3GPP TSG-SA3 Meeting #83
S3-160750
San Jose del Cabo, Mexico 9-13 May 2016

 Revision of S3-160742
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	33.179
	CR
	0001
	rev
	2
	Current version:
	13.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	x
	Radio Access Network
	
	Core Network
	x

	

	Title:

	Architectural clarifications and corrections

	
	

	Source to WG:
	Motorola Solutions, CESG, Gemalto

	Source to TSG:
	S3

	
	

	Work item code:
	MCPTT
	
	Date:
	2016-05-09

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	Incorrect figure and document references, and missing key derivation function seeding parameters.

	
	

	Summary of change:
	Various changes throughout the document including figure references, external document references, and specification of KDF seeding values.

	
	

	Consequences if not approved:
	Incorrect text, figures, references, and missing Key Deriviation Function seeding values create confusing, misleading, and inaccurate information.

	
	

	Clauses affected:
	5.1, 5.5.1, 5.5.2, 5.5.3.1, 5.5.3.2, 5.6.2.0, 5.6.2.1, 7.3.1, 7.3.4, B.2, B.3.1.1, B.3.1.3, B.4.1, C.1, D.2, D.3.0, D.3.1.1, D.3.1.2, E.2, E.6.1, F.1.2, F.1.3, F.1.4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

************* Start of change 1 **

5
Authentication and Authorisation

5.1
General

The generic steps for MCPTT authentication is shown in Figure 5.1-1.

[image: image1.emf]UE SIP Core

MCPTT

Domain

LTE & EPC

ID Management

server

LTE Attach procedure

B-1. SIP Registration and Authentication

B-2. Third Party Registration

C. MCPTT User Service Authorisation

A. MCPTT User Authentication

Figure 5.1-1: MCPTT Authentication

At UE power-on, the MCPTT UE performs LTE authentication as specified in TS 33.401 [14]. The MCPTT UE then performs the following authentication procedures to successfully complete the MCPTT service registration and identity binding between signalling layer identities and the MCPTT user identities.
- A: MCPTT user authentication

- B: SIP Registration and Authentication

- C: MCPTT Service Authorisation.

These procedures are described in more detail in subsequent clauses.

Steps A and B may be performed in either order or in parallel. For scenarios where this order has an impact on the identity bindings between signalling layer identities and the MCPTT user identities, a re-registration (Step B) to the SIP Core may be performed to update the registered signalling layer identity.

If an MCPTT UE completes SIP registration in Step B prior to performing MCPTT user authentication in Step A and MCPTT user service authorisation in Step C, the MCPTT UE shall be able to enter a 'limited service' state. In this limited state, where the MCPTT user is not authorised with the MCPTT service, the MCPTT UE shall be able to use limited MCPTT services (e.g. an anonymous MCPTT emergency call). The MCPTT Server is informed of the registration of the MCPTT UE with the SIP core though Step B-2.

Additionally, an HTTP-1 authentication mechanism is used.

NOTE: Mechanisms for confidentiality and integrity protection (not defined in this clause) may be combined only with certain authentication procedures.
************* End of change 1 ***

************* Start of change 2 **
5.5.1
Identity Management Functional Model

The Identity Management functional model for MCPTT is shown in figure 5.5.1-1 and consists of the identity management server located in the MCPTT common services core and the identity management client located in the MCPTT UE. The IdM server and the IdM client in the MCPTT UE establish the foundation for MCPTT user authentication and user authorisation.

The CSC-1 reference point, between the MCPTT IdM client in the UE and the Identity Management server, provides the interface for user authentication. CSC-1 is a direct HTTP interface between the IdM client in the UE and the IdM server and shall support OpenID Connect 1.0 ([19], [20] and [21]).
The OpenID Connect profile for MCPTT shall be implemented as defined in Annex B. MCPTT user authentication, MCPTT user authorisation, OpenID Connect 1.0, and the OpenID Connect profile for MCPTT shall form the basis of the MCPTT identity management architecture.

************* End of change 2 ***
************* Start of change 3 **
5.5.2
User Authentication Framework
The following framework utilises the MCPTT CSC-1 reference point.

[image: image2.emf]MCPTT

UE

ID Management

server

A-1 Establish a secure tunnel

 A-2: User Authenticates

 A-3: Deliver unique credential

Figure 5.5.2-1: MCPTT User Authentication Framework

The User Authentication procedure in Step A of Figure 5.1-1 is further detailed into 3 sub steps that comprise the MCPTT user authentication framework:

 A-1 – Establish a secure tunnel between the MCPTT UE and Identity Management (IdM) server. Subsequent steps make use of this tunnel.

 A-2 – Perform the User Authentication Process (User proves their identity).

 A-3 – Deliver the credential, that uniquely identifies the MCPTT user, to the MCPTT client.

Following step A-3, the MCPTT client uses the credential(s) obtained from step A-3 to perform MCPTT service authorization as per procedure C in Figure 5.1-1.
The framework supporting steps A-2 and A-3 shall be implemented using OpenID Connect 1.0 ([aa], [bb] and [cc]).

NOTE: MCPTT service authorization in step C of Figure 5.1-1 is outside the scope of the User Authentication framework.

5.5.3
OpenID Connect (OIDC)
5.5.3.1
General
The following figure describes the MCPTT User Authentication Framework using the OpenID Connect protocol. Specifically, it describes the steps by which an MCPTT user authenticates to the Identity Management server (IdMS), resulting in a set of credentials delivered to the UE uniquely identifying the MCPTT user’s identity. The means by which these credentials are sent from the UE to the MCPTT services are out of scope of this authentication framework. The authentication framework supports extensible user authentication solutions based on MCPTT service provider policy (shown in step 3), with username/password-based user authentication as a mandatory supported method. Other user authentication methods (in step 3; e.g. biometrics, secureID, etc) are possible but not defined here. A detailed OpenID Connect flow can be found in Annex C.

[image: image3.emf]2. OIDC Authentication Request

IdMS UE

4. OIDC Authentication Response containing code

5. OIDC Token Request passing code

6. OIDC Token Response (id_token, access_token)

1. Establish secure tunnel

3. User Authentication

Figure 5.5.3.1-1: OpenID Connect (OIDC) flow supporting MCPTT user authentication
Step 1:
UE establishes a secure tunnel with the Identity Management server (IdMS).

Step 2:
UE sends an OpenID Connect Authentication Request to the IdMS. The request may contain an indication of authentication methods supported by the UE.

Step 3: User Authentication is performed.

 NOTE: The primary credentials for user authentication (e.g. biometrics, secureID, OTP, username/password) are based on MCPTT service provider policy. The method chosen by the MCPTT service provider is not defined nor limited by this specification.

Step 4:
IdMS sends an OpenID Connect Authentication Response to the UE containing an authorization code

Step 5:
UE sends an OpenID Connect Token Request to the IdMS, passing the authorization code

Step 6:
IdMS sends an OpenID Connect Token Response to the UE containing an id_token and an access_token (each which uniquely identify the user of the MCPTT service). The id_token is consumed by the UE to personalize the MCPTT client for the MCPTT user, and the access_token is used by the UE to communicate the identity of the MCPTT user to the MCPTT server(s).
5.5.3.2
User Authentication example using Username/Password

Figure 5.5.3.2-1 shows the OIDC MCPTT flow when Username/Password is used as the user authentication method.

[image: image4.emf]2. OIDC Authentication Request

IdMS UE

4. OIDC Authentication Response containing code

5. OIDC Token Request passing code

6. OIDC Token Response (id_token, access_token)

3a. HTML form prompting for username & password

3b. Form post (Username & password)

1. Establish secure tunnel

Username/password

authentication example

Figure 5.5.3.2-1: OpenID Connect (OIDC) Example Using Username/Password
Step 1:
UE establishes a secure tunnel with the Identity Management server (IdMS).

Step 2:
UE sends an OpenID Connect Authentication Request to the IdMS. The request may contain an indication of authentication methods supported by the UE.

Step 3a:
IdMS sends an HTML form to UE prompting the user for their username & password

Step 3b:
UE sends the username & password (as provided by the user) to the IdMS

Step 4:
IdMS sends an OpenID Connect Authentication Response to the UE containing an authorization code

Step 5:
UE sends an OpenID Connect Token Request to the IdMS, passing the authorization code

Step 6:
IdMS sends an OpenID Connect Token Response to the UE containing an id_token and an access_token (each which uniquely identify the user of the MCPTT service). The id_token is consumed by the UE to personalize the MCPTT client for the MCPTT user, and the access_token is used by the UE to communicate the identity of the MCPTT user to the MCPTT network entities.

************* End of change 3 ***
************* Start of change 4 **
5.6.2.0
General

Depending on implementation, MCPTT user service authorisation may be performed by sending the access token to the MCPTT server over the SIP-1 and SIP-2 reference points using either a SIP REGISTER message or a SIP PUBLISH message. Clause 5.6.2.1 describes how to use the SIP REGISTER message to transport the access token to the MCPTT server and clause 5.6.2.2 describes how to use the SIP PUBLISH message to transport the access token to the MCPTT server.

During initial SIP registration, the SIP REGISTER message shall not be delayed for lack of an access token. If an access token is not available then SIP registration shall proceed without the inclusion of the access token and the access token shall be transmitted to the MCPTT server as per Step C-3 in Figure 5.6.1-1.

If an access token is available before SIP registration, or if the UE becomes de-registered and a SIP re-registration is required, the SIP REGISTER message may include the access token without requiring the user to re-authenticate.
The access token may be sent over SIP to the MCPTT server to re-bind an IMPU and MCPTT ID if either have changed (e.g. IMPU is different due to SIP deregistration/SIP re-registration, or user logs out and another user logs onto the same UE).
5.6.2.1
Using SIP REGISTER

The use of a SIP REGISTER message to provide the access token to the MCPTT server is shown in Figure 5.6.2.1-1. The inclusion of an access token in any particular SIP REGISTER message is optional.

************* End of change 4 ***
************* Start of change 5 **
7.3.1
General

To create the group's security association, a Group Master Key (GMK) and associated identifier (GMK-ID) is distributed to MCPTT UEs by a Group Management Server (GMS). The GMK is distributed encrypted specifically to a user and signed using an identity representing the Group Management Server. Prior to group key distribution, each MCPTT UE within the group shall be provisioned by the MCPTT Key Management Server (KMS) with time-limited key material associated with the MCPTT User as described in Clause 7.2. The Group Management Server shall also be provisioned by the MCPTT KMS with an identity which is authorised to create groups.

The GMK is distributed within a Group Key Transport payload. This payload is a MIKEY-SAKKE I_MESSAGE, as defined in RFC 6509 [11], which ensures the confidentiality, integrity and authenticity of the payload. The GMK is distributed with a 32-bit Group User Key Identifier (GUK-ID). The GUK-ID is generated from the GMK-ID and a User Salt derived from the user's MCPTT ID.
The GMK is encrypted to the user identity (UID) associated to the MCPTT UE. The UID used to encrypt the data will be derived from the user's MCPTT ID and a timestamp as described in Clause 7.2. The user's MCPTT ID is added to the recipient field (IDRr) of the message.

The Group Key Transport payload is signed using (the KMS-provisioned key associated to) the identity of the Group Management Server (GMS). This identity is derived from the GMS’s URI (e.g. gp.manager@.mcptt.example.org) and a timestamp. The GMS’s URI is added to the initiator field (IDRi) of the message.
The GMK is provided together with an activation time, which is the time from which the key should be used for transmission of group communications, replacing previous keys assigned to that group; the group identity for confirmation of the association of the GMK to the group; and an optional text payload which may be used to provide user-readable text. These associated parameters are encrypted by the GMK and carried in the MIKE-SAKKE I_message in the group key transport payload.
The security processes are summarized in Figure 7.3.1-1.

[image: image6.emf]Encapsulated GMK CSB-ID (GUK-ID)

Group Key Transport (MIKEY I_MESSAGE)

SAKKE

payload:

Sign

payload

Sign

(see RFC 6509)

GMS’s ID

Signing Key

Domain

Parameters

Encrypt

(see RFC 6509)

User’sUID

Domain

Parameters

GMK

XOR

User Salt

GMK-ID

Encrypt

MCPTT group ID

Activation time

Text

Associated parameters

General Extensions

payload

HDR

GMK

Figure 7.3.1-1: Generation of a group key transport message

At the MCPTT UE, the GMS’s URI is extracted from the initiator field (IDRi) of the message. Along with the time, this is used to check the signature on the Group Key Transport message. If valid, the UE extracts and decrypts the encapsulated GMK using the (KMS-provisioned) user's UID key. The MCPTT UE also extracts GUK-ID and xors the GUK-ID and User Salt together to extract the GMK-ID. If the GMK consists of zero bytes, the GMK and GMK-ID shall be treated as revoked and shall not be used. The extraction procedure is described in Figure 7.3.1-2.

[image: image8.emf]Encapsulated GMK CSB-ID (GUK-ID)

Group Key Transport (MIKEY I_MESSAGE)

SAKKE

payload:

Sign

payload

Decrypt

(see RFC 6509)

User’sUID

Validate

Signature

GMK

XOR

User Salt

GMK-ID

Decrypt

MCPTT group ID

Activation time

Text

Associated parameters

General Extensions

payload

HDR

Figure 7.3.1-2: Processing of a group key transport message

************* End of change 5 ***
************* Start of change 6 **
7.3.4
Group creation procedure

Group creation procedure is described in Clause 10.4.3 of TS 23.179 [2]. To create the security context for the group, the GMS follows the procedures in Clause 7.3.1, creating a new GMK and GMK-ID for the temporary group.

An encapsulated GMK and GUK-ID is sent to affiliated users by the GMS within a notification message (step 4 within Clause 10.4.3 of TS 23.179 [2]). The procedure is equivalent to that described in Clause 7.3.2.
************* End of change 6 ***
************* Start of change 7 **
B.2
MCPTT Client Registration

Before an MCPTT client can obtain ID tokens and access tokens (required to access MCPTT resource servers) it shall first be registered with the IdM server of the service provider as required by OpenID Connect 1.0. The method by which this is done is not specified by this profile. For native MCPTT clients, the following information shall be registered:

************* End of change 7 ***
************* Start of change 8 **
B.3.1.1
Authentication Request

As described in OpenID Connect 1.0, the MCPTT client constructs a request URI by adding the following parameters to the query component of the authorisation endpoint’s URI using the "application/x-www-form-urlencoded" format, redirecting the user’s web browser to the authorisation endpoint of the IdM server. The standard parameters shown in table B.3.1.1-1 are required by the MCPTT Connect profile. Other parameters defined by the OpenID Connect specification are optional.

Table B.3.1.1-1: Authentication Request standard required parameters
	Parameter
	Values

	response_type
	REQUIRED. For native MCPTT clients the value shall be set to “code”

	client_id
	REQUIRED. The identifier of the MCPTT client making the API request. It shall match the value that was previously registered with the IdM server of the MCPTT service provider.

	scope
	REQUIRED. Scope values are expressed as a list of space-delimited, case-sensitive strings which indicate which MCPTT resource servers the client is requesting access to (e.g. MCPTT, KMS, etc.) If authorized, the requested scope values will be bound to the access token returned to the client.

The scope value “openid” is defined by the OpenID Connect standard and is mandatory, to indicate that the request is an OpenID Connect request, and that an ID token should be returned to the MCPTT client.

This profile further defines the following additional authorisation scopes:
 “3gpp:mcptt:ptt_server” (service authorisation)

 “3gpp:mcptt:key_management_server” (key management authorisation)

 “3gpp:mcptt:config_management_server” (config mgmt authorisation)

 “3gpp:mcptt:group_management_server” (group mgmt authorisation)

Others may be added in the future as new MCPTT resource servers are introduced by 3GPP. (Note: the order in which they are expressed does not matter).

	redirect_uri
	REQUIRED. The URI of the MCPTT client to which the IdM server will redirect the MCPTT client’s user agent in order to return the authorization code to the MCPTT client. The URI shall match the redirect URI registered with the IdM server during the client registration phase.

	state
	REQUIRED. An opaque value used by the MCPTT client to maintain state between the authorization request and authorization response. The IdM server includes this value in its authorization response back to the MCPTT client.

	acr_values
	REQUIRED. Space-separated string that specifies the acr values that the IdM server is being requested to use for processing this authorisation request, with the values appearing in order of preference. For minimum interoperability requirements, a password-based ACR value is mandatory to support. ”3gpp:acr:password”.

	code_challenge
	REQUIRED. The base64url-encoded SHA-256 challenge derived from the code verifier that is sent in the authorisation request, to be verified against later.

	code_challenge_method
	REQUIRED. The hash method used to transform the code verifier to produce the code challenge. This profile current requires the usage of “S256”

An example of an authentication request for MCPTT Connect might look like:

EXAMPLE:

GET/as/authorization.oauth2?response_type=code&client_id=mcptt_client&scope=openid 3gpp:mcptt:ptt_server&redirect_uri=http://3gpp.mcptt/cb&state=abc123&acr_values=3gpp:acr:password&code_challange=0x123456789abcdef&code_challenge_method=S256

HTTP/1.1
Host: IdMS.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded
Upon receiving the authentication request from the MCPTT client, the IdM server performs user authentication. Note that user authentication is completely opaque to the MCPTT client (which never sees any of it, as it is run directly between the IdM server and the user-agent on the UE).
************* End of change 8 **
************* Start of change 9 ***
B.3.1.3
Token Request

In order to exchange the authorization code for an ID token, access token and refresh token, the MCPTT client makes a request to the authorization server’s token endpoint by sending the following parameters using the "application/x-www-form-urlencoded" format, with a character encoding of UTF-8 in the HTTP request entity-body. Note that client authentication is REQUIRED for native applications (using PKCE) in order to exchange the authorization code for an access token. Assuming that client secrets are used, the client secret is sent in the HTTP Authorization Header. The token request standard parameters are shown in table B.3.1.3-1.
Table B.3.1.3-1: Token Request standard required parameters

	Parameter

	Values

	grant_type
	REQUIRED. The value shall be set to ”authorization_code”.

	code
	REQUIRED. The authorization code previously received from the IdM server as a result of the authorisation request and subsequent successful authentication of the MCPTT user.

	client_id
	REQUIRED. The identifier of the client making the API request. It shall match the value that was previously registered with the OAuth Provider during the client registration phase of deployment, or as obtained by the Motorola Solutions development portal

	redirect_uri
	REQUIRED. The value MUST be identical to the "redirect_uri" parameter included in the authorization request

	code_verifier
	REQUIRED. A cryptographically random string that is used to correlate the authorization request to the token request.

An example of a token request for MCPTT Connect might look like.

EXAMPLE:

POST /as/token.oauth2 HTTP/1.1
Host: IdM.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&client_id=myNativeApp&code_verifier=0x123456789abcdef&redirect_uri=http://3gpp.mcptt/cb
************* End of change 9 **
************* Start of change 10 **
B.4.1
Access Token Request

To obtain an access token from the MCPTT IdM server using a refresh token, the MCPTT client makes an access token request to the token endpoint of the IdM server. The MCPTT client does this by adding the following parameters using the "application/x-www-form-urlencoded” format, with a character encoding of UTF-8 in the HTTP request entity-body. The access token request standard parameters are shown in table B.4.1-1.
Table B.4.1-1: Access token request standard required parameters
	Parameter
	Values

	grant_type
	REQUIRED. The value shall be set to ”refresh_token”.

	scope
	Space-delimited set of permissions that the MCPTT client requests. Note that the scopes requested using this grant type shall be of equal to or lesser than scope of the original scopes requested by the MCPTT client as part of the original authorization request.

An example of a token request for MCPTT Connect might look like:

EXAMPLE:

POST /as/token.oauth2 HTTP/1.1
Host: IdM.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=Y7NSzUJuS0Jp7G4SKpBKSOJVHIZxFbxqsqCIZhOEk9&scope=3gpp:mcptt:ptt_server

If the MCPTT client was provided with client credentials by the MCPTT IdM server, then the client shall authenticate with the token endpoint of the IdM server utilizing the client credential (shared secret or public-private key pair) established during the client registration phase.

************* End of change 10 **
************* Start of change 11 **
Annex C (informative):
OpenID Connect Detailed Flow

C.1
Detailed flow for MCPTT User Authentication and Registration using OpenID Connect

Figure C.1-1 shows the detailed flow for MCPTT User Authentication and Registration using the OpenID Connect messages as described in Annex B.
************* End of change 11 **
************* Start of change 12 **
D.2
KMS requests

Requests to the KMS are made to specific resource URIs. Resource URIs are rooted under the tree "/keymanagement/identity/v1" for a particular domain. For example the resource path to initialise a user within the domain "example.org" is:
EXAMPLE:
http://example.org/keymanagement/identity/v1/init

To make a "KMS Initialise" request the key management client shall make a HTTP POST request to the subdirectory "init" i.e. Request-URI takes the form of:

EXAMPLE:
…/keymanagement/identity/v1/init
To make a "KMS KeyProvision" request the key management client shall make a HTTP POST request to the subdirectory "keyprov" i.e. Request-URI takes the form of

EXAMPLE:
…/keymanagement/identity/v1/keyprov
Optionally, the Request-URI of the POST request may contain a specific user or group URI which the key management client would like the KMS to provision. The URI shall be within a subdirectory of "keyprov". For example, the user URI "user@example.org" is provisioned via a request to: "/keymanagement/identity/v1/keyprov/user%40example.org". Additionally, if the Request-URI contains a specific URI, the client may also request a specific time which the client would like the KMS to provision. The time URI shall be the same time as used in the MIKEY payload, a NTP-UTC 64-bit timestamp as defined in RFC 5905 [29]. For example, if the user required keys specifically for 23rd Feb 2014 at 08:39:14.000 UTC, the request would be:
EXAMPLE:
…/keymanagement/identity/v1/keyprov/user%40example.org/D6B4323200000000
To make a "KMS CertCache" request the key management client shall make a HTTP POST request to the subdirectory "certcache". For example, the request-URI takes the form of "/keymanagement/identity/v1/certcache". If a cache has been previously received, the request URI may optionally be directed to the subdirectory indicating the number of the client's latest version of the cache. For example, the request-URI takes the form of

EXAMPLE:
…/keymanagement/identity/v1/certcache/12345
If the optional security extension is used, requests may be authenticated using the shared Transport Key (TrK). To achieve this, the request should be accompanied with an XML payload containing details of the request, signed by the shared TrK.

D.3
KMS responses

D.3.0
General

This clause defines the HTTP responses made by the KMS to the three KMS requests. The KMS attaches XML content to the HTTP responses. The XML serves to provision the client based upon its request.

The header format of the XML content is the same for each request, though each response carries differing content within a "KMSMessage" tag. There are two types of XML content provided by the KMS within the "KMSMessage" tag; KMS Certificates and (private) user Key Set provisioning.

In response to a "KMS Initialise" request, the KMS shall respond with the KMS’s own certificate (the Root KMS certificate) within a "KMSInit" tag.

In response to a "KMS KeyProvision" request, the KMS shall provision appropriate user Key Sets within a "KMSKeyProv" tag.

In response to a "KMS CertCache" request, the KMS shall provision a cache of KMS certificates allowing inter-domain communications within a "KMSCertCache" tag.

D.3.1
KMS certificates
D.3.1.1
Description

A KMS Certificate is a certificate that applies to an entire domain of users. A Certificate consists of XML containing the information required to encrypt messages to a domain of users and verify signatures from the domain of users.
A KMS has exactly one root certificate, which contains the public keys used by the KMS. The root certificate is the only certificate for which the KMS has the private keys and is able to issue user-specific key material. Should the root certificate need to be updated, a new KMS with a new KMS URI should be established with a new root certificate.
It is assumed that the MCPTT user is managed by a single KMS. The root certificate for this KMS is required to encrypt messages to the MCPTT user, and verify signatures from the MCPTT user.
The KMS may also provision a number of 'external' KMS certificates to allow inter-domain communications.

D.3.1.2
Fields

The KMS Certificate shall be within a XML tag named "KmsCertificate". This type shall have the following subfields:

Table D.3.1.2-1: Contents of a KMS Certificate
	Name
	Description

	Version
	(Attribute) The version number of the certificate type (1.1.0)

	Role
	(Attribute) This shall indicate whether the certificate is a "Root" or "External" certificate.

	CertUri
	(Optional) The URI of the Certificate (this object).

	KmsUri
	The URI of the KMS which issued the Certificate.

	Issuer
	(Optional) String describing the issuing entity.

	ValidFrom
	(Optional) Date from which the Certificate may be used.

	ValidTo
	(Optional) Date at which the Certificate expires.

	Revoked
	(Optional) A Boolean value defining whether a Certificate has been revoked.

	UserIDFormat
	Shall contain the value '2', indicating that the generation mechanism defined in Annex F.2.1 shall be used.

	UserKeyPeriod
	The number of seconds that each user key issued by this KMS should be used (e.g. '2419200').

	UserKeyOffset
	The offset in seconds from 0h on 1st Jan 1900 that the segmentation of key periods starts (e.g. '0').

	PubEncKey
	The SAKKE Public Key, "Z_T", as defined in [10]. This is an OCTET STRING encoding of an elliptic curve point.

	PubAuthKey
	The ECCSI Public Key, "KPAK" as defined in [9]. This is an OCTET STRING encoding of an elliptic curve point.

	ParameterSet
	(Optional) The choice of parameter set used for SAKKE and ECCSI (e.g. '1').

	KmsDomainList
	(Optional) List of domains associated with the certificate.

************* End of change 12 **
************* Start of change 13 **
E.2
MIKEY message structure for GMK distribution

The MIKEY-SAKKE message shall include the Common Header payload, Timestamp payload, RAND payload, IDRi payload, IDRr payload, IDRkmsi payload, IDRkmsr payload, SAKKE payload and a SIGN (ECCSI) payload. It is recommended that the message also includes a Security Properties payload. Optionally, the message may include a General Extension payload containing a second SAKKE message as described in Annex E.5.
In the Common Header payload, the CSB ID field of MIKEY common header shall be the GUK-ID.

The Security Policy (SP) payload is used to specify the security properties of group communications using the GMK. Where no security profile is provided, the following default security profile shall be used:

Table E.2-1: MIKEY Group call SRTP Default Profile
	SRTP Type
	Meaning
	Value
	Meaning

	0
	Encryption Algorithm
	6
	AES-GCM

	1
	Session encryption key length
	16
	16 octets

	2
	Authentication algorithm
	4
	RCCm3 (Use of unauthenticated ROC)

	4
	Session salt key length
	12
	12 octets

	5
	SRTP PRF
	0
	AES-CM

	6
	Key derivation rate
	0
	No session key refresh.

	13
	ROC transmission rate
	1
	ROC transmitted in every packet.

	18
	SRTP Authentication tag length
	4
	4 octets for transmission of ROC

	19
	SRTCP Authentication tag length
	0
	ROC need not be transmitted in SRTCP.

	20
	AEAD authentication tag length
	16
	16 octets

Identity payloads shall be IDR payloads as defined in Section 6.6 of RFC 6043 [25]. The IDRi payload shall contain the MCPTT identifier associated with the group management server. The IDRr payload shall contain the MCPTT ID associated to the group management client. The message shall also include IDRkmsi and IDRkmsr that contains the URI of the MCPTT KMS used by the group management server and MCPTT user respectively.

NOTE:
In some deployments MCPTT IDs within these payloads may be treated as private. In this case, the group management server and group management client should substitute these private identities for public identities via a privately-defined mapping.

************* End of change 13 **
************* Start of change 14 **
E.6
MIKEY General Extension Payload to encapsulate parameters associated with a GMK
E.6.1
General

The parameters associated with the GMK shall be contained in the 'General extension payload' specified in RFC 3830 [22] using the 'Vendor ID' Type value and contained within the signed envelope of the MIKEY-SAKKE I_MESSAGE specified in Annex E.2. The format and cryptography of the payload are specified in this sub-clause.

Editor's note: A new '3GPP' Type value should be requested from IANA in place of the 'Vendor ID' Type value.

The four octets consisting of the header of the 'General extension payload' shall be formatted according to RFC 3830 [22]. There shall be six elements within the 'General extension payload' as follow:

-
IV;

-
MCPTT group ID, incorporating a length sub-element and 0-3 octets of random padding;

-
Activation time;

-
Text, incorporating a length sub-element and 0-3 octets of random padding;

-
Reserved, incorporating a length sub-element;

-
0-15 octets of random padding

Thus the structure of the 'General extension payload' according to the present document is shown in figure E.6.1-1 below.

************* End of change 14 **
************* Start of change 15 ***
F.1.2
FC value allocations

The FC number space used is controlled by TS 33.220 [5].

F.1.3
Calculation of the User Salt for GUK-ID generation
When calculating a User Salt using the GMK for generating the GUK-ID from the GMK-ID, the following parameters shall be used to form the input S to the KDF that is specified in Annex B of TS 33.220 [17]:

-
FC = 0x50.

-
P0 = MCPTT ID
-
L0 = length of above (i.e. 0x00 0x17).

The GMK and MCPTT ID follow the encoding also specified in Annex B of TS 33.220 [17]. The 28 least significant bits of the 256 bits of the KDF output shall be used as the User Salt.
F.1.4
Calculation of keys for application data protection

The two 128 bit keys used to protect either signalling plane confidentiality, or signalling plane integrity are derived from the 128 bit XPK, using the KDF that is specified in Annex B of TS 33.220 [27]
The following parameters shall be used to form the input S to the KDF that is specified in Annex B of TS 33.220 [27]. The key used by the KDF shall be the XPK:

-
FC = 0x51(for signalling plane confidentiality), or

-
FC = 0x52 (for signalling plane integrity)
-
P0 = MCPTT ID
-
L0 = length of above, expressed in number of bytes (i.e. 0x00 0x17).

-
P1 = XPK-ID

-
L1 = length of above, expressed in number of bytes (i.e. 0x00 0x17).

The MCPTT ID and XPK-ID follow the encoding also specified in Annex B of TS 33.220 [27].

The 128 least significant bits of the 256 bits of the KDF output shall be used as the signalling protection key.
************* End of change 15 **
3GPP

MCPTT
UE
ID Management server
A-1 Establish a secure tunnel
A-2: User Authenticates
A-3: Deliver unique credential

2. OIDC Authentication Request
IdMS
UE
4. OIDC Authentication Response containing code
5. OIDC Token Request passing code
6. OIDC Token Response (id_token, access_token)
3a. HTML form prompting for username & password
3b. Form post (Username & password)
1. Establish secure tunnel
Username/password authentication example

Encapsulated GMK
CSB
-
ID
(
GUK
-
ID
)
Group Key Transport (MIKEY I_MESSAGE)
SAKKE
payload
:
Sign
payload
Sign
(see RFC 6509)
GMS’
s ID
Signing Key
Domain
Parameters
Encrypt
(
see RFC
6509
)
User’s
UID
Domain
Parameters
GMK
XOR
User Salt
GMK
-
ID
Encrypt
MCPTT group ID
Activation time
Text
Associated parameters
General Extensions payload
HDR
GMK

Encapsulated GMK
CSB
-
ID
(
GUK
-
ID
)
Group Key Transport (MIKEY I_MESSAGE)
SAKKE
payload
:
Sign
payload
Decrypt
(see RFC 6509)
User’s
UID
Validate Signature
GMK
XOR
User Salt
GMK
-
ID
Decrypt
MCPTT group ID
Activation time
Text
Associated parameters
General Extensions payload
HDR

Encapsulated GMK
CSB
-
ID
(
GUK
-
ID
)
Group Key Transport
MIKEY
-
SAKKE
payload
:
Signature
Sign
(
see RFC
6509
)
GMS’
s ID
Signing Key
Domain
Parameters
Encrypt
(
see RFC
6509
)
User’s
UID
Domain
Parameters
GMK
XOR
User Salt
GMK
-
ID
Encrypt
MCPTT group ID
Activation time
Text
Associated parameters
Encapsulated parameters

2. OIDC Authentication Request
IdMS
UE
4. OIDC Authentication Response containing code
5. OIDC Token Request passing code
6. OIDC Token Response (id_token, access_token)
1. Establish secure tunnel
3. User Authentication

UE
SIP Core
MCPTT
Domain
LTE & EPC
ID Management server
LTE Attach procedure
B-1. SIP Registration and Authentication
B-2. Third Party Registration
C. MCPTT User Service Authorisation
A. MCPTT User Authentication

GMK
Encapsulated GMK
Decrypt
(see RFC 6509)
CSB ID (GUK-ID)
Group Key Transport:
Check (Group Identity)
User’s UID Key
MIKEY-SAKKE payload:
Signature
GMK-ID
User Salt
XOR

