algorithm and there is no previously
established NG2AP association. For
subsequent transactions RAN routes the NAS
signalling from the UE to a CCF/AMF in the
serving network slice based on the NSSAI
provided by the UE and according the same
logic, e.g. based on load balancing algorithms. .

• Potential for race conditions (e.g. consecutive
messages sent to different AMFs) exists

Stateless Network Function Selection – MO transaction
Applicable only for use case #2

16 © Nokia 2016

• In case of MT transaction (e.g. SMF sending a DDN to AMF), the SMF initiating an MT
transaction via AMF (that is stateless) can check with the DL function if there is a
serving NF for the given UE.

• If there is a serving NF for the UE already, then the NF shall send the MT transaction to
the corresponding serving NF.

• With this resolution, we can avoid a race condition i.e. different AMFs being selected
for MO/MT transaction.

Stateless Network Function Selection – MT transaction
Applicable only for use case #2

17 © Nokia 2016

How recovery and restoration can be supported while a network function holds state (i.e.
before it writes its state to the data layer) for scenarios where multiple network functions

are involved (e.g. as part of a procedure involving multiple network functions)?

Recovery and Restoration

• If a network function fails during a certain procedure, some data created in the middle
of a transaction may be lost.

• This is true with or without the Data Layer. But the Data Layer allows the service/UE
context to be restored from the last stable state.

• This is similar to the existing EPC restoration procedure, which also relies on storing
state information in a centralized repository, and for which a failure may also happen in
the middle of a transaction.

• The Data Layer provides a framework that inherently supports the restoration feature.

Proposed Resolution

18 © Nokia 2016

• Race condition:

• Service request is triggered by Uplink data from
the UE.

• RAN selects the AMF1 based on load balancing
algorithms.

• UPF receives a downlink data for the UE and it
routes the Downlink Data and/or Downlink Data
Notification message to SMF (depending on
where the buffering is supported); SMF
eventually forwards it to the AMF2.

• AMF2 reads the UE context from the data layer

Race condition #1 - Applicable only for use case #2
Between MO and MT transaction

• if the scenario happens, the Data layer receives
the access request from AMF1 first and when
receiving the access request from AMF2, it will
reject the access with an indication that AMF1
is the serving node.

• AMF2 should forward the DDN to AMF1. (No
need to roll back anything as CCF-2 / AMF-2
hasn’t done anything until then).

Proposed Resolution

19 © Nokia 2016

• Race condition:

• Service request is triggered by Uplink data from
the UE.

• Detach request is sent by the UE.

Race condition #2 - Applicable only for use case #2
Between consecutive MO transactions

• if the scenario happens, the Data layer receives
the access request from AMF1 first and when
receiving the access request from AMF2, it will
reject the access with an indication that AMF1
is the serving node.

• AMF2 should forward the DDN to AMF1. (No
need to roll back anything as CCF-2 / AMF-2
hasn’t done anything until then).

Proposed Resolution

