3GPP TSG-SA Working Group 2 meeting #11

TSGS2#11
Tdoc S2-000152

January 24 - 28, 2000

Puerto Vallarta, Mexico

Title:
Proposal for new VHE/OSA Framework interfaces

Agenda Item:
‘VHE’
Source:
Siemens
Document for:
Discussion

1 Introduction

This contribution proposes content to replace current sections 6.1 to 6.6 of TS 23.127 (1.1.0) by new sections numbered from 6.1 to 6.6.

The proposed Framework material provides several enhancements compared to the former specification:

· It enhances the Trust & security management by an access functionality that enables the application to check whether it has access to the desired service capability.

· It provides new functionality for load management and heartbeat supervision of the client by the FW as well of the FW by the client.

· It provides an enhanced discovery functionality which introduces the possibility to choose from a group of SCFs matching a certain criteria

· It introduces the notion of Service Types for a further systemization and Service Properties used as a basis for the discovery

· It introduces a symmetrical (peer-to-peer) activity test function and a possibility to collect fault statistic records.

In summary, the proposed changes provide a significant enhancement of the OSA framework functionality.

2 Text to be inserted

Starts here

6.1 Trust and Security Management: Introduction

The Trust and Security Management interfaces provide:

· The first point of contact interface for a client application to access a Framework provider;

· The authentication operations for the client application and Framework provider to perform an authentication protocol;

· The client application with the ability to select a service to make use of;

· The client application with a portal to access other Framework interfaces of the OSA API.

The process by which the client application accesses the Framework provider has been separated into 3 stages:

1. Initial Contact

2. Authentication

3. Access

Interfaces have been defined to enable the client application to progress through each of these stages:

· Initial

· Authentication

· Access

6.1.1 Initial Contact

The client application gains a reference to the Initial interface for the Framework provider that they wish to access. This may be gained through a URL, an Application Support Broker, a stringified object reference, etc. At this stage, the client has no guarantee that this is a reference to the Framework provider.

The client application uses this interface to initiate the authentication process with the Framework provider.

The Initial interface supports the initiateAuthentication operation to allow the authentication process to take place. This operation must be the first invoked by the client application. Invocations of other operations will fail until authentication has been successfully completed.

6.1.2 Authentication

Once the client has made initial contact with the provider, authentication of the client and Framework provider may be required.
The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the framework provider to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client application must authenticate with the framework before it will be able to use any of the other interfaces supported by the framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1. The client application calls initiateAuthentication on the provider’s Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the Framework provider, or the implementation technology used. The initiateAuthentication operation can be used to specify the specific process, (e.g. CORBA security could be used in a CORBA-based implementation of OSA). OSA defines a generic authentication interface (Authentication), which can be used to perform the authentication process. The initiateAuthentication operation allows the client application to pass a reference to its AppAuthentication to the Framework, and receive a reference to the Authentication interface supported by the framework, in return.

2. The client application invokes the selectAuthMethod on the framework’s Authentication interface. This includes the authentication capabilities of the client application. The framework then chooses an authentication method based on the authentication capabilities of the client application and the framework. If the client is capable of handling more than one authentication method, then the framework chooses one option, the prescribedMethod. In some instances, the authentication capability of the client application may not fulfil the demands of the framework, in which case, the authentication will fail.

3. The client application and framework interact to authenticate each other. Depending on the method prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication protocol is performed using the authenticate operation on the Authentication interface. Depending on the authentication method selected, the protocol may require invocations on the Authentication interface supported by the framework; or on the AppAuthentication interface supported by the client application; or on both interfaces.

6.1.3 Access

Once the client has authenticated with the provider, the client can gain access to services, and other framework interfaces.

After authentication, the client application can gain access to the framework’s services, by invoking the requestAccess method on the Initial interface. This allows the client application to request the type of access they require. If they request OSA_ACCESS, then a reference to the Access interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.) The client application must also provide the framework with a reference to a ‘callback’ interface to allow the framework to initiate interactions during the access session. If the client application has requested OSA_ACCESS, then they must provide a reference to an AppAccess interface to the framework.

The Access interface allows the client application to access services offered by the framework, and to gain references to other interfaces offered by the framework. References to framework interfaces are gained by invoking the obtainInterface, or obtainInterfaceWithCallback operations. The latter is used when a callback interface is supplied to the framework. For example, a service discovery interface reference is returned when invoking obtainInterface with “discovery” as the interface name.

In order to use services offered by the Framework provider, the client must first establish a service agreement with the provider. They may then use the accessCheck operation to check that they are authorised to use the service. The selectService operation is used to tell the framework provider that the client application wishes to use the service. The signServiceAgreement operation is used to digitally sign the agreement, and provide non-repudiation for both parties in agreeing that the service would be available for use. This process is described in more detail in the following section: Accessing a service.

The endAccess operation is used to end the client application’s session with the framework. After it is invoked, the client application will not longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

The AppAccess interface is offered by the client application to the framework to allow it to intiate interactions during the access session. It can be used to terminate the access session; request that the client application re-authenticate; and to request that the client application signs a service agreement, when it has asked to use a service.

6.1.4 Accessing a Service

During an authenticated session accessing the Framework, the client application will be able to select and access an instance of the service service. In order to use a service, the client application must be authorised to use the service service, by establishing a service agreement, and then digitally signing the agreement to confirm that they wish to use the service service.

Establishing a service agreement is a business level transaction, which requires the enterprise domain that owns the client application to agree terms for the use of a service with the framework provider. Service agreements can be reached using either off-line or on-line mechanisms. Off-line agreements will be reached outside of the scope of OSA interactions, and so are not described here. However, client applications can make use of service agreements that are made off-line. Some Framework providers may only offer off-line mechanisms to reach service agreements. On-line service agreements may be reached by using other framework interfaces, such as the subscription framework interfaces.

After a service agreement has been established between the client and the framework provider domains, the client application will be able to make use of this agreement to access a service. The client application can use the operations on the Access interface to: check that they are authorised to use a service; select the service they wish to use; and sign the service agreement to signify that they wish to make use of the service, with some specific service properties.

The accessCheck operation allows the client application to check whether it has permission to access (read, write, etc) to a specified service, and specific service features. The client application defines the security domain and context of access to the service. The access control policy is based on a number of conditions, events and permissions that determine whether the client application is authorised to access the service/feature.

The accessCheck operation is optional, in that can be called by the client application to check that it has permission to use service features, before starting a service instance. It is not compulsory for the client application to make this check before selecting a service and signing a service agreement to use an instance of the service. If the accessCheck operation confirms that the client application has permission to use a specific service feature, then this feature should be available to the client application when using the service instance. The framework provider may include the results of the accessCheck as part of the service agreement, that is signed before using a service instance, thereby assuring the client application that the service features will be available.

The selectService operation is used to identify the service that the client application wishes to use. A list of service properties initialises the service, and a service token is returned. The client application and framework provider must sign a copy of the service agreement to confirm the use of the service. The framework invokes signServiceAgreement operation on the client applications’s AppAccess interface with the service agreement text to be signed. The client application uses its digital signature key to sign the agreement text, and return the signed text to the framework. The client application then calls the signServiceAgreement operation on the Access interface supported by the framework provider. The framework signs the agreement text and returns a reference to a service manager interface for the selected service.

6.1.5 Interface Initial

Method
initiateAuthentication()

The client application uses this method to initiate the authentication process.

Direction
Application to Framework

Parameters
clientAppID

This is an identifier for the client application. It is used to identify the client to the framework, (see authenticate() on Authentication). If the clientAppID cannot be found by the framework, an error code is returned by the framework. The value of the parameter fwAuthInterface is NULL in this case.

authType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the OSA Authentication interface, e.g. CORBA Security. OSA Authentication is the default authentication method (OSA_AUTHENTICATION).

appAuthInterface

This provides the reference for the framework to call the authentication interface of the client application.

Returns
fwAuthInterface

This provides the reference for the client application to call the authentication interface of the framework.

Errors

Method
requestAccess ()

Once client and provider are authenticated, the client application invokes the requestAccess operation on the Initial interface. This allows the client application to request the type of access they require. If they request OSA_ACCESS, then a reference to the Access interface is returned. (Operators can define their own access interfaces to satisfy client requirements for different types of access.)

Direction
Application to network

Parameters
accessType

This identifies the type of access interface requested by the client application.

appAccessInterface

This provides the reference for the framework to call the access interface of the client application.

Returns
fwAccessInterface

This provides the reference for the client to call the access interface of the framework.

Errors

6.1.6 Interface Authentication

Method
selectAuthMethod ()

The client application uses this method to initiate the authentication process. The mechanism returned by the framework is the mechanism preferred by the framework. This should be within capability of the client application. If a mechanism that is acceptable to the framework within the capability of the client application cannot be found, the framework returns an error code (INVALID_AUTH_CAPABILITY).

Direction
Application to network

Parameters
authCapability

This is the means by which the authentication mechanisms supported by the client are conveyed to the framework.

Returns
prescribedMethod

This is returned by the framework to indicate the mechanism preferred by the framework for the authentication process. If the value of the prescribedMethod returned by the framework is not understood by the client application, it is considered a catastrophic error and the client application must abort.

Errors

Method
authenticate ()

This method is used by the client to authenticate the framework using the mechanism indicated in prescribed Method. The framework must respond with the correct responses to the challenges presented by the client. The clientAppID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client application (the key management system is currently outside of the scope of the OSA API specification). The number of exchanges and the order of the exchanges is dependant on the prescribedMethod.

Direction
Application to network

Parameters
prescribedMethod

This parameter contains the method that the framework has specified as acceptable for authentication (see selectAuthMethod).

challenge

The challenge presented by the client application to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().

Returns
response

This is the response of the framework to the challenge of the client application in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().

Errors

Method
abortAuthentication ()

The client application uses this method to abort the authentication process. This method is invoked if the client no longer wishes to continue the authentication process, (e.g. if the framework responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on Initial will return an error code (INVALID_AUTHENTICATION) until the client has been properly authenticated.

Direction
Application to network

Parameters

Returns

Errors

6.1.7 Interface Access

Method
obtainInterface ()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces. (The obtainInterfacesWithCallback method should be used if the client application is required to supply a callback interface to the framework.)

Direction
Application to network

Parameters
interfaceName

The name of the framework interface to which a reference to the interface is requested.

Returns
fwInterface

This is the reference to the interface requested.

Errors
If the interfaceName is invalid, an error code (INVALID_INTERFACE_NAME) is returned by the framework.

Method
obtainInterfaceWithCallback ()

This method is used to obtain other framework interfaces. The client application uses this method to obtain interface references to other framework interfaces, when they are required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Direction
Application to network

Parameters
interfaceName

The name of the framework interface to which a reference to the interface is requested.

appInterface

This is the reference to the client application interface, which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns
fwInterface

This is the reference to the interface requested.

Errors
If the interfaceName is invalid, an error code (INVALID_INTERFACE_NAME) is returned by the framework.

Method
accessCheck()

This method may be used by the client application to check whether it has been granted permission to access the specified service. The response is used to indicate whether the request for access has been granted or denied and if granted the level of trust that will be applied. The securityModelID and the relevant securityLevel are available as part of the registration data for the service.

securityModelID:

The identity of the specific Security Model that is to be used to define a set of appropriate polices for the service that can be used by the framework to determine access rights. The model may include: blanket permission; session permission or one shot permission. A number of security models will be stored by the framework, and referenced by the access control module, according to the security model identifier of the service.

securityLevel:

The trust level required by the service for granting access. The Security Level is used by the framework’s access control module when it checks for access rights.

Direction
Application to network

Parameters
securityContext

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.

securityDomain
The security domain in which the client application is operating may influence the access control decisions and the specific set of features that the requestor is entitled to use.

Group

A group can be used to define the access rights associated with all clients that belong to that group. This simplifies the administration of access rights.

ServiceAccessTypes

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as well as those specific to services.

Returns
ServiceAccessControl

This is structure containing the access control policy information controlling access to the service feature, and the trustLevel that the service provider has assigned to the client application. It consists of

· policy: indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

· trustLevel: The trustLevel parameter indicates the trust level that the service provider has assigned to the client application.

Errors

Method
selectService ()

This method is used by the client application to identify the service that the client application wishes to use.

Direction
Application to network

Parameters
ServiceID

This identifies the service required.

ServiceProperties

This is a list of the service properties that the service should support. These properties (names and values) are used to initialise the service instance for use by the client application.

Returns
ServiceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (INVALID_Service_TOKEN). service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

Errors
If the serviceID is not recognised by the framework, an error code INVALID_Service_ID is returned.

If a service property is not recognised by the framework, an error code (INVALID_Service_PROPERTY) is returned.

Method
signServiceAgreement()

This method is used by the client application to request that framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application.

Direction
Application to network

Parameters
ServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application.

agreementText

This is the agreement text that is to be signed by the framework using the private key of the framework.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns
signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service:

· The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

· The serviceMgrInterface is a reference to the service manager interface for the selected service.

Errors
If the serviceToken is invalid, or has expired, an error code (INVALID_Service_TOKEN) is returned.

Method
terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Direction
Application To Network

Parameters
ServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client. If a match is made, the service agreement is terminated, otherwise an error is returned.

Returns

Errors

Method
endAccess()

The endAccess operation is used to end the client application’s access session with the framework. The client requests that its access session is ended. After it is invoked, the client application will not longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Direction
Application To Network

Parameters

Returns

Errors

6.2 Trust and Security Management: Callback Methods

This section defines the Trust and Security Management interfaces supported by the client application. These are similar to those specified for the Framework provider. The client application interfaces are generally callback interfaces that the framework uses to respond to requests initiated by the client application.

6.2.1 Interface AppAuthentication

Method
authenticate()

This method is used by the framework to authenticate the client application using the mechanism indicated in prescibedMechanism. The client application must respond with the correct responses to the challenges presented by the framework. The number of exchanges and the order of the exchanges is dependant on the prescribedMethod. (These may be interleaved with authenticate() calls by the client application on the Authentication interface. This is defined by the prescribedMethod.)

Direction
Network to application

Parameters
prescribedMethod

This parameter contains the agreed method for authentication (see selectAuthMethod on the Authentication interface.)

challenge

The challenge presented by the framework to be responded to by the client application. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectAuthMethod().

Returns
response

This is the response of the client application to the challenge of the framework in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectAuthMethod().

Errors

Method
abortAuthentication ()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to abort the authentication process, (e.g. if the client application responds incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on Initial will return an error code (INVALID_AUTHENTICATION), until the client has been properly authenticated.

Direction
Network to application

Parameters

Returns

Errors

6.2.2 Interface AppAccess

Method
signServiceAgreement()

This method is used by the framework to request that client application sign an agreement on the service. It is called in respoinse to the client application calling the selectService() method on the Access interface of the framework. The framework provides the service agreement text for the client application to sign. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Direction
Network to application

Parameters
ServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance to which this service agreement corresponds. (If the client application selects many services, it can determine which selected service corresponds to the service agreement by matching the service token.)

agreementText

This is the agreement text that is to be signed by the client application using the private key of the client application.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns
digitalSignature

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.

Errors

Method
terminateServiceAgreement()
This method is used by the framework to terminate an agreement for the service.

Direction
Network to application

Parameters
ServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework.

Returns

Errors

Method
terminateAccess ()

The terminateAccess operation is used to end the client application’s access session with the framework. The framework is terminating the client application’s access session. (e.g. This may be done if the framework believes the client application is masquerading as someone else. Using this operation will force the client application to re-authenticate if it wishes to continue using the framework’s services.)

After terminateAccess() is invoked, the client application will not longer be authenticated with the framework. The client application will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Direction
Network to application

Parameters
terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.

digitalSignature : in TpString

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework.

Returns
terminationText

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm

This is the algorithm used to compute the digital signature.

digitalSignature

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework.

Errors

6.3 Interface ServiceDiscovery

This section defines the requirements for the enhanced discovery features of the Framework Interface for the OSA API.

The discovery interface, shown below, consists of four methods. Before a service can be discovered, the enterprise operator (or the client applications) must know what “types” of services are supported by the Framework and what service “properties” are applicable to each service type. The listServiceType() method returns a list of all “Service types” that are currently supported by the framework and the “describeServiceType()” returns a description of each service type. The description of service type includes the “Service-specific properties” that are applicable to each service type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that belong to a given type and possess the desired “property values”, using the “discoverService() method.

Once the enterprise operator finds out the desired set of services supported by the framework, it subscribes (a sub-set of) these services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out the set of services available to it (i.e., the service that it can use) by invoking “listSubscriberServices()”.

The service discovery APIs are invoked by the enterprise operators or client applications. They are described below.

Method
discoverService ()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services that meet its requirements. The client application passes in a list of desired service properties to describe the service it is looking for, in the form attribute/value pairs for the service properties. The client application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match the desired service property list that the client application provided.

Direction
Application to network

Parameters
ServiceTypeName

The “ServiceTypeName” parameter conveys the required service type. It is key to the central purpose of “Service trading”. It is the basis for type safe interactions between the service exporters (via registerService) and service importers (via discoverService). By stating a service type, the importer implies the service type and a domain of discourse for talking about properties of service.

The framework may return a service of a subtype of the “type” requested. AN service sub-type can be described by the properties of its supertypes.

desiredPropertyList

The “desiredPropertyList”parameter is a list of property name and property value pairs of service properties that the discovered set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The property values in the desired property list must be logically interpreted as “minimum”, “maximum”, etc. by the framework (due to the absence of a boolean constraint expression for the specification of the service criterion). It is suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so that desired property values can specify an “enclosing” range of values to help in the selection of desired services.

max

The “max” parameter states the maximum number of services that are to be returned in the “ServiceList” result.

Returns
ServiceList :

This parameter gives a list of matching services. Each service is characterised by the service ID and a list of property name and property value pairs associated with the service.

Errors
If the string representation of the “type” does not obey the rules for service type identifiers, then an ILLEGAL_Service_TYPE exception is raised.

If the “type” is correct syntactically but is not recognised as a service type within the Framework, then an UNKNOWN_Service_TYPE exception is raised.

Method
listServiceTypes ()
This operation returns the names of all service types which are in the repository. The details of the service types can then be obtained using describeServiceType() method.

Direction
Application to network

Parameters

Returns
listTypes

The names of the requested service types.

Errors

Method
describeServiceType()

This operation lets the caller to obtain the details for a particular service type.

Direction
Application to network

Parameters
name

The name of the service type to be described.

Returns
ServiceTypeDescription

The description of the specified service type. The description provides information about:

· the property names associated with the service,

· the corresponding property value types,

· the corresponding property mode (mandatory or read only) associated with each service property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.

Errors
If the “name” is malformed, then an ILLEGAL_Service_TYPE exception is raised.

If the “name” does not exist in the repository, then an UNKNOWN_Service_TYPE exception is raised.

Method
listSubscribedServices ()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Direction
Application to network

Parameters

Returns
ServiceIDList : out TpServiceIDListRef

The “ServiceIDList” parameter returns a list of service IDs of the services subscribed by the subscriber.

Errors

6.4 Interface EventNotification

The event notification mechanism is used to notify the application of generic service related events that have occurred.

Method
enableNotification ()

This method is used to enable generic notifications so that events can be sent to the application.

Direction

Parameters
appInterface
If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the obtainInterface() method (refer to Authentication interface).

eventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns
assignmentID

Specifies the ID assigned by the framework for this newly enabled event notification.

Errors

Method
disableNotification ()

This method is used by the application to disable generic notifications from the framework.

Direction

Parameters
assignmentID

Specifies the assignment ID given by the framework when the previous enableNotification() was called.

Returns

Errors
If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return an error code (INVALID_ASSIGNMENTID).

6.5 Interface AppEventNotification

This interface is used by the services to inform the application of a generic service-related event.

The Event Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the Event Notification interface is obtained. However, this address may be overridden for event notifications (see the enableNotification()method).

Method
eventNotify()

This method notifies the application of the arrival of a generic event.

Direction
Network to application.

Parameters
eventInfo

Specifies specific data associated with this event.

assignmentID

Specifies the assignment id which was returned by the framework during the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

Returns

Errors

Method
notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to faults detected).

Direction
Network to application.

Parameters

Returns

Errors

6.6 Integrity Management Interfaces

6.6.1 Interface LoadManager

The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load balancing policy. The separation of the load balancing mechanism and load balancing policy ensures the flexibility of the load balancing services. The load balancing policy identifies what load balancing rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load balancing policy is related to the QoS level to which the application is subscribed.

The load balancing provides the LoadManager interfaces. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement AppLoadManager to provide the callback mechanism.

Method
reportLoad()

Client application notifies framework its current load level (0,1, or 2) when the load level on the application has changed.
At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is sever overloaded.

Direction
Application to network

Parameters
requester

Specifies the application interface for callbacks from the load balancing service.

loadLevel

Specifies the load level for which the application reported.

Returns

Errors

Method
QueryLoadReq ()

The client application requests for load statistic records produced by framework, specified, services or applications.

Direction
Application toNetwork

Parameters
requester

Specifies the application interface for callbacks from the load balancing service.

ServiceIds

Specifies theframework, services or applications for which the load statistics shall be reported. The serviceIds is null for theframework.

timeInterval

Specifies the time interval within which the load statistics are generated.

Returns

Errors

Method
QueryAppLoadRes ()

Reply load statistics to the framework which requests for the information.

Direction
Application to network

Parameters
loadStatistics

Specifies the load statistics in the application.

Returns

Errors

Method
QueryAppLoadErr()

Reply error to the framework which requests for the information of load statistics.

Direction
Application to network

Parameters
loadStatisticsError

Specifies the error code for getting the load statistics in the application .

Returns

Errors

Method
registerLoadController ()

Register client applications which are subject to load management under various load conditions.

Direction
Application to network

Parameters
requester

Specifies the application interface for callbacks from the load balancing service.

ServiceIds

Specifies the framework or services which are registered for load control. The serviceIds is null for the framework.

Returns

Errors

Method
unregisterLoadController ()

Unregister clients or applications which have been registered for load management.

Direction
Application to network

Parameters
requester

Specifies the application interface for callbacks from the load balancing service.

ServiceIds

Specifies the framework or services which are registered for load control. The serviceIds is null for the framework..

Returns

Errors

Method
resumeNotification ()

Resume the notification for the framework, specified service or application after its load condition changes.

Direction
Application to network

Parameters
ServiceId

Specifies the framework, services or applications for the resumption of notification. The serviceIds is null for the framework

Returns

Errors

Method
suspendNotification()

Suspend the notification for the framework, specified, service or application to handle a temporary load condition .

Direction
Application to network

Parameters
ServiceId

Specifies the framework, services or applications for the suspension of notification. The serviceIds is null for the framework

Returns

Errors

6.6.2 Interface AppLoadManager

The load manager application interface provides the application load manager functions to the load balancing service.

Method
queryAppLoadReq()

The framework requests for load statistic records produced by a specified application.

Direction
Network to application

Parameters
requester

Specifies the framework interface for callbacks from the application.

ServiceIds

Specifies the services or applications for which the load statistics shall be reported.

timeInterval

Specifies the time interval within which the load statistics are generated.

Returns

Errors

Method
queryLoadRes()

Reply load statistics to the application which requests for the information.

Direction
Network to application

Parameters
loadStatistics

Specifies the load statistics replied from framework.

Returns

Errors

Method
queryLoadErr()

Reply error code to the application which requests for the information of the load statistics.

Direction
Network to application

Parameters
loadStatisticsError

Specifies the error code replied from framework.

Returns

Errors

Method
enableLoadControl()

Upon detecting load condition change, i.e. load level changing from 0 to 1, 0 to 2, 1 to 2 or 2 to 1, for the service or framework which has been registered for load control, framework enables load management activity at the client application based on the policy.

Direction
Network to application

Parameters
loadStatistics

Specifies the new load statistics

Returns

Errors

Method
disableLoadControl()

After load level of the framework or service which has been registered for load control moves back to normal, framework disables load control activity at the client application based on policy.

Direction
Network to application

Parameters
ServiceIds

Specifies the services or framework for which the load has changed to normal

Returns

Errors

Method
resumeNotification()

Resume the notification from an application for its load status after the detection of load level change at the framework and the evaluation of the load balancing policy.

Direction

Parameters

Returns

Errors

Method
suspendNotification()

Suspend the notification from an application for its load status after the detection of load level change at the framework and the evaluation of the load balancing policy.

Direction

Parameters

Returns

Errors

6.6.3 Interface FaultManager

This interface is used by the application to inform the framework of events which affect the integrity of the framework and services, and to request information about the integrity of the system.

Method
activityTestReq()

This method may be used by the application to test that the framework or a service is operational. This method allows the application to check that the framework or service is functioning correctly. On receipt of this request, the framework must carry out a test on the specified service or the framework to check that it is operating correctly and report the test result by invoking the activityTestRes method on the AppFaultManager interface.

Direction
Application to network

Parameters
activityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID

This parameter identifies which service the client application is requesting the activity test be done for. A null value denotes that the activity test is being requested for the framework.

appID

This parameter identifies which client application is requesting the activity test, and therefore which application to send the result to.

Returns

Errors

Method
appActivityTestRes ()

This method is used by the client application to return the result of a previously requested activity test.

Direction
Application to network

Parameters
activityTestID

The identifier is used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult

The result of the activity test.

Returns

Errors

Method
svcUnavailableInd ()

This method is used by the client application to inform the framework that it can no longer use the indicated service (either due to a failure in the client application or in the service). On receipt of this request, the framework should take the appropriate corrective action. The framework assumes that the session between this client application and service instance is to be closed and updates its own records appropriately as well as attempting to inform the service instance and/or its administrator. If the client application then tries to continue use of this session it should be returned an error.

Direction
Application to network

Parameters
ServiceID

The identity of the service which can no longer be used.

appID

The identity of the application sending the indication.

Returns

Errors

Method
genFaultStatsRecordReq ()
This method is used by the application to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, which is returned to the client application using the genFaultStatsRecordRes operation on the AppFaultManager interface. The fault statistics record must contain information about faults relating to the services specified in the serviceIDList parameter, during the specified period.

Direction
Application to Network

Parameters
timePeriod

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

ServiceIDList

This parameter lists the services that the application would like to have included in the general fault statistics record. If the application would like the framework fault statistics included it should include the NULL serviceID.

appID

This parameter identifies which client application is requesting the statistics record, and therefore which application to send the record to.

Returns

Errors

6.7 Integrity Management - Fault Management Callback Interfaces

6.7.1 Interface AppFaultManager

This interface is used to inform the application of events which affect the integrity of the Framework, service or Client Application.

The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the Fault Management interface is obtained.

The fault manager operations do not exchange callback interfaces as it is assumed that the Client Application has supplied its Fault Management callback interface at the time it obtains the Framework’s Fault Management interface.

Method
activityTestRes()

This method is invoked by the framework in response to an activityTestReq. The framework returns the result of the activity test in this method, along with a test identifier to allow correlation of result to request within the client application.

Direction
Network to application

Parameters
activityTestID

The identifier is used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult

The result of the activity test.

Returns

Errors

Method
appActivityTestReq ()

This method is invoked by the framework to request that the client application carries out an activity test to check that is it operating correctly. It returns the result of the activity test, via the appActivityTestRes operation on the FaultManager interface.

Direction
Network to application

Parameters
activityTestID

The identifier provided by the client (in the request), to correlate this response with the original request.

Returns

Errors

Method
fwFaultReportInd ()

This method is invoked by the framework to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Direction
Network to application

Parameters
fault

Specifies the fault that has been detected.

Returns

Errors

Method
fwFaultRecoveryInd ()

This method is invoked by the framework to notify the client application that a previously reported fault has been rectified.

Direction
Network to application

Parameters
fault

Specifies the fault from which the framework has recovered.

Returns

Errors

Method
svcUnavailableInd ()

This method is used by the framework to inform the client application that it can no longer use the indicated service due to a failure in the service. On receipt of this request, the client application must act to reset its use of the specified service (using the normal mechanisms such as the discovery and authentication interfaces to stop use of this service instance and begin use of a different service instance).

Direction
Network to application

Parameters
ServiceID

The identity of the service which can no longer be used.

reason

The reason why the service is no longer available.

Returns

Errors

Method
genFaultStatsRecordRes ()

This method is used by the framework to provide fault statistics to a client application in response to a genFaultStatsRecordReq.

Direction
Network to application

Parameters
faultStatistics

The fault statistics record.

ServiceIDList
This parameter lists the services that have been included in the general fault statistics record. The framework is denoted by the NULL serviceID.

Returns

Errors

6.7.2 Interface HeartbeatMgmt

This interface allows the initialisation of a heartbeat supervision of the client application. In case of service supervision, it is the framework's responsibility to check the health status of the respective service.

Since the OSA API is inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons.

Method
enableHeartBeat ()

With this method, the client application registers at the framework for heartbeat supervision of itself.

Direction
Application to network

Parameters
duration

The duration in milliseconds between the heartbeats.

appInterface

This parameter refers to the callback interface the heartbeat is calling.

Returns
session

Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

Errors

Method
disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Direction
Application to network

Parameters
session

Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

Returns

Errors

Method
changeTimeperiod()

Allows the administrative change of the heartbeat period.

Direction
Application to network

Parameters
session

Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

duration

The time interval in milliseconds between the heartbeats.

Returns

Errors

6.7.3 Interface AppHeartbeatMgmt

This interface allows the initialisation of a heartbeat supervision of the Framework and service by the Client. In case of service supervision, it is the framework's responsibility to check the health status of the respective service and send the result back to the client.

Since the OSA API is inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons.

Method
enableAppHeartBeat()

With this method, the framework registers at the client application for heartbeat supervision of itself.

Direction
Network to application

Parameters
duration

The time interval in milliseconds between the heartbeats.

appInterface

This parameter refers to the callback interface the heartbeat is calling.

session

Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

Returns

Errors

Method
disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Direction
Network to application

Parameters
session

Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

Returns

Errors

Method
changeTimeperiod()

Allows the administrative change of the heartbeat period.

Direction
Network to application

Parameters
session

Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

duration

The time interval in milliseconds between the heartbeats.

Returns

Errors

6.7.4 Interface Heartbeat

Method
send()

This is the method the client application uses in case it supervises the framework or a service. The sender must raise an exception if no result comes back after a certain, user-defined time.

Direction

Parameters
session

Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

Returns

Errors

6.7.5 Interface AppHeartbeat

Method
send()

This is the method the client application uses in case it supervises the framework or a service. The sender must raise an exception if no result comes back after a certain, user-defined time.

Direction

Parameters
session
Identifies the heartbeat session. In general, the application has only one session. In case of service and framework supervision by the client application (see the application interfaces), the application may maintain more than one session.

Returns

Errors

6.7.6 Interface OAM

The OAM interface is used to query the system date and time. The application and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA API.

Method
systemDateTimeQuery()

This method is used to query the system date and time. The client passes in its own date and time to the framework. The framework responds with the system date and time.

Direction
Application to network

Parameters
clientDateAndTime

This is the date and time of the client.

Returns
systemDateAndTime

This is the system date and time returned by the framework.

Errors
The error code OSA_INVALID_DATE_TIME_FORMAT is returned if the format of the parameter is invalid.

Ends here

14

